Skip to content
  • de
  • en
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich
Technical University of Munich
  • Home
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Teaching
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Winter Term 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2019/2020
      • Machine Learning
      • Large-Scale Machine Learning
    • Summer Term 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2018/2019
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Summer Term 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2017/2018
      • Machine Learning
      • Oberseminar
    • Summer Term 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2016/2017
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Research
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publications
  • Open Positions
    • FAQ
  • Open Theses
  1. Home
  2. Team
  3. Simon Geisler

Simon Geisler

Technical University of Munich
Department of Informatics - I26
Boltzmannstr. 3
85748 Garching b. München
Germany

Room: 00.11.055
Phone: +49 (0)89 / 289-17277
Fax: +49 (0)89 / 289-17257
E-Mail: simon.geisler [at] in [dot] tum [dot] de

Research Focus

  • Robust Deep Learning
  • Uncertainty Estimation in Deep Learning
  • Machine Learning for Graphs and Sequences

Selected Publications

  • Transformers Meet Directed Graphs
    Simon Geisler, Yujia Li, Daniel Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and Cosmin Paduraru
    International Conference on Machine Learning (ICML), 2023
  • Are Defenses for Graph Neural Networks Robust?
    Simon Geisler*, Felix Mujkanovic*, Stephan Günnemann, and Aleksandar Bojchevski
    Neural Information Processing Systems (NeurIPS) 2022
  • Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness
    Simon Geisler*, Johanna Sommer*, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann
    International Conference on Learning Representations (ICLR), 2022
  • Robustness of Graph Neural Networks at Scale
    Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan Günnemann
    Neural Information Processing Systems (NeurIPS), 2021
  • Reliable Graph Neural Networks via Robust Aggregation
    Simon Geisler, Daniel Zügner, Stephan Günnemann
    Neural Information Processing Systems (NeurIPS), 2020

* equal contribution

Academic & Professional Experience

Jun-Oct 2022: Research Intern, Google DeepMind, London, UK

2015-2020: Data Scientist, Robert Bosch GmbH, Autonomous Driving and Connected Services, Abstatt, Germany

Jun-Aug 2019: Deep Learning Intern, Bosch Center for Artificial Intelligence (BCAI), Sunnyvale, USA

2016-2019: M.Sc. Data Science, Albstadt-Sigmaringen University in cooperation with University of Mannheim, Germany

Academic Honors and Awards

2014-2016: Gifted student scholarship, Konrad-Adenauer-Foundation

2015: Scholarship, Fulbright

To top

Informatics 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technical University of Munich
TUM School of Computation, Information and Technology
Department of Computer Science 
Boltzmannstr. 3
85748 Garching
Germany

Secretary's office:
Room 00.11.057
Phone: +49 89 289-17256
Fax: +49 89 289-17257

  • Privacy
  • Imprint
  • Accessibility