Zum Inhalt springen
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technische Universität München
Technische Universität München
  • Startseite
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Gasteiger, né Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Lehre
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Sommersemester 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Wintersemester 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Sommersemester 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Sommersemester 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2019/20
      • Machine Learning
      • Large-Scale Machine Learning
    • Sommersemester 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Wintersemester 2018/19
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Sommersemester 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Wintersemester 2017/18
      • Machine Learning
      • Oberseminar
    • Sommersemester 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Wintersemester 2016/17
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Forschung
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publikationen
  • Offene Stellen
    • FAQ
  • Abschlussarbeiten
  1. Startseite
  2. Forschung

Assessing Robustness via Score-Based Adversarial Image Generation

Links

[Paper (openreview)] [Code]

Abstract

Most adversarial attacks and defenses focus on perturbations within small lp-norm constraints. However, lp threat models cannot capture all relevant semantics-preserving perturbations, and hence, the scope of robustness evaluations is limited. In this work, we introduce Score-Based Adversarial Generation (ScoreAG), a novel framework that leverages the advancements in score-based generative models to generate unrestricted adversarial examples that overcome the limitations of lp-norm constraints. Unlike traditional methods, ScoreAG maintains the core semantics of images while generating adversarial examples, either by transforming existing images or synthesizing new ones entirely from scratch. We further exploit the generative capability of ScoreAG to purify images, empirically enhancing the robustness of classifiers. Our extensive empirical evaluation demonstrates that ScoreAG improves upon the majority of state-of-the-art attacks and defenses across multiple benchmarks. This work highlights the importance of investigating adversarial examples bounded by semantics rather than lp-norm constraints. ScoreAG represents an important step towards more encompassing robustness assessments.

Cite

@article{kollovieh2023assessing,  
title = {Assessing Robustness via Score-Based Adversarial Image Generation},  
author = {Kollovieh, Marcel and Gosch, Lukas and Lienen, Marten and Scholten, Yan and Schwinn, Leo and G{\"u}nnemann, Stephan},  
journal = {Transactions on Machine Learning Research}, 
year = {2024},  
}

To top

Informatik 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technische Universität München
TUM School of Computation, Information and Technology
Department of Computer Science
Boltzmannstr. 3
85748 Garching 

Sekretariat:
Raum 00.11.057
Tel.: +49 89 289-17256
Fax: +49 89 289-17257

  • Datenschutz
  • Impressum
  • Barrierefreiheit