Skip to content
  • de
  • en
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich
Technical University of Munich
  • Home
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Teaching
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Winter Term 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2019/2020
      • Machine Learning
      • Large-Scale Machine Learning
    • Summer Term 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2018/2019
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Summer Term 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2017/2018
      • Machine Learning
      • Oberseminar
    • Summer Term 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2016/2017
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Research
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publications
  • Open Positions
    • FAQ
  • Open Theses
  1. Home
  2. Team
  3. Alumni
  4. Johannes Klicpera

Johannes Gasteiger, né Klicpera

Technical University of Munich
Department of Informatics - I26
Boltzmannstr. 3
85748 Garching b. München
Germany

Room: 00.11.053

Phone: +49 (0)89 / 289-17265
Fax: +49 (0)89 / 289-17276
E-Mail: j.gasteiger [at] in.tum.de

GitHub: gasteigerjo
Twitter: @gasteigerjo

Research Focus

  • Machine learning for graphs and molecules
  • Graph neural networks

Selected Publications

Google Scholar

  • Johannes Gasteiger, Florian Becker, Stephan Günnemann
    GemNet: Universal Directional Graph Neural Networks for Molecules
    Conference on Neural Information Processing Systems (NeurIPS), 2021
    [Paper | Code | Project page]
  • Johannes Gasteiger, Chandan Yeshwanth, Stephan Günnemann
    Directional Message Passing on Molecular Graphs via Synthetic Coordinates
    Conference on Neural Information Processing Systems (NeurIPS), 2021
    [Paper | Code | Project page]
  • Johannes Gasteiger, Marten Lienen, Stephan Günnemann
    Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More
    International Conference on Machine Learning (ICML), 2021
    [Paper | LCN code | GTN code | Project page]
  • Aleksandar Bojchevski*, Johannes Gasteiger*, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rozemberczki, Michal Lukasik, Stephan Günnemann
    Scaling Graph Neural Networks with Approximate PageRank
    SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2020. Oral.
    [Paper | Code | Colab | Project page]
  • Johannes Gasteiger, Janek Groß, Stephan Günnemann
    Directional Message Passing for Molecular Graphs
    International Conference on Learning Representations (ICLR), 2020. Spotlight.
    [Paper | Code | Project page]
  • Johannes Gasteiger, Stefan Weißenberger, Stephan Günnemann
    Diffusion Improves Graph Learning
    Conference on Neural Information Processing Systems (NeurIPS), 2019
    [Paper | Blog | Code | Project page]
  • Johannes Gasteiger, Aleksandar Bojchevski, Stephan Günnemann
    Predict then Propagate: Graph Neural Networks meet Personalized PageRank
    International Conference on Learning Representations (ICLR), 2019
    [Paper | Code | Project page]

*Equal contribution

Research Background

  • 2018: Master's thesis: From Graph Convolutional Networks to Weighted Embedding Propagation
  • 2016 - 2017: Master's thesis, University of Cambridge: Measuring the Energy Landscapes of Large Granular Systems
  • 2015: Bachelor's thesis: Fault Parameterization and Rough Fault Earthquake Simulations in SeisSol
  • 2014: Bachelor's thesis: Simulation of electrically pumped GaAs nanowire lasers

Education

  • 2015 - 2018: M.Sc. Informatics, Technical University of Munich, passed with high distinction
  • 2014 - 2018: M.Sc. Physics (Condensed Matter Physics), Technical University of Munich, passed with high distinction
  • 2012 - 2015: B.Sc. Informatics, Technical University of Munich, passed with high distinction
  • 2011 - 2014: B.Sc. Physics (Applied and Engineering Physics), Technical University of Munich, passed with high distinction

Academic Honors and Awards

  • Scholarship awarded by the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes)
  • Promoted by the best.in.tum program of the Informatics department, Technical University of Munich
  • Scholarship awarded by the Max Weber-Program of the State of Bavaria
To top

Informatics 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technical University of Munich
TUM School of Computation, Information and Technology
Department of Computer Science 
Boltzmannstr. 3
85748 Garching
Germany

Secretary's office:
Room 00.11.057
Phone: +49 89 289-17256
Fax: +49 89 289-17257

  • Privacy
  • Imprint
  • Accessibility