Machine Learning for Time Series Data (Seminar) Preliminary Meeting (IN2107, IN4874).

Dr. Tim Januschowski (Zalando) Dr. Jan Gasthaus (AWS AI Labs)

Summer Term 2022

Dr. Tim Januschowski (Zalando)

Dr. Jan Gasthaus (AWS AI Labs)

This is a seminar for **Master** students! Main prerequisite: Machine Learning (IN2064)

Website

https://www.in.tum.de/daml/lehre/sommersemester-2022/seminar-time-series/

Why attend this Seminar?

- 1. Learn about and explore **state-of-the-art** research in ML for time series
- 2. Analyze and criticize recent publications or dive deep into a method and explore extensions/improvements
- 3. Improve your scientific writing
- 4. Participate in a review process akin to international conferences
- 5. Improve your presentation skills

Topics I: Forecasting

- Classical vs. deep-learning-based methods
- Neural network architectures for sequence data
- Modeling and measuring predictive uncertainty
- Multivariate methods
- Hierarchical methods
- Graph-based methods

Topics II: Other topics

- Anomaly detection in time series data
- Time series representation learning
- Time series classification
- Interpretable machine learning methods for time series
- Event data and temporal point processes
- Causality for time series analysis

Requirements

Strong knowledge of machine learning and mathematics

- Passed relevant courses (the more, the better)
 - Machine Learning (hard requirement)
 - Machine Learning for Graphs and Sequential Data (formerly Mining Massive Datasets)
 - Machine Learning Lab
- Motivation
- Additional selection criteria
 - relevant experience (projects in companies, experience as a HiWi)
 ⇒ you can send an overview of your experience to us (see end of slides)

Tasks

- 1. Read seed research papers (provided by us)
- 2. Choose either
 - 2.1 **Snowball research:** identify and read additional papers related to the seed papers (via references to/from the paper, relevant keywords)
 - 2.2 **Deep dive:** Experiment with the code released with the paper; extend/improve the method/code, run experiments, and analyze the results
- 3. Summarize your findings, criticism, and research ideas in a **short paper** (4 pages, double column)
- 4. Write **reviews** of other students work
- 5. Present your work in 25-minute talks

Grade will be based on **all** parts: Paper, reviews, talk and overall participation

Schedule

Individual meetings via biweekly (virtual) office hours (time TBD).

Registration

Registration via the matching system!

(Note the different title!)

Seminar - Efficient Inference and Large-Scale Machine Learning (IN2107, IN4874)

+ Fill out the application form!

https://docs.google.com/forms/d/e/ 1FAIpQLSepOrhnwyTKf3Z5AS4V115elNDUrJUlCqCGoBS3pq4vUz8nMg/ viewform

provide us with your list of experience in ML (courses, projects, etc.)

please send us a concise overview (bullet list, not a complete CV)