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Abstract

Graph Convolutional Networks (GCNs) have emerged as powerful tools for learn-1

ing on network structured data. Although empirically successful, GCNs exhibit2

certain behaviour that has no rigorous explanation—for instance, the performance3

of GCNs significantly degrades with increasing network depth, whereas it improves4

marginally with depth using skip connections.5

This paper focuses on semi-supervised learning on graphs, and explains the above6

observations through the lens of Neural Tangent Kernels (NTKs). We derive NTKs7

corresponding to infinitely wide GCNs (with and without skip connections). Sub-8

sequently, we use the derived NTKs to identify that, with suitable normalisation,9

network depth does not always drastically reduce the performance of GCNs—a fact10

that we also validate through extensive simulation. Furthermore, we propose NTK11

as an efficient ‘surrogate model’ for GCNs that does not suffer from performance12

fluctuations due to hyper-parameter tuning since it is a hyper-parameter free deter-13

ministic kernel. The efficacy of this idea is demonstrated through a comparison of14

different skip connections for GCNs using the surrogate NTKs.15

1 Introduction16

Graph structured data are ubiquitous in various domains, including social network analysis, bioin-17

formatics, communications engineering among others. In recent years, graph neural networks have18

become an indisputable choice for various learning problems on graphs, and have been employed in19

a wide range of applications across domains. Several variants of graph neural networks have been20

proposed, including graph convolutional network [Kipf and Welling, 2017], graph recurrent network21

[Scarselli et al., 2008, Li et al., 2016], graph attention network [Velickovic et al., 2018], to name a few.22

The popularity of graph neural networks can be attributed to their ability to tackle two conceptually23

different learning problems on graphs. In supervised learning on graphs, each data instance is a24

graph and the goal is to predict a label for each graph (for example, a protein structure). In contrast,25

semi-supervised learning on graphs (also called node classification or graph transduction) refers to26

the problem of predicting the labels of nodes in a single graph. For instance, given the memberships27

of a few individuals in a social network, the goal is to predict affiliations of others.28

This work focuses on the latter problem of semi-supervised learning. GCNs, along with its variants29

that locally aggregate information in the neighbourhood of each node, have proved to be superior30

methods in practice [Defferrard et al., 2016, Kipf and Welling, 2017, Chen et al., 2018a, Wu31

et al., 2019, Chen et al., 2020], outperforming classical, and well-studied, graph embedding based32

approaches. Among the different variants of GCNs, we focus on the methods based on approximations33

of spectral graph convolutions [Defferrard et al., 2016, Kipf and Welling, 2017], rather than spatial34

graph convolutions [Hamilton et al., 2017, Xu et al., 2019]. Surprisingly, these papers suggest shallow35

networks for the best performance, and unlike the standard neural networks that gain advantage with36
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depth, the performance of GCN has been reported to decrease for deeper nets. This appears to be37

due to the over smoothing effect of applying many convolutions, that is, with repeated application38

of the graph diffusion operator in each layer, the feature information gets averaged out to a degree39

where it becomes uninformative. As a solution to this, Chen et al. [2020] and Kipf and Welling40

[2017] proposed different formulations of skip connections in GCNs that overcome the smoothing41

effect and thus outperform the vanilla GCN empirically. These networks achieve state-of-the-art42

results by directly operating on graphs which enables effective capturing of the complex structural43

information as well as the features associated with the entities. However, similar to standard neural44

networks, tuning the hyper-parameters is particularly hard due to the highly non-convex objective45

function and the over-parameterised setup making it computationally intense. As a result, there is no46

theoretical framework that supports rigorous analysis of graph neural networks. Furthermore, the47

graph convolutions increase the difficulty of analysis. Motivated by this, we are interested in a more48

formal approach to analyze GCNs and, specifically, to understand the influence of depth.49

Explaining the empirical evidence of deep neural networks through mathematical rigour is an active50

area of research. In contrast, theoretical analysis of graph neural networks has been limited in the51

literature. From the perspective of learning theory, generalisation error bounds have been derived for52

graph neural networks using complexity measures like VC Dimension and Rademacher complexity53

[Scarselli et al., 2018, Garg et al., 2020]. However, it is often debated whether generalisation error54

bounds can explain the performance of deep neural networks [Neyshabur et al., 2017]. Another line55

of research relies on the connection between graph convolutions and belief propagation [Dai et al.,56

2016] to analyse the behaviour of graph neural networks in both supervised and semi-supervised57

settings using cavity methods and mean field approaches [Zhou et al., 2020b, Kawamoto et al., 2019,58

Chen et al., 2018b]. However, the above lines of research do not completely explain the empirical59

trends observed in GCNs, especially with regards to the aspects analysed in our work.60

In this paper, we explain the empirically observed trends of GCNs using the recently introduced61

Neural Tangent Kernel (NTK) [Jacot et al., 2018]. NTK was proposed to describe the behaviour and62

generalisation properties of randomly initialised fully connected neural networks during training by63

gradient descent with infinitesimally small learning rate. Jacot et al. [2018] also showed that, as the64

network width increases, the change in the kernel during training decreases and hence, asymptotically,65

one may replace an infinitely wide neural network by a deterministic kernel machine, where the66

kernel (NTK) is defined by the gradient of the network with respect to its parameters as67

Θ(x, x′) = E
W∼N

[〈
∂F (W,x)

∂W
,
∂F (W,x′)

∂W

〉]
. (1)

Here F (W,x) represents the output of the network at data point x and the expectation is with respect68

to W , that is, all the parameters of the network randomly sampled from Gaussian distribution N .69

There has been criticism of the ‘infinite width’ assumption being too strong to model real (finite70

width) neural networks, and empirical results show that NTK often performs worse than the practical71

networks [Arora et al., 2019, Lee et al., 2019]. Nevertheless, theoretical insights on neural network72

training gained from NTK have proved to be valuable, particularly in showing how gradient descent73

can achieve good generalisation properties [Du et al., 2019a]. Subsequent works have derived74

NTK to analyse different neural network architectures in infinite width limit, including convolutional75

networks, recurrent networks among others [Arora et al., 2019, Du et al., 2018, 2019a, Alemohammad76

et al., 2021]. The most relevant work in the context of our discussion is the work of Du et al. [2019b]77

that derived NTK for graph neural networks in the supervised setting (each graph is a data instance to78

be classified) and empirically showed that graph NTK outperforms most graph neural networks as79

well as other graph kernels for the problem of graph classification.80

Focus of this paper and contributions. The focus of the present paper differs from existing work81

on graph NTK [Du et al., 2019b] in two key aspects—we derive NTK for semi-supervised node82

classification and, more importantly, we use the derived NTKs to rigorously analyse corresponding83

GCN architectures and demonstrate the cause for surprising trends observed empirically in GCNs, as84

opposed to standard deep neural networks. More precisely, we make the following contributions:85

1. In Section 2, we derive the NTKs for GCNs used in semi-supervised node classification [Kipf86

and Welling, 2017, Wu et al., 2019] in infinite width limit. In contrast to simplifying assumptions in87

most NTKs derivations, we allow a non-linear (sigmoid) pooling in the last layer—a natural choice in88

practical networks for binary classification. Using the derived NTK and through extensive simulation,89
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we show that the performance of GCN varies considerably for different hyper-parameters, but NTK90

captures the general trend of the best possible performance of GCN.91

2. Due to the observation that NTK is a hyper-parameter free alternative to GCN that approximates92

the behaviour of GCNs, we suggest NTK as an efficient surrogate for GCN that could be used to93

identify the optimal network architecture. We demonstrate this idea in Section 3 by deriving the NTKs94

corresponding to GCNs with different skip connections [Chen et al., 2020, Kipf and Welling, 2017],95

and we make recommendation on the skip connection for improved performance through empirical96

studies of the NTKs. The NTK surrogate can be further used to assess the relative importance of97

structure and feature information in a graph dataset.98

3. In Section 4, we use our NTK based analysis to investigate the popular belief that the performance99

of vanilla GCN degrades drastically with increasing network depth. We demonstrate that this100

observation is due to instabilities in the network training, which results in performance fluctuations of101

vanilla GCN, and that can be addressed by appropriate normalisation of the features at each level. The102

fluctuations can also be reduced by adding skip connections, even without appropriate normalisation.103

4. In Section 5, we explain an empirical finding—unlike vanilla GCNs, the performance of NTK for104

certain skip connections converge with network depth. This is because the NTKs for skip connections105

converge with network depth, whereas this is less prominent in the case of NTK for vanilla GCNs.106

We conclude in Section 6, and provide the NTK derivations and further experimental details in the107

appendix.108

Notation. We represent the matrix Hadamard (entry-wise) product by � and the scalar product109

by 〈., .〉. We use M�k to denote Hadamard product of matrix M with itself repeated k times. Let110

N (µ,Σ) be Gaussian distribution with mean µ and co-variance Σ. For a function σ(.), we use σ̇(.)111

to represent its derivative. We use 1n×n for the n× n matrix of ones, In for identity matrix of size112

n× n, E [.] for expectation, ‖.‖F denotes Frobenius norm, and [d] = {1, 2, . . . , d}.113

2 NTK Captures the Behaviour of Vanilla GCN114

We consider the problem of node classification in graphs in a semi-supervised setting,1 where the115

labels are observed only for a subset of the nodes. We start with the formal setup and NTK derivation116

for the standard (vanilla) GCN proposed in Kipf and Welling [2017].117

Formal Setup. Given a graph with n nodes and a set of node features {xi}ni=1 ⊂ Rf , we may118

assume without loss of generality that the set of observed labels {yi}mi=1 correspond to first m nodes.119

We consider a binary classification problem in this paper to simplify the NTK derivation, that is120

yi ∈ {±1}, but this could be extended to multi-class problems. The goal is to correctly predict the121

n−m unknown labels {yi}ni=m+1. We represent the observed labels of m nodes as Y ∈ {±1}m×1,122

and the node features asX ∈ Rn×f with the assumption that entireX is available during training. We123

define S to be the graph diffusion operator. The analysis holds for any diffusion S, but for simulations,124

we consider the symmetric degree normalized diffusion S := (D + In)−
1
2 (A + In)(D + In)−

1
2125

where A is the adjacency matrix and D is the degree matrix. We define the GCN of depth d as,126

FW (X,S) := Φ

(√
cσ
hd
S . . . σ

(√
cσ
h1
Sσ (SXW1)W2

)
. . .Wd+1

)
(2)

whereW := {Wi ∈ Rhi−1×hi}d+1
i=1 is the set of learnable weight matrices with h0 = f and hd+1 = 1,127

and Φ : R→ (−1,+1) is re-scaled sigmoid since we consider binary node classification with labels128

in {±1}, hi is the size of layer i ∈ [d] and σ : R → R is the point-wise activation function. We129

initialise all the weights to be i.i.d N (0, 1) and optimise it using stochastic gradient descent. We130

study the limiting behavior of this network with respect to the width, that is, h1, . . . , hd →∞.131

Remark 1 (cσ) While this setup is similar to Kipf and Welling [2017], it is important to note that132

we additionally consider the normalisation
√
cσ/hi for layer i to ensure that the input norm is133

approximately preserved. Here, cσ is a scaling factor to normalize the input in the initialization phase134

1More precisely, transductive setting as we assume all features are available during training at the same time.
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and cσ =
(

E
u∼N (0,1)

[
(σ(u))

2
] )−1

from Du et al. [2019a]. We discuss the role of this normalisation135

in Section 4.136

2.1 NTK for Vanilla GCN137

We derive the NTK for vanilla GCN by first rewriting FW (X,S) as defined in (2) using the following138

recursive definitions:139

g1 := SX, gi :=

√
cσ
hi−1

Sσ(fi−1) ∀i ∈ {2, . . . , d+ 1}, fi := giWi ∀i ∈ [d+ 1]

Output: FW (X,S) := Φ(fd+1), where Φ(x) :=
2

1 + exp(−x)
− 1 (3)

Using the definitions in (3), the gradient with respect to Wi can be written as140

∂FW (X,S)

∂Wi
:= gTi bi with bd+1 := Φ̇(fd+1), bi :=

√
cσ
hi
ST bi+1W

T
i+1 � σ̇(fi) (4)

We derive the NTK, as defined in (1), using the recursive definition of FW (X,S) in (3) and its141

derivative in (4). The following theorem defines the NTK between every pair of nodes, and the n× n142

NTK matrix can be computed at once, as shown below (proof in appendix).143

Theorem 1 (NTK for Vanilla GCN) For the vanilla GCN defined in (2), the NTK Θ is given by144

Θ =

d+1∑
i=1

Σi �
(
SST

)�(d+1−i) �

d+1−i⊙
j=i

Ėj

� E
f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]
. (5)

Here Σi ∈ Rn×n is the co-variance between nodes of the layer fi, and is given by Σ1 := SXXTST ,145

Σi := SEi−1S
T with Ei := cσ E

f∼N (0,Σi)

[
σ(f)σ(f)T

]
and Ėi := cσ E

f∼N (0,Σi)

[
σ̇(f)σ̇(f)T

]
.146

Each entry of the expected matrix in (5) can be approximately computed as follows. For ∆ ∈ R2×2,147

E
(p,q)∼N (0,∆)

[
Φ̇ (p) Φ̇ (q)

]
=

1

4
− ∆00 + ∆11

16
+

∆00∆11 + 2∆2
01

64
+

∆2
00 + ∆2

11

32
+
ε3

16

for |ε| ≤ max {∆00,∆11}.148

Inference using NTK. The NTK matrix Θ ∈ Rn×n defines the pairwise kernel among all labeled149

and unlabeled nodes, where each entry Θpq represents the kernel between nodes (or features) xp and150

xq . For inference, consider the sub-matrix Θl ∈ Rm×m that consists of the kernel computed between151

all pairs of labeled nodes, and Θu ∈ R(n−m)×m that consists of the kernel computed between152

all pairs of unlabeled and labeled nodes. In the case of squared loss minimisation by stochastic153

gradient descent with infinitesimally small learning rate η → 0, the training dynamics resemble154

kernel regression [Arora et al., 2019]. Hence, the labels for unlabeled nodes Yu can be inferred as155

Yu = ΘuΘ−1
l Y ∈ Rn−m (6)

which, when thresholded entry-wise at 0, yields the class prediction for unlabeled nodes.156

The NTK derived in (5) holds for vanilla GCN with arbitrary activation function in (2). Since the157

focus of this work is explaining the empirical performance trends of GCNs, we focus on specific158

activation functions that fix the network architecture allowing the NTK to be evaluated exactly. We159

first consider a linear activation, that results in the SGC network [Wu et al., 2019], and derive the160

NTK as follows.161

Corollary 1 (Linear GCN) Consider σ(x) := x in FW (X,S), then Ei = cσΣi and Ėi = cσ1n×n162

in Theorem 1, resulting in the following NTK163

Θ = cdσ

[
d+1∑
i=1

(
SiXXT

(
ST
)i)� (SST )�(d+1−i)

]
� E

f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]
.

where the last expectation is approximated as in Theorem 1. The natural choice of normalisation164

constant cσ is cσ = 1 based on Remark 1.165
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Figure 1: (left/middle) Performance of NTK vs GCN in linear and non-linear architectures. The
performance trend of NTK matches the best performance of its corresponding GCN in both the
architectures. (right) Impact of normalisation in ReLU GCN evaluated on Cora dataset. The correct
choice of normalisation (cσ = 2 in this case) stabilises the training of GCN even in higher depths,
and enables identifying the hyper-parameters in lesser time compared to the unnormalised GCN.

Considering a non-linear network with ReLU activation, the NTK can be computed as shown below.166

Corollary 2 (ReLU GCN) Consider σ(x) := ReLU(x) in FW (X,S). The NTK kernel is computed167

as in (5), where given Σi at each layer, one can evaluate the entries of Ei and Ėi using a result from168

Bietti and Mairal [2019] as169

(
Ei

)
pq

=
cσ
2

√
(Σi)pp (Σi)qq κ1

 (Σi)pq√
(Σi)pp (Σi)qq

 and
(
Ėi

)
pq

=
cσ
2
κ0

 (Σi)pq√
(Σi)pp (Σi)qq

 ,

(7)

where κ0(x) :=
1

π
(π − arccos (x)) and κ1(x) :=

1

π

(
x (π − arccos (x)) +

√
1− x2

)
. Based on170

Remark 1, the natural choice for normalisation constant cσ is cσ = 2.171

2.2 Empirical Analysis of Depth172

Many studies have shown that the performance of vanilla GCN drastically drops with depth due to173

the over smoothing effect of convolutional layers [Li et al., 2018, Kipf and Welling, 2017, Chen et al.,174

2020]. To validate it, we empirically study the performances of GCN and its NTK counterpart. We175

use Tesla K80 GPU with 12GB memory from Google Colab to obtain all our experimental results.176

Experimental Setup. We evaluate the performances of linear and ReLU GCN as stated177

in Corollary 1 and 2, respectively, and their corresponding NTKs for different depths d =178

{1, 2, 4, 8, 16, 32, 64, 128}. We fix the size of hidden layers hi to be the same across all layers to re-179

duce the number of hyper-parameters. We consider a range of learning rates η = {10−2, 10−3, 10−4},180

different size of the hidden layers hi = {16, 64, 128, 256} and report the best performance among181

the different η and size hi over 10, 000 epochs. It is important to note that the chosen learning rates182

are in accordance to the theoretical analysis, that is, η → 0. We conduct the experiments with three183

datasets, namely Cora [McCallum et al., 2000], Citeseer [Giles et al., 1998] and WebKB [Craven184

et al., 1998]. Since the datasets are for multi-class node classification, we combine the classes into185

two groups to fit our problem in focus – binary node classification. The choice of class grouping is186

decided by comparing the performances of different groupings and ensuring that the two groups are187

approximately equal sized. Appendix B includes detailed discussion on the datasets and grouping of188

the classes.189

NTK captures the performance trend of GCN. The best performance of GCN decreases with190

depth in both linear and non-linear architectures, as observed in other papers. This trend in the best191

performance is also confirmed in NTK and thus making it a suitable method to analyse finite width192

GCN, despite the fact that the actual performance of the NTK is usually worse than the corresponding193

GCN. The left plot of Figure 12 shows the best performance of both the GCN architectures with194

2NTK for Citeseer faced out-of-memory issue for depth d = 128 in some cases (can also be seen in Figure 2).
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its NTK counterpart. While there is a drop in the best performance in both the GCNs and the195

corresponding NTKs, the drop is not as drastic as it has been reported in other papers. This is due196

to two factors: first, unlike the previous works that evaluated the performance for a fixed network197

parameterisation, we allow the size of hidden layers to be chosen as a hyper-parameter. We found that198

increasing the network size hi and/or decreasing the learning rate η can reduce the performance drop199

with depth. For instance, in Cora the best performing network of depth 2 is achieved with hi = 16200

and η = 10−2, whereas, hi has to be increased to 256 and η has to be reduced to 10−4 for depth201

128 to achieve similar performance. Second, we identify that the normalisation constant cσ plays202

a crucial role in stabilising the GCN training. The right plot of Figure 1 shows the average and the203

best performance of unnormalised (cσ = 1) and correctly normalised (cσ = 2) ReLU GCN for a204

fixed parameterisation with hi = 16 and trained with learning rate η = {10−2, 10−3, 10−4} over205

10, 000 epochs. While the average performance of both unnormalised and normalised GCNs shows206

a drastic drop, correct normalisation enables the network to learn faster and achieve best results.207

Further detailed discussion on the role of normalisation constant cσ is provided in Section 4.208

3 NTK - Surrogate for GCN to Analyse Skip Connections209

Skip connections [Chen et al., 2020, Kipf and Welling, 2017] are one way to overcome the perfor-210

mance degradation with depth in GCNs, but little is known about the effectiveness of different forms211

of available skip connections. Inspired by the observation of the previous section that the NTK is212

a hyper-parameter free model that captures the trends of GCNs, we propose NTK as an efficient213

surrogate for GCN, and we investigate different skip connections for GCN in detail in this section. We214

consider two formulations of skip connections with two variants each that are described in subsequent215

sections. To facilitate skip connections, we need to enforce constant layer size, that is, hi = hi−1.216

Therefore, we transform the input layer to H0 of size n× h where h is the hidden layer size. This217

transformation is necessary as otherwise we would have to assume hi = f ∀i ∈ [d] and hi → ∞218

would not be possible. For this work, we do not consider this transformation as a learnable parameter219

in the network. As we consider constant layer size, the NTKs are derived considering h→∞. We220

first define a skip connection related to the one in Kipf and Welling [2017], where the skip connection221

is added to the features before convolution (we refer to it as pre-convolution or Skip-PC).222

Definition 1 (Skip-PC) In a Skip-PC (pre-convolution) network, the transformed input H0 is added223

to the hidden layers before applying the diffusion, leading to the changes in the recursive definition of224

(3) with g1 := SH0 and225

gi :=

√
cσ
h
S (σ (fi−1) + σs (H0)) ∀i ∈ {2, . . . , d+ 1}, fi := giWi ∀i ∈ [d+ 1] (8)

where σs(.) can be linear or ReLU accounting for two different skip connections.226

We refer to the network with linear σs(.) and ReLU σs(.) as Linear Skip-PC and ReLU Skip-PC,227

respectively. The above definition deviates from Kipf and Welling [2017] in the fact that we skip to228

the input layer instead of the previous layer. This particular change helps in evaluating the importance229

of graph information in a dataset which we discuss in the following section. We also consider a skip230

connection similar to the one described in Chen et al. [2020].231

Definition 2 (Skip-α) Given an interpolation coefficient α ∈ (0, 1) and a function σs(·), a Skip-α232

network is defined such that the transformed input H0 and the hidden layer are interpolated linearly,233

which changes the recursive definition in (3) as g1 := SH0 and234

gi :=

√
cσ
h

((1− α)Sσ (fi−1) + ασs (H0)) ∀i ∈ {2, . . . , d+ 1}, fi := giWi ∀i ∈ [d+ 1] (9)

Similar to Skip-PC, σs(.) can be linear or ReLU accounting for two different skip connections.235

We refer to the network with linear σs(.) and ReLU σs(.) as Linear Skip-α and ReLU Skip-α,236

respectively. Chen et al. [2020] recommends the choices for α as 0.1 or 0.2.237

Remark 2 (Change of the normalization factor cσ due to Skip connections) Note that the nor-238

malisation constant cσ for GCN with skip connections is not the same as defined in Remark 1 of239

vanilla GCN, since we add the transformed input to the hidden layers. Intuitively, cσ < 1 as the norm240

of the hidden layers would increase otherwise due to the added term. We derived cσ specifically for241

non-linear GCN with σ(x) := ReLU(x), and it is ' 0.67. Refer to Appendix A for the proof.242
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Figure 2: (left/middle) Performance of NTKs corresponding to the different skip connections where
Skip-α is plotted for α = 0.2. (right) Impact of α in Skip-α evaluated on Cora and WebKB datasets.

3.1 NTK for GCN with Skip Connections243

We derive NTKs for the skip connections – Skip-PC and Skip-α. Both the NTKs maintain the form244

presented in Theorem 1 with the following changes to the co-variance matrices.245

Corollary 3 (NTK for Skip-PC) The NTK for an infinitely wide Skip-PC network is as presented in246

Theorem 1 where Ei is defined as in the theorem, but Σi is defined as247

Σ0 := XXT , Σ1 := SE0S
T and Σi := SEi−1S

T + Σ1. (10)

Corollary 4 (NTK for Skip-α) The NTK for an infinitely wide Skip-α network is as presented in248

Theorem 1 where Ei is defined as in the theorem, but Σi is defined with Σ0 := XXT ,249

Σ1 := (1− α)
2
SE0S

T + α (1− α)
(
SE0 + E0S

T
)

+ α2E0 and Σi := SEi−1S
T + E0. (11)

Both Corollary 1 and 2 for linear and ReLU activations, respectively, hold for the derived NTKs250

corresponding to Skip-PC and Skip-α.251

3.2 Empirical Analysis252

Despite studies [Chen et al., 2020, Kipf and Welling, 2017] showing that having skip-connections253

gives a significant performance advantage, there is no clear way to choose one formulation of the skip254

connection over others. This practical problem can again be seen in the NTK setting as the derived255

NTKs have similar structure except the co-variance between the nodes, thus making it difficult to256

compare analytically. Therefore, we empirically study the performance of different NTKs in order257

to determine the preferred formulation, thereby avoiding computational intensive hyper-parameter258

tuning. In addition, we show that the NTK corresponding to Skip-α can be used for assessing the259

relevance of structure and feature information of graph in a dataset. We study the non-linear ReLU260

GCN with the discussed skip connections, that is, σ(.) := ReLU in (2) empirically.261

Experimental setup. We evaluate the performance of NTKs corresponding to GCNs with skip262

connections for different depths d = {1, 2, 4, 8, 16, 32, 64, 128} using non-linear activation σ(x) :=263

ReLU(x) for the GCNs. The linear transformation of the input X is done by H0 = XT where T is264

a f × h matrix and each entry is sampled from N (0, 1). The interpolation coefficient α in Skip-α265

is chosen to be {0.1, 0.2, 0.5}. NTKs for all the formulations of skip connections discussed in the266

previous section are evaluated on different datasets, namely Cora, Citeseer and WebKB. Figure 2267

shows the empirical observations. Refer to Appendix B for more details.268

We validate the expected performance advantage of GCN with skip connections over vanilla GCN,269

more precisely their NTK counterparts, and observe the following main findings.270

Non-linear σs and shallow net for GCNs with skip connection. Empirical analysis reveals a271

distinct behavior of skip connections with σs(.) being linear and ReLU, which is illustrated in the272

left plot of Figure 2. We observe that the performance of both Skip-PC and Skip-α is not optimal at273

deeper depths, and hence we restrict our focus to shallow depths. In the case of shallow depths, we274
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find that using non-linear ReLU σs(.) in both Skip-PC and Skip-α produces the best performance.275

Although ReLU Skip-α initially falls short of its counterpart Linear Skip-α, it eventually outperforms276

or performs as good as Linear Skip-α, thus favoring ReLU σs(.). In addition, this experiment277

also validates the general practice of using shallow nets for GCNs. Consequently, we propose skip278

connections with ReLU σs(.) and using shallow nets to achieve the best performance in practice.279

NTK as a model to assess relevance of structure and feature information of graphs. In the left280

plot of Figure 2, we notice that the performance of Skip-α on WebKB improved significantly as281

compared to Skip-PC and moreover, its performance continued to improve with depth, which is in282

contrast to other datasets. We further investigate this by analysing the interpolation coefficient α, and283

the corresponding results on Cora and WebKB datasets are shown in the right plot of Figure 2. Large284

value of α in Skip-α implies that more importance is given to feature information than the structural285

information of the graph. Therefore, from the figure, we infer that the structural information is not286

as important as the feature information for WebKB which is in contrast to Cora. Besides, NTK is287

a ready-to-use model without the need for hyper-parameter tuning. As a result, we propose NTK288

corresponding to Skip-α as a stand-alone model to determine the relative importance of structure and289

feature information in tasks where GCNs are employed.290

4 Role of Normalisation in GCN291

In Section 2, we discussed that the performance drop with depth in vanilla GCN can be reduced292

by varying the size of the hidden layers hi rather than fixing the network parameterisation as done293

in other works. The main difference between our theoretical setup for infinite width GCN and the294

practical finite width GCN is the normalisation
√
cσ/hi. Practical networks generally ignore the295

normalisation factor and rely on weight initialisation and optimisation algorithm to stabilise the296

training. Intrigued by this, we investigate the role of normalisation applied to each layer by fixing297

the network parameterisation in vanilla GCN and Skip-PC empirically. Figure 3 illustrates this for298

different cσ = {0.67, 1, 2} and depths d = {8, 16, 32} on Cora dataset. The considered architectures299

have non-linear activation, that is, σ(x) := ReLU(x) and we fix the network parameterisation in both300

the cases. Different colors in the plot represent the epoch at which the performance is achieved. The301

correct choice of cσ is 2 for ReLU in vanilla GCN (Corollary 2) and 0.67 for Skip-PC (Remark 2).302

We make the following observation. In the case of vanilla GCN, it is clear that the best performance303

is achieved in almost the same number of epochs across all the depths for the correct choice of304

cσ = 2. Moreover, the decrease in the performance for deeper networks is not significant. Also305

we need to train the network longer for cσ = 1 to achieve similar performance of the network with306

correct normalisation (cσ = 2) as we increase the depth. Thus, normalisation plays a crucial role in307

stabilising the training of vanilla GCN especially in higher depths. In Skip-PC, the performance of308

the network is not significantly affected by cσ. This is because the residual connection ensures that309

the hidden layer norm is approximately equal to the input norm, and thus cσ is not as relevant as310

it is in vanilla GCN case. Therefore, in practice, the absence of this normalisation in vanilla GCN311

explains the reported drastic degradation in performance with depth in the existing literature.312

5 Convergence of NTK with depth313

In Figure 2, we observe that the performance of NTKs corresponding to GCNs with skip connections314

does not change significantly beyond a certain depth. We investigate this behaviour of the NTK further315

by measuring the amount of change between NTKs of different depths. To this end, we consider the316

alignment between the NTKs in the eigenspace following Fowlkes et al. [2004, Section 4.2]. Formally,317

let Θi and Θj be the NTK of depth i and j, respectively, and U (k)
i and U (k)

j be the matrix of k leading318

eigenvectors of Θi and Θj , respectively, then the alignment between Θi and Θj is computed by319

a = 1
k

∥∥∥U (k)T

i U
(k)
j

∥∥∥2

F
, where a ∈ [0, 1] with a = 1 indicating perfect alignment. Figure 4 shows320

the alignment of the NTKs for the discussed non-linear ReLU architectures (σ(.) := ReLU in (2)),321

evaluated on Cora dataset. Similar pattern is observed in other datasets as well (Appendix B).322

The learning happens in shallow depth. The different alignment plots illustrate the general influ-323

ence of depth in GCN. We observe significant changes in the alignment between NTKs of shallow324

depths indicating that this is the important part where learning happens. Since the NTKs for both325
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Figure 3: Role of normalisation cσ in vanilla GCN and Skip-PC as defined in 8. The colorbar
represents the number of epochs. The correct choice of cσ stabilises the training of GCN even in
higher depths in vanilla GCN.

Figure 4: Convergence of NTK with depth for all the discussed ReLU architectures, evaluated on Cora
dataset. The plots show perfect alignment of NTKs for higher depths in GCNs with skip connections.

vanilla GCN and GCN with skip connections converge with depth, it is clear that deep GCNs have no326

advantage or in other words, no new information is learned at deeper depths.327

Influence of Skip connection. In addition, we observe that the NTKs reach almost perfect alignment328

with depth for GCNs with skip connection, suggesting that the networks reached saturation in329

learning as well. We can further distinguish the presented skip connections: overall Skip-PC has slow330

convergence most likely because the skip connection facilitates learning; Skip-α converges fast and331

as discussed in Section 3, we observe the influence of α in the learning depending on the dataset.332

6 Conclusion333

In this work, we derive NTKs for semi-supervised GCNs, including different formulations of skip334

connections. The deterministic hyper-parameter free nature of NTK makes it preferable over its335

neural network counterpart since it captures the behaviour of the networks very well, as demonstrated336

in our experiments. With the support of our empirical results and the findings from Du et al. [2019b]337

that the NTK for supervised GCN outperforms the neural network, we expect the NTKs for semi-338

supervised models to perform competitively against the respective neural networks. Nonetheless,339

the primary goal of our work is to use NTK to advance our understanding of GCN, particularly340

on the impact of depth. In addition, we suggest NTK as a surrogate to study variants of GCNs.341

From our surrogate analysis, we propose the NTK corresponding to the skip connection Skip-α as342

an efficient ready-to-use off-the-shelf model to determine the relative importance of structure and343

feature information in graphs, which we believe to be of great practical value. There is a possibility344

of expanding the usage of NTK surrogates to analyse robustness or explainability of GCNs, or other345

contexts that involve repeated training of networks. Another direction of research is to incorporate346

practical considerations of network architecture in the NTK derivation. The present paper allows347

sigmoid functions in the output layer, which is included through a Taylor expansion. It would be also348

interesting to derive NTKs considering approximations for softmax, max-pooling, dropout or batch349

normalisation, and use the NTKs to analyse the impact of these techniques on network performance.350
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A Proofs of NTKs for GCN and GCN with Skip Connections475

We provide proofs of Theorem 1 and all corollaries with additional empirical results in this section.476

A.1 Proof of NTK for Vanilla GCN (Theorem 1)477

Co-variance between Nodes. We will first derive the co-variance matrix of size n×n for each layer478

comprising of co-variance between any two nodes p and q. The co-variance between p and q in f1479

and fi are derived below. We denote p-th row of matrix M as Mp. throughout our proofs.480

E
[
(f1)pk (f1)qk′

]
= E

[
(g1W1)pk (g1W1)qk′

]
= E

[
h0∑
r=1

(g1)pr (W1)rk

h0∑
s=1

(g1)qs (W1)sk′

]
(W1)xy∼N (0,1)

= 0 ; if r 6= s or k 6= k′

E
[
(f1)pk (f1)qk

]
r=s
=
k=k′

E

[
h0∑
r=1

(g1)pr (g1)qr (W1)
2
rk

]
(W1)xy∼N (0,1)

=

h0∑
r=1

(g1)pr (g1)qr =
〈

(g1)p. , (g1)q.

〉
(12)

E
[
(fi)pk (fi)qk

]
r=s
=
k=k′

E

hi−1∑
r=1

(gi)pr (gi)qr (Wi)
2
rk


(Wi)xy∼N (0,1)

=

hi−1∑
r=1

(gi)pr (gi)qr =
〈

(gi)p. , (gi)q.

〉
(13)

(12) :
〈

(g1)p. , (g1)q.

〉
=
〈

(SX)p. , (SX)q.

〉
= Sp.XX

TST.q = (Σ1)pq (14)

(13) :
〈

(gi)p. , (gi)q.

〉
=

cσ
hi−1

〈
(Sσ(fi−1))p. , (Sσ(fi−1))q.

〉
=

cσ
hi−1

hi−1∑
k=1

(Sσ(fi−1))pk (Sσ(fi−1))qk

hi−1→∞
= cσE

[
(Sσ(fi−1))pk (Sσ(fi−1))qk

]
; law of large numbers

= cσE

[(
n∑
r=1

Sprσ (fi−1)rk

)(
n∑
s=1

Sqsσ (fi−1)sk

)]

= cσE

[
n∑
r=1

n∑
s=1

SprSqsσ (fi−1)rk σ (fi−1)sk

]
(a)
=

n∑
r=1

n∑
s=1

Spr (Ei−1)rs S
T
sq = Sp.Ei−1S

T
.q = (Σi)pq (15)

(a): using E [(fi−1)rk (fi−1)sk] = (Σi−1)rs and the definition of Ei−1 in Theorem 1.481

NTK for Vanilla GCN. Let us first evaluate the tangent kernel component from Wi respective to482

nodes p and q. The following two results are needed to derive it.483

Result 1 (Inner Product of Matrices). Let a and b be vectors of size d1 × 1 and d2 × 1, then484

〈
abT , abT

〉
= tr

(
abT

(
abT

)T)
= tr

(
abT baT

)
= tr

(
aTabT b

)
=
(
aTa

)
�
(
bT b
)

= 〈a, a〉 � 〈b, b〉 (16)
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Result 2
〈

(br)p. , (br)q.

〉
. We evaluate

〈
(br)p. , (br)q.

〉
=
(
brb

T
r

)
pq

which appears in the gradient.485

(
brb

T
r

)
pq

=
cσ
hr

hr∑
k=1

(
ST br+1W

T
r+1

)
pk
σ̇(fr)pk

(
ST br+1W

T
r+1

)
qk
σ̇(fr)qk

=
cσ
hr

hr∑
k=1

n,hr+1∑
i,j

Sip (br+1)ij (Wr+1)kj σ̇(fr)pkσ̇(fr)qk

n,hr+1∑
i′,j′

Si′q (br+1)i′j′ (Wr+1)kj′

=
cσ
hr

n,hr+1∑
i,j

n,hr+1∑
i′,j′

(br+1)ij (br+1)i′j′ SipSi′q

hr∑
k=1

(Wr+1)kj σ̇(fr)pkσ̇(fr)qk (Wr+1)kj′

=

hr+1,hr+1∑
j,j′

(
ST br+1

)
pj

(
ST br+1

)
qj′

cσ
hr

hr∑
k=1

(Wr+1)kj σ̇(fr)pkσ̇(fr)qk (Wr+1)kj′

hr→∞=

hr+1∑
j

(
ST br+1

)
pj

(
ST br+1

)
qj
cσE

[(
W 2
r+1

)
kj
σ̇(fr)pkσ̇(fr)qk

]
; 0 for j 6= j′

(b)
=
〈(
ST br+1

)
p.

(
ST br+1

)
q.

〉
cσE [σ̇(fr)pkσ̇(fr)qk]

(16)
=
(
SST

)
pq
〈br+1, br+1〉pq cσE [σ̇(fr)pkσ̇(fr)qk]

=
(
SST

)
pq
〈br+1, br+1〉pq

(
Ėr

)
pq

(17)

(b): (Wr+1)kj is independent and E
[(
W 2
r+1

)
kj

= 1
]
.486

Now, lets derive
〈(

∂F
∂Wi

)
p
,
(
∂F
∂Wi

)
q

〉
and

〈(
∂F
∂W1

)
p
,
(
∂F
∂W1

)
q

〉
using the above results.487 〈(

∂F

∂Wi

)
p

,

(
∂F

∂Wi

)
q

〉
=
〈

(gi)
T
p. (bi)p. , (gi)

T
q. (bi)q.

〉
(16)
=
〈

(gi)p. , (gi)q.

〉
�
〈

(bi)p. , (bi)q.

〉
(15),(17)

= (Σi)pq
(
SST

)
pq
〈br+1, br+1〉pq

(
Ėr

)
pq

(c)
= (Σi)pq

((
SST

)
pq

)d+1−i
d+1−i∏

j=i

(
Ėj

)
pq

 〈bd+1, bd+1〉pq

(d)
= (Σi)pq

((
SST

)
pq

)d+1−i
d+1−i∏

j=i

(
Ėj

)
pq

(Φ̇ (fd+1) Φ̇ (fd+1)
T
)
pq

(18)

(c): repeated application of (17).488

(b): definition of bd+1.489

Extending (18) to all n nodes which will result in n× n matrix,490

〈
∂F

∂Wi
,
∂F

∂Wi

〉
= Σi �

(
SST

)�d+1−i
d+1−i⊙
j=i

Ėj � Φ̇ (fd+1) Φ̇ (fd+1)
T

E
Wi

[〈
∂F

∂Wi
,
∂F

∂Wi

〉]
= Σi �

(
SST

)�d+1−i
d+1−i⊙
j=i

Ėj � E
f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]

(19)
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Finally, NTK Θ is,491

Θ =

d+1∑
i=1

E
Wi

[〈
∂F

∂Wi
,
∂F

∂Wi

〉]

=

d+1∑
i=1

Σi �
(
SST

)�(d+1−i) �

d+1−i⊙
j=i

Ėj

� E
f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]

(20)

We will now compute E
f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]
. We use Lagrange form of the remainder to492

approximate the Taylor’s expansion for the re-scaled sigmoid function Φ(.) which gives better bound.493

Φ(x) =
2

1 + exp−x
− 1 =

x

2
− x3

24
+

x5

240
+ · · ·

Φ̇(x) =
1

2
− x2

8
+
x4

48
+
x6Φ̇6(ξ)

6!
; last term is the Lagrange form of the remainder. (21)

To evaluate the expectation of an entry i, j in the matrix Φ̇ (f) Φ̇ (f)
T , let us define ∆ as a 2 × 2494

co-variance matrix as follows, ∆ =

[
(Σd+1)ii (Σd+1)ij
(Σd+1)ji (Σd+1)jj

]
495

E
(x,y)∼∆

[
Φ̇ (x) Φ̇ (y)

]
(21)
= E

(x,y)∼∆

[(
1

2
− x2

8
+
x4

48
+
x6Φ̇6(ξ)

6!

)(
1

2
− y2

8
+
y4

48
+
y6Φ̇6(ξ)

6!

)]

=
1

4
E

(x,y)∼∆

[
1− x2

4
− y2

4
+
x4

24
+
y4

24
+
x2y2

16
− x4y2

96
− x2y4

96

+
x4y4

576
+
x6Φ̇6(ξ)

6!

(
1

2
− y2

8
+
y4

48
+
y6Φ̇6(ξ)

6!

)]
(22)

Compute E
x∼N (0,λ2)

[
xk
]

and E
(x,y)∼N (0,∆)

[
xiyj

]
.496

E
x∼N (0,λ2)

[
xk
]

=
2√
2πλ

∫ ∞
0

xk exp

(
−x2

2λ2

)
dx

=
2λk√

2π

∫ ∞
0

tk exp

(
−t2

2

)
dt ; x = λt =⇒ dx = λdt

=
2λk√

2π
(k − 1)

∫ ∞
0

tk−2 exp

(
−t2

2

)
dt

Thus, E
x∼N (0,λ2)

[
xk
]

= (k − 1)λ2 E
x∼N (0,λ2)

[
xk−2

]
(23)

497

E
(x,y)∼N (0,∆)

[
xiyj

]
= E

(x,y)∼N (0,∆)

[
xi (y ± αx)

j
]

;α =
E [xy]

E [x2]
then x, y − αx are independent

= E
(x,y)∼N (0,∆)

[
xi

(
j∑

k=0

jCk (y − αx)
j

(αx)
k

)]

= E
(x,y)∼N (0,∆)

[
j∑

k=0

jCkα
k (y − αx)

j
xk+i

]
(e)
=

j∑
k=0

jCkα
k E

(x,y)∼N (0,∆)

[
xk+i

]
E

(x,y)∼N (0,∆)

[
(y − αx)

j
]

(24)

(e): x, (y − αx) are independent then xa, (y − αx)b are also independent.498
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Now, we evalute (22) using (23) and (24) as follows.499

(22)
(23),(24)

=
1

4
− 1

16

(
Σ2ii

+ Σ2jj

)
+

1

64

(
Σ2ii

Σ2jj
+ 2Σ2

2ij

)
+

1

32

(
Σ2

2ii
+ Σ2

2jj

)
− 1

128

(
Σ2

2ii
Σ2jj

+ Σ2ii
Σ2

2jj
+ 4Σ2

2ij
Σ2ii

+ 4Σ2
2ij

Σ2jj

)
+

1

768

(
3Σ2

2ii
Σ2

2jj
+ 8Σ4

2ij
+ 24Σ2

2ij
Σ2ii

Σ2jj

)
+ E

(x,y)∼∆

[
x6Φ̇6(ξ)

6!

(
1

2
− y2

8
+
y4

48
+
y6Φ̇6(ξ)

6!

)]

≤ 1

4
− 1

16

(
Σ2ii + Σ2jj

)
+

1

64

(
Σ2iiΣ2jj + 2Σ2

2ij

)
+

1

32

(
Σ2

2ii
+ Σ2

2jj

)
− 10

128
ε3 +

35

768
ε4 +

15

720
ε3 ; |ε| ≤ max {∆00,∆11},E

[
x6
]

= 15∆00

≤ 1

4
− 1

16

(
Σ2ii + Σ2jj

)
+

1

64

(
Σ2iiΣ2jj + 2Σ2

2ij

)
+

1

32

(
Σ2

2ii
+ Σ2

2jj

)
+

1

16
ε3 (25)

where |ε| ≤ max {∆00,∆11}.500

We get the NTK in Theorem 1 by putting together (25) and (20).501

Corollary 1 (Linear GCN). In this case, σ(x) := x and so derivative σ̇(x) = 1. Consequently, one502

can derive Ėi = cσ1n×n from its definition. Therefore, we get NTK for linear GCN in Corollary 1503

by substituting Ėi in general NTK equation in (20).504

Corollary 2 (ReLU GCN). NTK for ReLU GCN is derived by substituting (7) in general NTK505

equation in (20) as discussed in the corollary.506

A.2 Proof of NTK for GCN with Skip Connections (Corollary 3 and 4)507

We derive the NTKs for GCNs with different skip connections, Skip-PC and Skip-α in this section.508

Before we present the proofs, we note that there are typographical errors in Definitions 1 and 2, and509

Corollary 4. The corrections in each are listed as follows,510

1. g1 in Definition 1 should be g1 :=

√
cσ
h
Sσs(H0).511

2. g1 in Definition 2 should be g1 :=

√
cσ
h

((1− α)Sσs(H0) + ασs(H0)).512

3. Σi in Corollary 4 should be Σi := (1 − α)2SEi−1S
T + α2Ẽ0 where Ẽ0 =513

E
f∼N (0,Σ0)

[
σs(f)σs(f)T

]
. We replace E0 with Ẽ0 in both Corollary 3 and 4 to be clear.514

We clarify that the errors are only typographical and it did not carry forward to the experiments,515

thus leaving the empirical results and discussions unaffected. The above mentioned errors will be516

corrected in the final version of the paper. We derive the NTKs for Skip-PC and Skip-α using these517

definitions.518

We observe that the definitions of gi ∀i ∈ [1, d+ 1] are different for GCN with skip connections from519

the vanilla GCN. Despite the difference, the definition of gradient with respect to Wi in (4) does not520

change as gi in the gradient accounts for the change and moreover, there is no new learnable parameter521

since the input transformation H0 = XT where Tij is sampled from N (0, 1) is not learnable in our522

setting. Given the fact that the gradient definition holds for GCN with skip connection, the NTK will523

retain the form from NTK for vanilla GCN as evident from the above derivation. The change in gi524

will only affect the co-variance between nodes. Hence, we will derive the co-variance matrix for the525

discussed skip connections, Skip-PC and Skip-α in the following sections.526
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Skip-PC: Co-variance between nodes. The co-variance between nodes p and q in f1 and fi are527

derived below.528

E
[
(f1)pk (f1)qk

]
=
〈

(g1)p. , (g1)q.

〉
=
cσ
h

〈
(Sσs(H0))p. , (Sσs(H0))q.

〉
=
cσ
h

h∑
k=1

(Sσs(H0))pk (Sσs(H0))qk

h→∞
= cσE

[
(Sσs(H0))pk (Sσs(H0))qk

]
; law of large numbers

= Sp.Ẽ0S
T
.q ; Ẽ0 = cσ E

f∼N (0,XXT )

[
σs(f)σs(f)T

]
= (Σ1)pq (26)

E
[
(fi)pk (fi)qk

]
=
〈

(gi)p. , (gi)q.

〉
=
cσ
h

〈
(S (σ(fi−1) + σs(H0)))p. , (S (σ(fi−1) + σs(H0)))q.

〉
=
cσ
h

h∑
k=1

(Sσ(fi−1) + Sσs(H0))pk (Sσ(fi−1) + Sσs(H0))qk

h→∞
= cσE

[
(Sσ(fi−1) + Sσs(H0))pk (Sσ(fi−1) + Sσs(H0))qk

]
; law of large numbers

= cσ

[
E
[
(Sσ(fi−1))pk (Sσ(fi−1))qk

]
+ E

[
(Sσ(fi−1))pk (Sσs(H0))qk

]
+ E

[
(Sσs(H0))pk (Sσ(fi−1))qk

]
+ E

[
(Sσs(H0))pk (Sσs(H0))qk

] ]
= Sp.Ei−1S

T
.q + cσE

[
(Sσ(fi−1))pk (Sσs(XW0))qk

]
+ cσE

[
(Sσs(XW0))pk (Sσ(fi−1))qk

]
+ cσE

[
n∑
r=1

n∑
s=1

SprSqsσs (XW0)rk σs (XW0)sk

]
(f)
= Sp.Ei−1S

T
.q + cσSp.E [σs (XW0)rk σs (XW0)sk]ST.q

= Sp.Ei−1S
T
.q + Sp.Ẽ0S

T
.q

= Sp.Ei−1S
T
.q + (Σ1)pq

= (Σi)pq (27)

(f): E
[
(Sσ(fi−1))pk (Sσs(XW0))qk

]
and E

[
(Sσs(XW0))pk (Sσ(fi−1))qk

]
evaluate to 0529

by conditioning on W0 first and rewriting the expectation based on this conditioning.530

The terms within expectation are independent when conditioned on W0, and hence it is531

E
W0

[
E

Σi−1|W0

[
(Sσ(fi−1))pk |W0

]
E

Σi−1|W0

[
(Sσs(XW0))qk |W0

]]
by taking h in W0 going to in-532

finity first. Here, E
Σi−1|W0

[
(Sσs(XW0))qk |W0

]
= 0.533

We get the co-variance matrix for all pairs of nodes Σ1 = SẼ0S
T and Σi = SEi−1S

T + Σ1 from534

(26) and (27).535

Skip-α: Co-variance between nodes. Let p and q be two nodes and the co-variance between p and536

q in f1 and fi are derived below.537
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E
[
(f1)pk (f1)qk

]
=
〈

(g1)p. , (g1)q.

〉
=
cσ
h

h∑
k=1

((1− α)Sσs(H0) + ασs(H0))pk ((1− α)Sσs(H0) + ασs(H0))qk

h→∞
= cσE

[
((1− α)Sσs(H0) + ασs(H0))pk ((1− α)Sσs(H0) + ασs(H0))qk

]
= cσ

[
(1− α)2E

[
(Sσs(H0))pk (Sσs(H0))qk

]
+ (1− α)α

(
E
[
(Sσs(H0))pk (σs(H0))qk

]
+ E

[
(Sσs(H0))qk (σs(H0))pk

])
+ α2E

[
(σs(H0))pk (σs(H0))qk

]
= (1− α)2Sp.Ẽ0S

T
.q + (1− α)α

(
Sp.

(
Ẽ0

)
.q

+
(
Ẽ0

)
p.
ST.q

)
+ α2

(
Ẽ0

)
pq

= (Σ1)pq (28)

E
[
(fi)pk (fi)qk

]
=
〈

(gi)p. , (gi)q.

〉
=
cσ
h

h∑
k=1

((1− α)Sσ(fi−1) + ασs(H0))pk ((1− α)Sσ(fi−1) + ασs(H0))qk

h→∞
= cσE

[
((1− α)Sσ(fi−1) + ασs(H0))pk ((1− α)Sσ(fi−1) + ασs(H0))qk

]
= cσ

[
(1− α)2E

[
(Sσ(fi−1))pk (Sσ(fi−1))qk

]
+ α2E

[
(σs(H0))pk (σs(H0))qk

]
+ (1− α)α

(
E
[
(Sσ(fi−1))pk (σs(H0))qk

]
+ E

[
(σs(H0))pk (Sσ(fi−1))qk

]) ]
(g)
= (1− α)2Sp.Ei−1S

T
.q + α2

(
Ẽ0

)
pq

= (Σi)pq (29)

(g): same argument as (f) in derivation of Σi in Skip-PC.538

We get the co-variance matrix for all pairs of nodes Σ1 = (1 − α)2SẼ0S
T + α(1 −539

α)
(
SẼ0 + Ẽ0S

T
)

+ α2Ẽ0 and Σi = (1− α)2SEi−1S
T + α2Ẽ0 from (28) and (29).540

A.3 Normalisation constant cσ (Remark 1 and 2).541

We derive the normalisation constant cσ loosely, as the purpose of cσ is to preserve the input norm542

approximately. We focus on general form of a network with skip connection (not GCN in particular),543

where the output vector of size h from any hidden layer l with weight matrix W ∈ Rh×h and544

transformed input vector X0 of size h can be written as gl :=

√
cσ
h

(σ(Wgl−1) +X0) ∈ Rh×1. The545

role of the normalisation constant cσ is to maintain ‖gl‖2 ' ‖X0‖2 and is derived as follows.546

‖X0‖22 = ‖gl‖22 =
cσ
h

h∑
k=1

(σ(Wgl−1) +X0)
2
k

‖X0‖22 = cσE
[
(σ(Wgl−1)k)

2
+ (X0)

2
k + 2σ(Wgl−1)k (X0)k

]
;h→∞

‖X0‖22 = cσ E
u∼N (0,‖X0‖2)

[
(σ(u))

2
]

+ ‖X0‖22 ;E [σ(Wgl−1)k (X0)k] = 0

cσ =

(
E

u∼N (0,1)

[
(σ(u))

2
]

+ 1

)−1

; normalised X0 (30)
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We use this cσ for GCN with skip connection in our work and it evaluates to 2/3 for σ(x) := ReLU(x)547

in GCN as stated in Remark 2. The evident change for a network without skip connection is to548

not add X0 in gl :=

√
cσ
h
σ(Wgl−1) and consequently by following the proof, we get cσ =549 (

E
u∼N (0,1)

[
(σ(u))

2
])−1

as mentioned in Remark 1.550

B Additional Experimental Results551

B.1 Datasets for binary node classification552

Since the considered datasets Cora, Citeseer and WebKB are for multi-class node classification, we553

converted the datasets to have binary class by grouping the classes into two sets. Table 1 shows the554

label grouping for each dataset and total number of nodes with the grouped labels respectively. The555

classes in all the datasets are well balanced and sensible to learn for binary classification problem556

which is proved from the performance of a simple graph neural network like linear vanilla GCN. The557

train-test split for each dataset is 708 and 2000 nodes for Cora, 312 and 2000 for Citeseer, and 377558

and 500 for WebKB for all the experiments.559

Cora Citeseer WebKB

Class Groups #nodes Class Groups #nodes Class Groups #nodes

Class 1
Neural_Networks

Theory
Probabilistic_Methods

1595
Agents

AI
ML

1435 student 415

Class 2

Case_Based
Rule_Learning
Reinforcement

Genetic_Algorithms

1103
DB
IR

HCI
1877

faculty
staff

course
project

462

Total 2708 3312 877
Table 1: Class grouping in datasets for binary node classification.

Figure 5: Performance validation of vanilla GCN, Skip-PC and Skip-α with σ(.) := ReLU, σs(.) :=
ReLU and α = 0.2 using the respective NTKs.
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B.2 Vanilla GCN vs GCN with Skip Connections560

We established ReLU GCN is preferred over linear in Section 2 and ReLU for the input transformation561

in Section 3. Hence, we focus on σ(.) := ReLU and σs(.) := ReLU with α = 0.2 for Skip-α to562

validate the performance of vanilla GCN and GCN with skip connections, Skip-PC and Skip-α. We563

use the respective NTKs to validate the performance. Figure 5 shows that GCN with skip connection564

outperforms vanilla GCN even in deeper depths, and Skip-α gives better performance than Skip-PC565

with depth.566

Note. In Figure 2, the performance of Skip-PC with ReLU σs(.) evaluated on Citeseer when depth567

= 32 is different from what is plotted due to some numerical precision error. We evaluated the568

performance at depth 30, 31 and used it to plot.569

B.3 Convergence of NTK with depth - Cora, Citeseer, WebKB570

We presented the convergence of NTK with depth for ReLU GCN with and without skip connections571

evaluated on Cora dataset in Figure 4. Here, we present the convergence plot for Linear GCN572

evaluated on Cora and all discussed linear and ReLU networks evaluated Citeseer and WebKB. The573

observation is similar to the discussion in Section 5. Figures 6, 7 and 8 show the convergence plots574

for linear GCN evaluated on Cora, ReLU and linear GCNs with and without skip connections for575

Citeseer and WebKB, respectively.576

Figure 6: Convergence of NTK with depth for all the discussed linear architectures evaluated on Cora
dataset.

Figure 7: Convergence of NTK with depth for all the discussed linear and ReLU architectures
evaluated on Citeseer dataset.
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Figure 8: Convergence of NTK with depth for all the discussed linear and ReLU architectures
evaluated on WebKB dataset.
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