Zum Inhalt springen
  • de
  • en
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technische Universität München
Technische Universität München
  • Startseite
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Gasteiger, né Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Lehre
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Sommersemester 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Wintersemester 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Sommersemester 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Sommersemester 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2019/20
      • Machine Learning
      • Large-Scale Machine Learning
    • Sommersemester 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Wintersemester 2018/19
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Sommersemester 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Wintersemester 2017/18
      • Machine Learning
      • Oberseminar
    • Sommersemester 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Wintersemester 2016/17
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Forschung
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publikationen
  • Offene Stellen
    • FAQ
  • Abschlussarbeiten
  1. Startseite
  2. Lehre
  3. Sommersemester 2022
  4. Seminar (Time Series)

Seminar - Machine Learning for Time Series Data: An Applied Perspective

On moodle and TUMonline this seminar is called Seminar - Efficient Inference and Large-Scale Machine Learning (IN2107, IN4874).

Application

The pre-course meeting with information regarding the course format, possible topics etc. is scheduled for Feb 7, 2022 4pm on zoom (Passcode: 281710).

Note that you have to register via the matching system and fill out our application form to apply for a spot!

Schedule

  • Pre-course meeting: Feb 7, 2022 4pm - slides
  • Kick-off meeting: Apr 28, 2022 2pm - slides
  • Final presentations: Jul 26 & 27, 2022

Prerequisites

This seminar is intended for Master's students only. You should have attended (and passed) the Machine Learning lecture (IN2064). Having attended Machine Learning for Graphs and Sequential Data (IN2323) or other advanced ML/DL lectures (IN2332, IN2346, etc.) is a plus.

Description

Machine Learning is used in many companies for core business functions where numerical time series (e.g., demand for an online retailer, staff attendance, telemetry data from cloud resources) are ubiquitous. Accordingly, the interest in adapting and innovating machine learning methods that handle time series (i.e. data that exhibit temporal dependencies, going beyond the ubiquitous IID assumption) natively is growing. Common ML tasks that are addressed using time series data include forecasting, anomaly detection, time series classification, representation learning, and missing value imputation. Furthermore, challenges common to the entire ML community like causality or interpretability often need non-trivial adaptations to the time series setting.

In this seminar we will select and discuss topics of current research in machine learning for time series. This seminar will let students get acquainted with current machine learning research, let them explore new fields and ideas and let them analyze and criticize recent publications.

To do so, we will offer students to either go broad or deep: for the broad option, students will select a group of research papers (2-5) from a curated list, covering different approaches and perspectives on a particular task, which they should carefully read, analyze, and critically evaluate. Starting from these they should explore the surrounding literature and summarize their findings, criticism, and research ideas in a 4-page paper (double column). For the deep option, students will select a single paper which has code available and dive more deeply into the particular method, and explore it both theoretically as well as practically, e.g., by comparing it to another, potentially missing baseline or making modifications (e.g., making a point estimator probabilistic). For either the broad or the deep scenario, all students will prepare 25-minute presentations and present their work during a block seminar at the end of the semester.

Organizers

This seminar will be organized by two external researchers, Jan Gasthaus and Tim Januschowski.

Jan Gasthaus is a Principal Machine Learning Scientist in the Amazon Web Services AI Labs, working mainly on time series forecasting and large-scale probabilistic machine learning. He is passionate about developing novel machine learning solutions for addressing challenging business problems with scalable machine learning systems, all the way from scientific ideation to productization. Prior to joining Amazon, Jan obtained a BS in Cognitive Science from the University of Osnabrueck, an MS in Intelligent Systems from UCL, and a PhD from the Gatsby Unit, UCL, focusing on Nonparametric Bayesian methods for sequence data.

Tim Januschowski is a Sr. Machine Learning Science Manager at Zalando where he leads the article pricing group that owns the algorithmic discount component for Zalando SE. Prior to this, he worked at AWS AI where he helped launch 5 AI services together with his teams, including forecasting and anomaly detection. Tim’s personal interests in forecasting span applications, system, algorithm and modeling aspects and the downstream mathematical programming problems. He studied Mathematics at TU Berlin, IMPA, Rio de Janeiro, and Zuse-Institute Berlin and holds a PhD from University College Cork.

Possible topics

  • Point or Probabilistic Forecasting
  • Multivariate Methods (for forecasting or anomaly detection)
  • Hierarchical Forecasting
  • Architectures for sequence data
  • Anomaly Detection
  • Time Series Representation Learning
  • Causality for Time Series Analysis
  • Interpretable Machine Learning Methods for Time Series
  • Time series classification
  • Classical vs. deep learning based methods
  • Graph-based methods for time series data
To top

Informatik 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technische Universität München
TUM School of Computation, Information and Technology
Department of Computer Science
Boltzmannstr. 3
85748 Garching 

Sekretariat:
Raum 00.11.057
Tel.: +49 89 289-17256
Fax: +49 89 289-17257

  • Datenschutz
  • Impressum
  • Barrierefreiheit