Skip to content
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich
Technical University of Munich
  • Home
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Simon Geisler
      • Anna-Kathrin Kopetzki
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Teaching
    • Wintersemester 2025/26
      • Machine Learning
      • Robust Machine Learning
      • Seminar: Current Topics in Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Winter Term 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2019/2020
      • Machine Learning
      • Large-Scale Machine Learning
    • Summer Term 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2018/2019
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Summer Term 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2017/2018
      • Machine Learning
      • Oberseminar
    • Summer Term 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2016/2017
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Research
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publications
  • Open Positions
    • FAQ
  • Open Theses
  1. Home
  2. Team
  3. Filippo Guerranti

Filippo Guerranti

Technical University of Munich
Department of Informatics - I26
Boltzmannstr. 3
85748 Garching b. München
Germany

Room: 00.11.064
Tel: +49 (0) 89 289 17080
E-Mail: f.guerranti [at] tum.de | f.guerranti [at] cit.tum.de

Web: filippoguerranti.com
GitHub: guerrantif
Twitter: guerrantif

Research interests

  • Machine learning on graphs and structured data
  • Encoding graphs for LLMs
  • Graph ML in science (e.g., biology)

Open Positions

Please apply through our internal form in case you are interested in working with me on anything related to my research interests or specifically on these open positions:

  • Encoding Graphs for Large Language Models

Publications

  • Modeling Microenvironment Trajectories on Spatial Transcriptomics with NicheFlow
    Kristiyan Sakalayan*, Alessandro Palma, Filippo Guerranti*, Fabian Theis, Stephan Günnemann
    Neural Information Processing Systems (NeurIPS), 2025
  • TreeGen: A Bayesian Generative Model for Hierarchies with Application to Jet Clustering
    Marcel Kollovieh, Nils Fleischmann, Filippo Guerranti, Bertrand Charpentier, Stephan Günnemann
    Neural Information Processing Systems (NeurIPS), 2025
  • Long-Range Graph Wavelet Networks
    Filippo Guerranti, Fabrizio Forte, Simon Geisler, Stephan Günnemann
    Preprint (arXiv), 2025
  • SAFT: Structure-Aware Fine-Tuning of LLMs for AMR-to-Text Generation
    Rafiq Kamel*, Filippo Guerranti*, Simon Geisler, Stephan Günnemann
    Structured Knowledge for LLMs (SKnowLLM) Workshop at KDD, 2025
  • On the Adversarial Robustness of Graph Contrastive Learning Methods
    Filippo Guerranti, Zinuo Yi, Anna Starovoit, Rafiq Kamel, Simon Geisler, Stephan Günnemann
    New Frontiers in Graph Learning (GLFrontiers) Workshop at NeurIPS, 2023

You can find a complete list on my Google Scholar profile.

Background

  • 2022 - Present: Ph.D. Student in Computer Science, Technical University of Munich (Germany)
  • 2019 - 2022: M.Sc. in Computer and Automation Engineering, University of Siena (Italy), awarded with high distinction
  • 2015 - 2019: B.Sc. in Computer and Information Engineering, University of Siena (Italy)

Research background

  • 2022: Master's thesis: Approximating Logical Reasoning using Neural Networks

Academic Honors and Awards

  • 2022: Best Student Award, Master's degree in Computer and Automation Engineering, University of Siena (Italy)
To top

Informatik 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technische Universität München
TUM School of Computation, Information and Technology
Department of Computer Science
Boltzmannstr. 3
85748 Garching 

Sekretariat:
Raum 00.11.057
Tel.: +49 89 289-17256
Fax: +49 89 289-17257

  • Privacy
  • Imprint
  • Accessibility