TUM School of CIT Department of Computer Science Boltzmannstrasse 3 85748 Garching Germany
Office: MI 02.05.060
Tel: +49-89-289-18600 Mail: keerthi.gaddameedi (at) tum.de Office Hours: by arrangement
Background
Bachelors in Computer Science and Engineering, JNTU Hyderabad, India
Masters in Informatics, TUM
Currently a PhD Candidate, TUM
Open student Projects
If you are interested in the above topics and interested in doing a Thesis/HiWi/IDP/Guided research, write me an email with your transcripts and a CV. I will then try to find out what topic might be suitable to you.
Student Theses
Anonymous: Parallel and High Performance Computing for Time Series Big Data Processing. Masterarbeit, 2024 mehr…
Zhuoling Li: Efficient and Scalable Linear Solver for Kernel Matrix Approximations Using Hierarchical Decomposition. Bachelorarbeit, 2023 mehr…
Publications
Gaddameedi, Keerthi; Reiz, Severin; Neckel, Tobias; Bungartz, Hans-Joachim: Efficient and Scalable Kernel Matrix Approximations Using Hierarchical Decomposition. In: Communications in Computer and Information Science. Springer Nature Singapore, 2024 mehr…
Keerthi Gaddameedi: Efficient and Scalable Kernel Matrix Approximation using Hierarchical Decomposition. Masterarbeit, 2022 mehr…
Posters
Pierre-François Dutot, Jan Fecht, Keerthi Gaddameedi, Dominik Huber, Sergio Iserte, Michael Minion, Martin Schulz, Martin Schreiber, Valentina Schüller, Antonio J. Peña, and Olivier Richard: Leveraging Dynamic Resource Management in HPC. ISC 2024 Hamburg 2024 mehr…
Keerthi Gaddameedi, Dominik Huber, Jan Fecht, Valentina Schuller, Martin Schreiber, Hans-Joachim Bungartz, Tobias Neckel: PFASST with dynamic resource management for large-scale applications. Parallel-in-Time workshop 2023, 2023Hamburg, Germanymehr…
Talks and presentations
Keerthi Gaddameedi, Dominik Huber, Martin Schreiber, Jan Fecht, Valentina Schueller, Michael Minion, Hans-Joachim Bungartz: Dynamic HPC resources for PinT: Algorithmic perspective. Parallel in time workshop 2024, 2024 mehr…