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Abstract

In recent years, several results in the supervised learning setting suggested that1

classical statistical learning-theoretic measures, such as VC dimension, do not2

adequately explain the performance of deep learning models which prompted a3

slew of work in the infinite-width and iteration regimes. However, there is little4

theoretical explanation for the success of neural networks beyond the supervised5

setting. In this paper we argue that, under some distributional assumptions, classical6

learning-theoretic measures can sufficiently explain generalization for graph neural7

networks in the transductive setting. In particular, we provide a rigorous analysis8

of the performance of neural networks in the context of transductive inference,9

specifically by analysing the generalisation properties of graph convolutional net-10

works for the problem of node classification. While VC Dimension does result in11

trivial generalisation error bounds in this setting as well, we show that transductive12

Rademacher complexity can explain the generalisation properties of graph convolu-13

tional networks for stochastic block models. We further use the generalisation error14

bounds based on transductive Rademacher complexity to demonstrate the role of15

graph convolutions and network architectures in achieving smaller generalisation16

error and provide insights into when the graph structure can help in learning. The17

findings of this paper could re-new the interest in studying generalisation in neural18

networks in terms of learning-theoretic measures, albeit in specific problems.19

1 Introduction20

Neural networks have found tremendous success in a wide range of practical applications and, in21

the broader society, it is often considered synonymous to machine learning. The rapid gain in22

popularity has, however, come at the cost of interpretability and reliability of complex neural network.23

architectures. Hence, there has been an increasing interest in understanding generalization and other24

theoretical properties of neural networks in the theoretical machine learning community [Fel20;25

Aro+19a; MB17; NK19; TKM20; Gho+20]. Most of the existing theory literature focuses on the26

supervised learning problem, or more precisely, the setting of inductive inference. In contrast, there27

is a general lack of understanding of transductive problems, in particular the role of unlabeled data in28

training. Consequently there has also been little progress in rigorously understanding one of widely29

used tools for transductive inference—Graph neural networks (GNN).30

GNNs were introduced by [GMS05; Sca+09], who used recurrent neural network architectures, for the31

purpose of transductive inference on graphs, that is, the task of labelling all the nodes of a graph given32

the graph structure, all node features and labels for few nodes. Broadly, GNNs use a combination of33

local aggregation of node features and non-linear transformations to predict on unlabelled nodes. In34

practice, the exact form of aggregation and combination steps varies across architectures to solve35

domain specific tasks [KW17; Bru+14; DBV16; Vel+18; Xu+19]. While some GNNs focus on the36
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transductive setting, sometimes referred to as semi-supervised node classification,1 GNNs have also37

found success in supervised learning, where the task is to label entire graphs, in contrast to labelling38

nodes in a graph. While the understanding of GNNs is limited, there are empirical approaches to39

study GNNs in the transductive [Boj+18] and supervised setting [Zha+18; Yin+18]. For an extensive40

survey on the state of the art of GNNs see for example [Wu+20].41

While empirical studies provide some insights into the behaviour of machine learning models,42

rigorous theoretical analysis is the key to deep insights into a model. The focus of this paper43

is to provide a learning theoretic analysis of generalisation of GNNs in the transductive setting.44

Vapnik first studied the problem of transductive inference and provided generalisation bounds45

for empirical risk minimization [Vap82; Vap98]. Subsequent works further analyse this setting46

in transductive regression [CM07], and derive VC Dimension and Rademacher complexity for47

transductive classification [TLP16; EYP09]. Generalisation error bounds for 1-layer GNNs have been48

derived in transductive setting based on algorithmic stability [VZ19]. In contrast, the focus of the49

current paper is on a learning theoretic measures, which have been previously used to analyse GNNs50

in a supervised setting. In [STH18], VC Dimension is derived for a specific class of GNNs and a51

generalisation error bound is given using node representations. However, their approach of subsuming52

the graph convolutions under Pfaffian functions does not allow for an explicit representation in terms53

of the diffusion operator which is important to our presented analysis. [GJJ20] derive the Rademacher54

complexity for GNN in a supervised setting with the focus of the equivariant structures of the input55

graphs and does not allow for an explicit inclusion and analysis of the graph information. [LUZ21]56

provide PAC-Bayes bounds for GNNs that are tighter than the bounds in [GJJ20].57

In the broader deep learning learning, there has been a growing call for alternatives learning theoretic58

bounds since they do not adequately capture the behaviour of deep models [Ney+17]. To this end,59

different limiting case analysis have been introduced. In the context of GNNs, it is known that GNNs60

have a fundamental connection to belief propagation and message passing [DDS16; Gil+17] and61

some theoretical analyses of GNNs has been based on cavity methods and mean field approaches for62

supervised [ZLZ20] and transductive settings [KTO19; CBL19]. The central idea of these approaches63

is to show results in the limit of the number of iterations. In another limiting setting, [Du+19] study64

GNNs with infintiely wide hidden layers, and derive corresponding neural tangent kernel [JGH18;65

Aro+19b] that can provide generalisation error bounds in the supervised setting. [KBV20] derive66

continuous versions of GNNs applied to large random graphs. While limiting assumptions allow for67

a theoretical analysis, it is difficult to infer the implications of these results for finite GNNs.68

Contributions and paper structure. We reconsider classical learning theoretic measures to analyse69

GNNs, with a specific focus on explicitly characterising the influence of the graph information and70

the network architecture on generalisation. In the process, we show that, under careful construction71

of the complexity measure and distributional assumptions on the graph data, learning theory can72

provide insights into the behaviour of GNNs. The main contributions are the following:73

1) We introduce a formal setup for graph based transductive inference, and in Section 2.2, we use this74

framework to show that VC Dimension based generalisation error bounds are typically loose, except75

for few trivial cases. This observation is along the lines of existing evidence for neural networks.76

2) In Section 2.3, we use transductive Rademacher complexity to show that the generalisation error is77

more informative, suggesting that the correct choice of complexity measure is important.78

3) We refine the generalisation error bounds in Section 3 under a planted model for the graph and79

features. Such an analysis, under random graphs, is rare in GNN literature. We empirically show that80

the test error is consistent with the trends predicted by the theoretical bound. Our results suggest that,81

under distributional assumptions, learning theoretic bounds can explain behaviour of GNNs.82

4) We further consider GNNs with residual connections in Section 4, and demonstrate how the above83

analysis can be extended to other network architectures. We prove that residual connections have84

smaller generalisation gap in comparison with vanilla GNN, and also empirically show that the85

theoretical bounds explain (to a limited extent) the influence of network depth on performance.86

We conclude in Section 5. All proofs and an overview of the notation are provided in the appendix.87

1In semi-supervised learning, the learner is given a training set of labeled and unlabeled examples and the
goal is to generate a hypothesis that generates predictions on the unseen examples. In transductive learning all
features are available to the learner, and the goal is to transfer knowledge from the labeled to the unlabeled data
points. The focus of graph-based semi-supervised learning aligns more with the latter setting.
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2 Statistical Framework for Transductive Learning on GNN88

For a rigorous analysis, we introduce a statistical learning framework for graph based transduc-89

tive inference in Section 2.1. Based on this, we derive generalisation error bounds based on VC90

Dimension in Section 2.2 and demonstrate that the bounds have limited expresitivity even under91

strong assumptions. To overcome this problem we consider transductive Rademacher complexity in92

Section 2.3. While without further assumptions this bound also gives limited insight, the bound is93

more expressive and, in Section 3, we show that it can provide meaning bounds under distributional94

assumptions.95

2.1 Framework for Transductive Learning96

We briefly recall the framework for supervised binary classification. Let X = Rd be the domain or97

feature space and Y = {±1} be the label set. The goal is to find a predictor h : X → Y based on m98

training samples S , {(xi, yi)}mi=1 ⊂ X ×Y and a loss function ` : Y ×Y → [0,∞). In a statistical99

framework, we assume that S consists independent labelled samples from a distributionD = DX ×η,100

that is, xi ∼ DX and yi ∼ η(xi), where η(·) governs the label probability for each feature. The goal101

of learning is to find h that minimises the risk / generalisation error LD(h) , E(x,y)∼D[`(h(x), y)].102

Since, LD(h) cannot be computed without the knowledge of D, one minimises the empirical risk103

over the training sample S as LS(h) , 1
m

∑m
i=1 ` (h (xi) , yi) .104

Transductive learning. In transductive inference, one restricts the domain to be X , {xi}ni=1,105

a finite set of features xi ∈ Rd. Without loss of generality, one may assume that the labels106

y1, . . . , ym ∈ {±1} are known, and the goal is to predict ym+1, . . . yn. The problem can be107

reformulated in the statistical learning framework as follows. We define the feature distribution DX108

to be uniform over the n features, whereas yi ∼ η(xi) for some unknown distribution η. Hence109

D := Unif([n])× η is the joint distribution on X × Y , and the goal is to find a predictor h : X → Y110

that minimises the generalisation error Lu(h) , 1
n−m

∑n
i=m+1 ` (h(xi), yi). In addition we define111

the empirical error of h is L̂m(h) , 1
m

∑m
i=1 ` (h(xi), yi) and the full sample error of h is Ln(h) ,112

1
n

∑n
i=1 ` (h(xi), yi), which is defined over both labelled and unlabelled instances. The purpose of113

this paper is to derive generalisation error bound for graph based transduction of the form114

Lu(h) ≤ L̂m(h) + complexity term.

The complexity term is typically characterised using learning theoretic terms such as VC Dimension115

and Rademacher complexity. For the transductive setting see [TLP16; EYP09; TBK14].116

Graph-based transductive learning. A typical view of graph information in transductive inference117

is in form of a regularisation [BMN04]. In contrast, we view the graph as part of the hypothesis118

class and derive the impact of the graph information on the complexity term. We assume access119

to a graph G with n vertices, corresponding to the respective feature vectors x1, . . . ,xn, and edge120

(i, j) denoting similarity of vertices i and j. For ease of exposition, we define the matrixX ∈ Rn×d121

with rows being the n feature vectors of dimension d. We also abuse notation to write a predictor122

as h : Rn×d → {±1}n. Furthermore, typically neural networks output a soft predictor in R, that123

is further transformed into labels through sign or softmax functions. Hence, much of our analysis124

focuses on predictors h : Rn×d → Rn, and corresponding hypothesis class125

HG =
{
h : Rn×d → Rn : h is parametrized by G

}
⊂ R[n].

When applicable, we denote the hypothesis class of binary predictors obtained through sign function126

as sign ◦HG = {sign(h) | h ∈ HG}. Note that sign ◦HG ⊂ HG , and hence, VC Dimension or127

Rademacher complexity bounds for the latter also hold for the hypothesis class of binary predictors.128

We also note that the presented analysis holds for both sign and sigmoid function for binarisation.129

Formal setup of GNNs. We next characterise the hypothesis class for graph neural networks.130

Consider graph-based neural network model with the propagation rule for layer k denoted by131

gk(H) : Rdk−1 → Rdk with layer wise input matrix H ∈ Rn×dk−1 . Consider a class of GNNs132

defined over K layers, with dimension of layer k ∈ [K] being dk and S ∈ Rn×n the graph diffusion133

operator. Let φ denote the point-wise activation function of the network, which we assume to be a134

Lipschitz function with Lipschitz constant Lφ. We assume φ to be the same throughout the network.135
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We define the hypothesis class over all K-layer GNNs as:136

HφG ,
{
hφG(X) = gK ◦ · · · ◦ g0 : Rn×d → {±1}n

}
(1)

with gk , φ (bk + Sgk−1 (H)Wk) , k ∈ [K], g0 ,X. (2)

where (2) defines the layer wise transformation withWk ∈ Rdk−1×dk as the trainable weight matrix137

and bk ∈ Rdk the bias term. Here, the graph is treated as part of the hypothesis class, as indicated138

by the subscript in HφG . For ease of notation we drop the superscript for non-linearity where it is139

unambiguous. For the diffusion operator S, we consider two main formulations during discussions:140

Sloop , A+ I self loop

Snor , (D + I)−
1
2 (A+ I)(D + I)−

1
2 , degree normalized [KW17]

whereA denotes the graph adjacency matrix andD is the degree matrix. However, most results are141

stated for general S.142

2.2 Generalisation Error-bound using VC Dimension143

The main focus of this paper is the notion of generalisation, that is, understanding how well can a144

GNN can predict the classes of the unlabelled set given the training data. We start with one of the145

most fundamental learning theoretical concepts in this context which is the Vapnik–Chervonenkis146

(VC) dimension of a hypothesis class, a measure of the complexity or expressive power of a space of147

functions learned by a binary classification algorithm. The following result bounds the VC Dimension148

for the hypothesis classHφG , and use it to derive a generalisation error bound with respect to the full149

sample error Ln, which is close to the generalisation error for unlabelled examples Lu when m� n.150

Proposition 1 (Generalisation error bound for GNNs using VC Dimension) For the hypothesis151

class over all linear GNNs, that is φ(x) := x, with binary outputs, the VC Dimension is given by152

VCdim
(

sign ◦Hlinear
G

)
= min

{
d, rank

(
S
)
, min
k∈[K−1]

{dk}
}
.

Similarly, the VC Dimension for the hypothesis class of GNNs with ReLU non-linearities and binary153

outputs, can be bounded as VCdim
(

sign ◦HReLU
G

)
≤ min {rank(S), dK−1}.154

Using the above bounds, it follows that, for any δ ∈ (0, 1), the generalisation error for any h ∈155

sign ◦HG satisfies, with probability 1− δ,156

Ln(h)− L̂m(h) ≤

√
8

m

(
min {rank(S), dK−1} · ln(em) + ln

(
4

δ

))
.

To interpret Proposition 1, we note that, by introducing the non-linearity, we lose the information157

about the hidden layers, except the last one and therefore also on the feature dimension. Nevertheless,158

the information on the graph information (that we are primarily interested in) is preserved. There159

are two situations that arise. If dK−1 ≤ rank(S), then, from Proposition 1, the graph information is160

redundant and one could essentially train a fully connected network without diffusion on the labelled161

features, and use it to predict on unlabelled features. The graph information has an influence for162

rank(S) < dK−1. While general statements on the influence of the graph information are difficult,163

by considering specific assumptions on the graph we can characterise the generalisation error further.164

For linear GNN on graph G, one can bound the VC Dimension between those for empty and complete165

graphs, that is, VCdim
(

sign ◦Hlinear
complete

)
≤ VCdim

(
sign ◦Hlinear

G
)
≤ VCdim

(
sign ◦Hlinear

empty

)
. More-166

over, for disconnected graphs, rank(S) is related to the number of connected components. Similar167

observations hold for upper bounds on VC Dimension for ReLU GNNs. Based on this observation for168

simple settings, it holds that considering graph information in comparison to a fully connected feed169

forward neural network leads to a decrease in the complexity of the class, and therefore also in the170

generalisation error. However, the graph G is connected in most practical scenarios, and even under171

strong assumptions on the graph, for example under consideration of Erdös-Rényi graphs or stochas-172

tic block models, rank(S) = O(n) [CV08]. Therefore, for the case dK−1 > rank(S) = O(n),173

Proposition 1 provides a generalisation error bound of O
(√

n·lnm
m

)
, which holds trivially for 0-1174
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loss as n > m. Furthermore, rank(S) is often similar for both self-loop Sloop and degree-normalised175

diffusion Snor, and hence, the VC Dimension based error bound does not reflect the positive influence176

of degree normalisation—a fact that can be explained through stability based analysis [VZ19].177

2.3 Generalisation Error-bound using Transductive Rademacher Complexity178

Due to the triviality of VC Dimension based error bounds in realistic cases, we consider generalization179

error bounds based on transductive Rademacher complexity (TRC). We start by defining TRC that180

differs from inductive Rademacher complexity by taking the unobserved instances into consideration.181

Definition 1 (Transductive Rademacher complexity (TRC) [EYP09]) Let V ⊆ Rn, p ∈ [0, 0.5]182

and m the number of labeled points. Let σ = (σ1, . . . , σn)
T be a vector of independent and183

identically distributed random variables, where σi takes value +1 or −1, each with probability p,184

and 0 with probability 1− 2p. The transductive Rademacher complexity (TRC) of V is defined as185

Rm,n(V) ,

(
1

m
+

1

n−m

)
· E
σ

[
sup
v∈V

σ>v

]
.

The following result derives a bound for the TRC of GNNs, defined in (1)–(2), and states the186

corresponding generalization error bound. The bound involves standard matrix norms, such as ‖ · ‖∞187

(maximum absolute row sum) and the ‘entrywise’ norm, ‖·‖2→∞ (maximum 2-norm of any column).188

Theorem 1 (Generalization error bound for GNNs using TRC) Consider Hφ,β,ωG ⊆ HφG such189

that the trainable parameters satisfy ‖bk‖1 ≤ β and ‖Wk‖∞ ≤ ω for every k ∈ [K]. The190

transductive Randemacher complexity (TRC) of the restricted hypothesis class is bounded as191

Rm,n(Hφ,β,ωG ) ≤ c1n
2

m(n−m)

(
K−1∑
k=0

ck2 ‖S‖
k
∞

)
+ c3c

K
2 ‖S‖

K
∞ ‖SX‖2→∞

√
log(n) , (3)

where c1 , 2Lφβ, c2 , 2Lφω, c3 , Lφω
√

2/d and Lφ is Lipschitz constant for activation φ.192

The bound on TRC leads to a generalisation error bound following [EYP09]. For any δ ∈ (0, 1), the193

generalisation error for any h ∈ Hφ,β,ωG satisfies194

Lu(h)− L̂m(h) ≤ Rm,n(Hφ,β,ωG ) + c4
n
√

min{m,n−m}
m(n−m)

+ c5

√
n

m(n−m)
ln

(
1

δ

)
(4)

with probability 1− δ, where c4, c5 are absolute constants such that c4 < 5.05 and c5 < 0.8.195

The additional terms in (4) are O
(

max
{

1√
m
, 1√

n−m

})
, and hence, we may focus on the upper196

bound on TRC (3) to understand the influence of the graph diffusion S as well as its interaction197

with the feature matrix X . The bound depends on the choice of ω, and it suggest a natural choice198

of ω = O(1/‖S‖∞) such that the bound does not grow exponentially with network depth. The199

subsequent discussions focus on the dependence on ‖S‖∞ and ‖SX‖2→∞, ignoring the role of ω.200

Few observations are evident from (3), which are also interesting in comparison to existing works.201

Role of normalisation. In the case of self-loop, it is easy to see that ‖Sloop‖∞ = 1 + dmax, where202

dmax denotes the maximum degree, and hence, for fixed ω, the bound grows as O(dKmax). In contrast,203

for degree normalisation, ‖Snor‖∞ = O
(√

dmax

dmin

)
, and hence, the growth is much smaller (in fact,204

‖Snor‖∞ = 1 on regular graphs). It is worth noting that, in the supervised setting, [LUZ21] derived205

PAC-Bayes for GNN with diffusion Snor, where the bound varies as O(dKmax). Theorem 1 is tighter in206

the sense that, for Snor, the error bound has weaker dependence on dmax, mainly through ‖SX‖2→∞.207

From spectral radius to ‖SX‖2→∞. Previous analyses of GNNs in transductive setting rely on208

the spectral properties of S. For instance, the stability based generalisation error bound for 1-layer209

GNN in [VZ19] is O(‖S‖22), where ‖S‖2 is the spectral norm. In contrast, Theorem 1 shows TRC210

= O(‖S‖∞ ‖SX‖2→∞). This is the first result that explicitly uses the relation between the graph-211

information and the feature information explicitly via ‖SX‖2→∞. One may note that without node212

features, that isX = I, we have ‖S‖2→∞ ≤ ‖S‖2 ≤ ‖S‖∞ and hence, a direct comparison between213

(4) and O(‖S‖22) bound of [VZ19] is inconclusive. However, in presence of featuresX , Theorem 1214

shows that the bound depends on the alignment between the feature and graph information.215
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3 Generalization using TRC under Planted Models216

The discussion in previous section shows that TRC based generalisation error bound provides some217

insights into the behaviour of GNNs (example, Snor is preferred over Sloop), but the bound is too218

general to give insights into the influence of the graph information on the generalisation error. The219

key quantity of interest is ‖SX‖2→∞, which characterises how the graph and feature information220

interact. To understand this interaction, we make specific distributional assumptions on both graph221

and node features. We assume that node features are sampled from either of two d-dimensional222

isotropic Gaussians [Das99], and graph is independently generated from a two-community stochastic223

block model [Abb18]. Both models have been extensively studied in the context of recovering the224

latent classes from random observations of features matrixX or adjacency matrixA, respectively.225

Our interest, however, is to quantitatively analyse the influence of graph information when the latent226

classes in featuresX and graphA do not align completely. In Section 3.1, we present the model and227

derive bounds on expected TRC, where the expectation is with respect to random features and graph.228

We then experimentally illustrate the bounds in Section 3.2, and demonstrate that the corresponding229

generalisation error bounds indeed capture the trends in performance of GNN.230

3.1 Model and Bounds on TRC231

We assume that the node features are sampled latent true classes, given a z = (z1, . . . , zn) ∈ {±1}n.232

The node features are sampled from a Gaussian mixture model (GMM), that is, feature for node-i is233

sampled as xi ∼ N (ziµ, σ
2I) for some µ ∈ Rd and σ ∈ (0,∞). We express this in terms ofX as234

X = X + ε ∈ Rn×d, where X = zµ> and ε = (εij)i∈[n],j∈[d]
i.i.d.∼ N (0, σ2). (5)

We refer to above as X ∼ 2GMM. On the other hand, we assume that graph has two latent235

communities, characterised by y ∈ {±1}n. The graph is generated from a stochastic block model236

with two classes (2SBM), where edges (i, j) are added independently with probability p ∈ (0, 1] if237

yi = yj , and with probability q < [0, p) if yi 6= yj . In other words, we define the random adjacency238

A ∼ 2SBM as a symmetric binary matrix withAii = 0, and (Aij)i<j indenpendent such that239

Aij ∼ Bernoulli(Aij), where A =
p+ q

2
11> +

p− q
2
yy> − pI. (6)

The choice of two different latent classes z,y ∈ {±1}n allows study of the case where the graph and240

feature information of do not align completely. We use Γ = |y>z| ∈ [0, n] to quantify this alignment.241

Assuming y, z are both balanced, that is,
∑
i yi =

∑
i zi = 0, one can verify that242

‖(A+ I)X‖2→∞ = ‖µ‖∞
(
n(1− p)2 + 1

4n(p− q)2Γ2 − (p− q)(1− p)Γ2
)1/2

, (7)

which indicates that, for dense graphs (p, q � 1
n ), the quantity ‖SX‖2→∞ should typically increase243

if the latent structure of graph and features are more aligned. This intuition is made precise in the244

following result that bounds the TRC, in expectation, assumingX ∼ 2GMM andA ∼ 2SBM.245

Theorem 2 (Expected TRC for GNNs under SBM) Let c1, c2 and c3 as defined in Theorem 1 and246

Γ , |y>z|. Let c6 , (1 + o(1)), c7 , (1 + ko(1)), c8 , (1 + Ko(1)). Then we can bound the247

expected TRC forA as defined in (6) andX as defined in (5) as follows:248

Case 1, Degree normalized: S = Snor249

E
X∼2GMM
A∼2SBM

[
Rm,n(Hφ,β,ωG )

]
≤ c1n

2

m(n−m)

(
K−1∑
k=0

c7c
k
2

(
p

q

) k
2

)
+ c8c3c

K
2

(
p

q

)K
2 √

ln(n) ×

(
c6 ‖µ‖∞

1 +
(
p−q
2

)2
Γ2(

p+q
2

)2 + c6

√
ln(n)

q
‖µ‖∞ + c6

√
σ(1 + 2 ln(d)

q

)
(8)

Case 2, Self Loop: S = Sloop250

E
X∼2GMM
A∼2SBM

[
Rm,n(Hφ,β,ωG )

]
≤ c1n

2

m(n−m)

(
K−1∑
k=0

c7c
k
2(np)k

)
+ c8c3c

K
2 (np)K

√
ln(n) ×

(
c6 ‖µ‖∞ n

(
1 +

(
p− q

2

)2

Γ2

)
+ n

√
p+ q

2
‖µ‖∞ + c6n

√
pσ
√

1 + 2 ln(d)

)
(9)
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Figure 1: Top row shows experiments for SBM and bottom row for Cora. Note that the range for
Cora exceeds (0, 1) as the dataset is multi class and we consider a negative log likelihood loss. (left)
Change in the alignment of the features and adjacency matrix. (middle) Change of the graph size n.
(right) Change number of observed points m.

We note that although the above bounds are stated in expectation, it can be translated into high251

probability bounds. Furthermore the non-triviality of the proof of Theorem 2 stems from bounds on252

the expectations of matrix norms, which is more complex than the computation in (7). Theorem 2 can253

be also translated into bounds on the generalisation gap Lu(h)− L̂m(h). By considering a planted254

model we can now further extend the observations of Section 2.2 and 2.3.255

Role of normalisation. In the following we can show that by normalising, the generalisation256

gap grows slower with increasing graph size. First we compare E
[
‖Sloop‖k∞

]
= c7(np)k with257

E
[
‖Snor‖k∞

]
= c7 (p/q)

k/2 and observe that by normalising we loos the n term. In addition we can258

consider E [‖SX‖2→∞] which is bound by the second line in (8)–(9). Again in the first, deterministic,259

term we observe that the self loop version contains an additional dependency on n. For the two noise260

terms we can characterize the behaviour in terms of the density of the graph. Let ρ = O(p), O(q)261

and ρ � 1
n then we can characterise the dense setting as ρ � Ω(1) and the sparse setting as262

ρ � O
(

ln(n)
n

)
and observe that in both case the normalised case grows slower with n:263

Dense: E
[
‖SloopX‖2→∞

]
= O(n) and E [‖SnorX‖2→∞] = O(

√
ln(n)) (10)

Sparse: E
[
‖SloopX‖2→∞

]
= O(

√
n ln(n)) and E [‖SnorX‖2→∞] = O(

√
n) (11)

Influence of the graph information. We consider the idea from Section 2.2, to analyse the influence264

of graph information by comparing the TRC between the case where no graph information is consid-265

ered, S = I and Snor. We define the corresponding hypothesis classes asHφ,β,ωI andHφ,β,ωnor . Con-266

sidering the deterministic case (S = S,X = X ) we can observe Rm,n(Hφ,β,ωI ) > Rm,n(Hφ,β,ωnor )267

if Γ > O
(

n√
nρ+n

)
. Therefore the random graph setting allows us to more precisely characterize268

under what conditions adding graph information helps.269

3.2 Experimental Results270

While we focus on the theoretical analysis of GNNs, in this section we illustrate that the empirical271

generalization error follows the trends given by the bounds described in Theorem 2. The bounds272

in Section 3.1 are derived for binary SBMs so we therefore focus on this setting but in addition273

also show that those observations extend to real world, multi-class data on the example of the Cora274

dataset [RA15]. The results are presented in Figure 1. For the SBM we consider a graph with275

n = 500,m = 100 as default. We plot the mean over 5 random initialisation and over several epochs.276

Note that for plotting the theoretical bound we can only plot the trend of the bound as the absolute277
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value is out of the (0, 1) range. This problem is inherent to the bound given in [EYP09] that we278

base our TRC bounds on, as the slack terms can already exceeds 1 and therefore further research on279

general TRC generalisation gaps is necessary to characterise the absolute gap between theory and280

experiments. Details on experimental setup are given in the Appendix.281

We can first look at the feature and graph alignment as characterised through Γ2 in (7)–(8) and282

observe that with an increase in the latent structure the generalisation error increases. In addition283

we observe that the slope matches the empirical observation well. For Cora we do not have access284

to the ground truth for the alignment and therefore can not vary this trend directly. Therefore we285

simulate a change in the feature structure by adding noise to the feature vector asX + ε where εi· is286

i.i.d. distributed N (0, σ2
FeatI) and again observe a similar behaviour to the SBM. To be able to apply287

the bound to arbitrary graphs an important property is that the bound does not increase drastically288

with growing graph size. We theoretically showed this in the previous section, especially through289

(10)–(11) and illustrate it in Figure 1 (middle). For both, SBM and Cora, the generalisation error stays290

mostly consistent over varying n. Finally for the number of observed points we see a sharp decline in291

the setting of few observed points but then the generalisation error converges which corresponds to292

the influence of m as described in (8). Practically such an observation can be useful as labeling data293

can be expensive and such results could be a useful to determine a necessary and sufficient number of294

labeled data to obtain a given level of accuracy.295

4 Influence of Depth and Residual Connections on the Generalisation Error296

While for standard neural networks increasing the depth is a common approach for increasing the297

performance, this idea becomes more complex in the context of GNNs as each layer contains a left298

multiplication of the diffusion operator and we can therefore observe an over-smoothing effect — the299

repeated multiplication of the diffusion operator in each layer spreads the feature information such300

that it converges to be constant over all nodes. To overcome this problem, empirical works suggest301

the use of residual connections [KW17; Che+20], such that by adding connections from previous302

layers the network retains some feature information. In this section we investigate this approach in303

the TRC setting. In Section 4.1 we provide the TRC bound for GNN with skip connections and show304

that it improves the generalisation error compared to vanilla GNNs. In Section 4.2 we illustrate this305

bounds empirically.306

4.1 Model and bounds on TRC for GNN with Residual connections307

While there is a wide range of residual connections, introduced in recent years we follow the idea308

presented in [Che+20] where a GNN as defined in (2) is extended by an interpolation over parameter309

α with the features. This setup is especially interesting as it captures the idea of preserving the310

influence of the feature information more then residual definition that only connect to the previous311

layer. Formally we can now write the layer wise propagation rule as312

gk+1 , φ ((1− α) (bk + Sgk (H)Wk) + αg0 (H)) , with α ∈ (0, 1). (12)

We can now derive a generalization error bound similar to the one given in Theorem 1 for the Residual313

network.314

Theorem 3 (TRC for Residual GNNs) Consider a Residual network as defined in (12) and315

Hφ,β,ωG ⊂ HφG such that the trainable parameters satisfy ‖bk‖1 ≤ β and ‖Wk‖∞ ≤ ω for ev-316

ery k ∈ [K]. Then with α ∈ (0, 1) and c1 , 2Lφβ, c2 , 2Lφω, c3 , Lφω
√

2/d the TRC of the317

restricted class or Residual GNNs is bounded as318

Rm,n(Hφ,β,ωG ) ≤
((1− α)c1 + α2Lφ ‖X‖∞)n2

m(n−m)

(
K−1∑
k=0

(1− α)ck2 ‖S‖
k
∞

)
+ α2Lφ ‖X‖∞ + (1− α)c3c

K
2 ‖S‖

K
∞ ‖SX‖2→∞

√
log(n) (13)

However observing the bound isolated does not provide new insights beyond Theorem 2 into the319

behaviour of the generalisation error and therefore we focus on the comparison between GNNs with320

and without residual connections.321
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Figure 2: (left) Theoretical bounds corresponding to Theorem 3, illustrating Corollary 1. (middle)
Influence of depth K under SBM. (right) Influence of depth K for Cora.

Corollary 1 (Relation between Residual and vanilla GNNs) Let β = ‖X‖∞ and consider the322

setup in Theorem 1, denote the generalisation error with superscript GNN and the setup in Theorem 3323

with with superscript Res. Let α ∈ (0, 1), α < α′, where the first equality holds for α = 0. Then for324

any δ ∈ (0, 1), the generalisation error for any h ∈ Hφ,β,ωG satisfies325

Lu(hGNN)− L̂m(hGNN) ≥ Lu(hRes,α)− L̂m(hRes,α) > Lu(hRes,α′)− L̂m(hRes,α′) (14)

4.2 Experiments on depth and Residual networks326

Corollary 1 suggests that including residual connections is beneficial with increasing depth which is327

consistent with the initial reason of introducing residual connections [Che+20; KW17]. We further328

illustrate this in the context of the trend in (13). Similar to Section 3.2 we start by considering the329

vanilla GNN version and focus on the influence of depth where Figure 2 (left) illustrates Theorem 2,330

more specifically an exponential increase of K as shown in (8)–(9) (similar to [LUZ21]). Empirically331

from Figure 2, (middle, right) we note that with increasing depth the generalisation error indeed332

increases for the first three layers significantly but then we observe a deviation from the theoretical333

bound. The rate of growth decreases, which is to be expected as the absolute values of Lu,Lm are334

bound by construction. Future work with a focus on depth is necessary to refine this component of335

the bound. Extending the analysis of depth we now consider the residual connections as defined336

in (12). By (13) we can still observe the exponential dependency on K and therefore focus on two337

main aspects: i) Theoretically the generalisation error for the Resnet is upper bound by GNN (14),338

which empirically is observed for both the SBM as well as for Cora. ii) Focusing on the Resnets,339

Corollary 1 predicts an ordering in the generalisation error given by α which is again observed for340

both the SBM as well as for Cora. Therefore while there seems to be deviation in the exponential341

behaviour of K as given in Theorem 3, the ordering of Corollary 1 is observed empirically.342

5 Conclusion343

Statistical learning theory has proven to be a successful tool for a complete and rigours analysis344

of learning algorithms. At the same time research suggests that applied to deep learning models345

these methods become non-informative. However on the example of GNNs, we demonstrate that346

classical statistical learning theory can be used under consideration of the right complexity measure347

and distributional assumptions on the data to provide insight into trends of deep models. Our analysis348

provides first fundamental results on the influence of several parameters and opens up different349

lines of follow up work. As noted in the previous section the TRC bound predicts an exponential350

dependency on K which can only partially be observed empirically and therefore a study without351

relaying on a recursive proof structure will be necessary to refine this dependency on K. As it is352

not the focus of this paper we consider the bounds on the norms of trainable parameters, ω, β, fixed.353

However loosening this assumption would allow us to analyse the behaviour of the generalisation354

error during training and under different optimization approaches. Considering the current setup355

we can also extend the theoretical analysis to more advanced architectures such as dropout or batch356

normalisation. Finally while our analysis focuses on generalisation we suggest that the idea of357

analysing GNNs under planted models can be extended to other learning theoretical measures such358

as stability or model selection.359
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