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Abstract

Hypergraph partitioning lies at the heart of a number of problems in machine learning as well

as other engineering disciplines. While partitioning uniform hypergraphs is often required in

computer vision problems that involve multi-way similarities, non-uniform hypergraph parti-

tioning has applications in database systems, circuit design etc. As in the case of graphs, it is

known that for given objective and balance constraints, the problem of optimally partitioning

a hypergraph is NP-hard. Yet, over the last two decades, several efficient heuristics have been

studied in the literature and their empirical success is widely appreciated. In contrast to the

extensive studies related to graph partitioning, the theoretical guarantees of hypergraph par-

titioning approaches have not received much attention in the literature. The purpose of this

thesis is to establish the statistical error bounds for certain spectral algorithms for partitioning

uniform as well as non-uniform hypergraphs.

The mathematical framework considered in this thesis is the following. Let V be a set of

n vertices, and ψ : V → {1, . . . , k} be a (hidden) partition of V into k classes. A random

hypergraph (V,E) is generated according to a planted partition model, i.e, subsets of V are

independently added to the edge set E with probabilities depending on the class memberships

of the participating vertices. Let ψ′ be the partition of V obtained from a certain algorithm

acting on a random realization of the hypergraph. We provide an upper bound on the number

of disagreements between ψ and ψ′. To be precise, we show that under certain conditions, the

asymptotic error is o(n) with probability (1− o(1)). In the existing literature, such error rates

are only known in the case of graphs (Rohe et al., Ann. Statist., 2011; Lei & Rinaldo, Ann.

Statist., 2015), where the planted model coincides with the popular stochastic block model.

Our results are based on matrix concentration inequalities and perturbation bounds, and the

derived bounds can be used to comment on the consistency of spectral hypergraph partitioning

algorithms.

It is quite common in the literature to resort to a spectral approach when the quantity of

interest is a matrix, for instance, the adjacency or Laplacian matrix for graph partitioning. This

is certainly not true for hypergraph partitioning as the adjacency relations cannot be encoded
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Abstract

into a symmetric matrix as in the case of graphs. However, if one restricts the problem to m-

uniform hypergraphs for some m ≥ 2, then a symmetric tensor of order m can be used to express

the multi-way interactions or adjacencies. Thus, the use of tensor spectral algorithms, based

on the spectral theory of symmetric tensors, is a natural choice in this scenario. We observe

that a wide variety of uniform hypergraph partitioning methods studied in the literature can be

related to any one of two principle approaches: (1) solving a tensor trace maximization problem,

or (2) use of the higher order singular value decomposition of tensors. We derive statistical

error bounds to show that both these approaches lead to consistent partitioning algorithms.

Our results also hold when the hypergraph under consideration allows weighted edges, a

situation that is commonly encountered in computer vision applications such as motion seg-

mentation, image registration etc. In spite of the theoretical guarantees, a tensor spectral

approach is not preferable in this setting due to the time and space complexity of computing

the weighted adjacency tensor. Keeping this practical scenario in mind, we prove that consis-

tency can still be achieved by incorporating certain tensor sampling strategies. In particular,

we show that if the edges are sampled according to certain distribution, then consistent par-

titioning can be achieved with only few sampled edges. Experiments on benchmark problems

demonstrate that such sampled tensor spectral algorithms are indeed useful in practice.

While vision tasks mostly involve uniform hypergraphs, in database and electronics applica-

tions, one often finds non-uniform hypergraphs with edges of varying sizes. These hypergraphs

cannot be expressed in terms of adjacency matrices or tensors, and hence, use of a spectral

approach is tricky in this context. The partitioning problems gets more challenging due to the

fact that, in practice, these hypergraphs are quite sparse, and hence, provide less information

about the partition. We consider spectral algorithms for partitioning clique and star expansions

of hypergraphs, and study their consistency under a sparse planted partition model.

The results of hypergraph partitioning can be further extended to address the well-known

hypergraph vertex coloring problem, where the objective is to color the vertices such that

no edge is monochromatic. The hardness of this problem is well established. In fact, even

when a hypergraph is bipartite or 2-colorable, it is NP-hard to find a proper 2-coloring for it.

We propose a spectral coloring algorithm, and show that if the non-monochromatic subsets of

vertices are independently added to the edge set with certain probabilities, then with probability

(1− o(1)), our algorithm succeeds in coloring bipartite hypergraphs with only two colors.

To the best our knowledge, these are the first known results related to consistency of parti-

tioning general hypergraphs.
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List of notations and abbreviations

Standard quantities and functions.

Notation Description

1{·} Indicator function, returns one if argument is true, else zero.

ln(·) Natural logarithm.

`0−1(·, ·) 0-1 loss function that is indicator of two labels being identical.

N Set of natural numbers, {1, 2, . . .}.
R Set of real numbers.

Rn1×n2×...×nm Space of all real tensors of order m of dimension n1 × n2 × . . . × nm.

Special cases include space of all n1 × n2 matrices (for m = 2), and

space of all n1-dimensional vectors (for m = 1).

Vc1 Complement of any set V1.

| · | Cardinality of a set.

I Identity matrix, dimension can be understood from context.

Trace(·) Trace or sum of diagonal entries of a matrix or tensor

det(·) Determinant of a matrix.

‖ · ‖2 Euclidean norm for vector and the spectral norm for matrix

‖ · ‖F Frobenius norm of matrix or tensor. Square root of sum of squares of

all entries.

E[·] Expectation with respect to a specified distribution. For most of the

thesis, we consider distribution of the planted model, except in Chap-

ter 6. See Remark 6.3 for the latter case.

Var(·) Variance with respect to a specified distribution. Above remark holds

in this case also.

P(·) Probability of an event with respect to a specified distribution, typically

that of planted model (except in Chapter 6).
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List of notations and abbreviations

O(·) For two sequences (an)n∈N, (bn)n∈N, we say an = O(bn) if there is a

constant C > 0 such that an ≤ Cbn for all n.

Ω(·) an = Ω(bn) if there is a constant C > 0 such that an ≥ Cbn for all large

n.

Θ(·) an = Θ(bn) if both an = O(bn) and an = Ω(bn).

o(·) an = o(bn) if an
bn
→ 0 as n→∞.

Terminology specific to matrices and tensors.

Notation Description

A, B etc. Bold faces used only for tensors

Ã Flattened matrix of a tensor (only exception to bold face rule). See (2.4)

for definition.

×k Mode-k product of a tensor with a matrix. See Definition 2.4.

⊗ Outer product of two or more vectors, resulting in rank-one matrices or

tensors. Used in Definition 2.3.

Ai· ith row of a matrix A.

A·i ith column of a matrix A.

λmin(A) Smallest eigenvalue of A.

λk(A) kth largest or smallest eigenvalue of A (depends on context). In proof

of Lemma 3.11, λk(·) refers to kth largest singular value.

E[A] or E[A] Entry-wise expectation of matrix or tensor.

Var(A) Variance of a matrix defined as Var(A) = E [(A− E[A])2].

Mn×r(k) Set of all matrices in Rn×r with at most k distinct rows.

ηk(A) If A ∈ Rn×r, ηk(A) = minS∈Mn×r(k) ‖A−S‖F . See Section 2.5.3 for use.

Graph and hypergraph terminology.

Notation Description

V Set of vertices. Typically we use i, j, i1, i2s etc. to refer to the vertices.

E Set of undirected edges. Typically an edge is denoted by e.

(V,E) Unweighted undirected graph or hypergraph.

(V,E, w) Weighted graph or hypergraph with weight function w. In this case,

one may assume E to be collection of all subsets of V.

w(e) or we Weight of an edge e in a weighted graph or hypergraph.

deg(i) Degree of a vertex i ∈ V.
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List of notations and abbreviations

A Adjacency matrix or weighted adjacency matrix of a graph. We also

use the same notation to refer to weighted adjacency matrix of graph

resulting from hypergraph reduction.

A Adjacency tensor of uniform hypergraph.

H Incidence matrix of hypergraph.

∆ Edge cardinality matrix, diagonal with ∆ee = |e|.
D Degree matrix, diagonal with Dii = deg(i), or Dii =

∑
j Aij (depends

on context).

L Normalized graph (or hypergraph) Laplacian, L = I −D−1/2AD−1/2.

Lun Unnormalized graph Laplacian, Lun = D − A.

Vol(V1) Volume of a group of vertices V1 ⊂ V, which is the sum of degrees of

all vertices V1.

∂V1 Boundary of a group of vertices. Denotes all edges that have non-empty

intersection with both V1 and Vc1.

Cut(V1) Total weight of edges in ∂V1. Two different definitions given in Sec-

tion 2.2 and Remark 5.3.

Assoc(V1) Total weight of edges that that reside within V1. Two different defini-

tions given in Sections 2.2 and 4.1.

R-Cut Ratio cut of a partition of a graph. See (2.12).

R-Assoc Ratio associativity of a partition of a graph. See (2.15).

N-Cut Normalized cut of a partition of a graph. See (2.13).

N-Assoc Normalized associativity of a partition of a graph. See (2.14).

NH-Cut Normalized cut of a partition of a hypergraph. See (5.4).

NH-Assoc Normalized associativity of a partition of a hypergraph. See (4.1).

(V, Ẽ) An ideal uniform hypergraph, which is an union of completely connected

components.

Quantities used in planted partition model and analysis1.

Notation Description

n Number of vertices in planted graph or hypergraph. Exception in Chap-

ter 7, where hypergraph has 2n vertices.

m Order of uniform hypergraphs studied in Chapters 3, 4 and 6.

1 Other quantities, not mentioned here, have also been introduced and used in different sections.
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List of notations and abbreviations

k Denotes the size of partition planted in graph or hypergraph. These

classes are denoted by V1, . . . ,Vk, and their sizes are given by n1, . . . , nk.

ψ or ψ1, . . . , ψn True (or planted) labels of vertices of hypergraph.

ψ′ or ψ′1, . . . , ψ
′
n Labels of vertices estimated by partitioning algorithm.

Error(ψ, ψ′) Clustering error, or number of disagreements between ψ and ψ′ upto

possible permutation of labels. See (2.20). We suffix this quantity with

algorithm name to refer to the error incurred by a specific algorithm.

Z Membership or cluster assignment matrix, Ziψi = 1, and zero otherwise.

αm Parameter controlling sparsity edges of size m in a random hypergraph.

See Sections 3.3 and 5.1. In Section 2.3, we α2 is simply written as α.

B(m) Tensor specifying probabilities of edges of size m among different classes

in a planted hypergraph. See Sections 3.3 and 5.1. In Section 2.3, we

B(2) is written as B.

A Population adjacency matrix, A = E[A], where A is (weighted) adja-

cency matrix of reduced hypergraph.

D D = E[D], expectation with respect to probability measure of planted

model.

L Population version of normalized Laplacian, L = I −D−1/2AD−1/2.

Dmin and d Dmin = min
i∈V

Dii, and d = min
i∈V

E[deg(i)]. They coincide in the case of

algorithms presented in Chapter 5.

Amin Amin = min{Aij : Aij > 0}.
δ A quantifier for identifiability of partition in planted model. Technically,

δ is a lower bound on eigen gap between kth and (k + 1)th eigenvalues

of L or D−1/2AD−1/2.

X, X and X X is the matrix of orthonormal eigenvectors computed in the presented

spectral methods. X is similar to X, but each row normalized to have

unit norm. X is population version of X.

γ Approximation factor of approximate k-means algorithms. See Sec-

tion 2.5.3.

Â Unbiased estimator of A when edge sampling is used.

D̂ Unbiased estimator of D when edge sampling is used.
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‘Begin at the beginning,’ the King said, very gravely,

‘and go on till you come to the end: then stop.’

Lewis Carroll, Alice’s Adventures in Wonderland

Chapter 1

Introduction

The study of networks plays a key role in analyzing relational data. For nearly a century,

sociologists have relied on network analysis to understand various aspects of social, political

and economic systems. Recent advances in biological sciences as well as the “rise of social

networking” have further escalated the importance of network analysis by providing a plethora

of applications that spread across various fields of science and engineering. The world wide

web (Berners-Lee and Fischett, 2000) and the neural network (Lettvin et al., 1959) merely

demonstrate the significance of networks in the progress of both science and society. While the

applications are plentiful, the resulting problems are quite challenging. The theoretical and

computational challenges of network analysis have intrigued researchers over several decades.

In fact, the design of efficient algorithms for network analysis is still one of major research

areas in several disciplines including statistics, communication, machine learning, game theory

among others.

A crucial problem in the field of network sciences has been clustering or community detec-

tion. On one hand, it is the main tool for sociologists to extract the properties of the network,

whereas on the other hand, clustering plays a major role in problems such as balancing server

loads of websites, or determining functional relationships in biological networks. Due to the

ubiquity of networks involving pairwise interactions, for instance friendship networks or commu-

nication networks, the bulk of the literature invariably assume that the network can be viewed

as a graph. Subsequently, the network clustering problem boils down to a graph partitioning

problem that has been extensively studied in mathematics and computer science.

Informally, the objective of the graph partitioning problem is to divide a graph into smaller

components with ‘specific’ properties. For example, one often desires components of comparable

sizes with low connectivity between them. In spite of the hardness of this balanced graph

partitioning problem (Garey and Johnson, 1979), a number of efficient methods have been

1



developed in the literature. These algorithms use a wide variety of approaches including spectral

techniques (Fiedler, 1973; Ng et al., 2002), modularity and likelihood based methods (Girvan

and Newman, 2002; Bickel and Chen, 2009), convex optimization (Arora et al., 2004; Chen

et al., 2014), belief propagation (Decelle et al., 2011) among others.

These methods are still viewed as heuristic solutions for the partitioning problem, but

their empirical success have been widely appreciated in several engineering applications such as

community detection in social or biological networks (Wasserman, 1994; Guimera and Amaral,

2005), electronic circuit design (Kernighan and Lin, 1970), data analysis (Ng et al., 2002), image

processing and computer vision (Shi and Malik, 2000) among others. It is not an exaggeration

to say that, in recent years, balanced partitioning has been one of the most prominent graph

problems from a practical point of view. However, there are also other graph partitioning

problems that have been of significant interest to practitioners. For instance, graph coloring

has often been used to solve several scheduling and resource allocation problems (Chaitin, 1982),

while the problem of finding cliques in a graph has a long history in network analysis (Luce

and Perry, 1949).

In spite of the vast applicability of network modeling using graphs, there exist more com-

plex networks, where pairwise interactions cannot accurately model the system of interest. A

common example is folksonomy, where individuals annotate on-line resources, such as images

or research papers. Such problems appear to have a tri-partite structure in form of “user–

resource–annotation”, and is naturally represented as a 3-uniform hypergraph (Ghoshal et al.,

2009), where each edge connects exactly three vertices. The necessity of uniform hypergraphs

has also been observed in data analysis (Gibson et al., 2000; Agarwal et al., 2005), in particular

when one deals with problems involving complex similarity measures defined over multiple data

instances. Moreover, certain networks encountered in databases (Boley, 1977), VLSI circuit de-

sign (Karypis and Kumar, 2000), bioinformatics (Michoel and Nachtergaele, 2012) as well as

other domains involve group interactions, and can only be modeled as non-uniform hyper-

graphs. A classic example is a market transaction database, where each transaction naturally

corresponds to a connection among the involved commodities (Guha et al., 2000).

Generalization of graph problems to the case of hypergraphs is not a new area of research. In

fact, study of hypergraphs can be dated back to the early 20th century; the notions of Property

B (Bernstein, 1908) and matroids (Whitney, 1935), as well as the result of Sperner (Sperner,

1928), which were originally stated in terms of set systems, can be equivalently presented in

the language of hypergraphs. However, Berge (1984) dates the beginning of extensive studies

on hypergraphs to the 1960s, which saw a number of remarkable results that could generalize,

and at the same time simplify, results of graph theory. In the words of Berge (1984):
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“It was noticed that this generalisation often led to simplification; moreover, one

single statement, sometimes remarkably simple, could unify several theorems on

graphs.”

However, the results studied in that era mostly had a mathematical flavor, and could hardly

establish the real necessity of hypergraph modeling. The first instance of the use of hyper-

graphs in engineering appeared in the works of Boley (1977) and Schweikert and Kernighan

(1979), where it was observed that hypergraphs are more appropriate than graphs for modeling

databases and electrical logic circuits, respectively. The latter work has been seriously pursued

in the VLSI community and has resulted in hMETIS (Karypis and Kumar, 2000), which is

the most popular hypergraph partitioning algorithm as well as the most common large scale

circuit partitioning tool till date. In the spirit of Berge’s statement, one may say that the use

of hypergraphs simplifies the problem description, and hence, leads to development of natural

and accurate solution strategies.

When one discusses about hypergraph partitioning, which is in fact the subject of this thesis,

one can observe that there is a rapid increase in the study of this problem in various research

communities. Earlier, one would have invariably associated the hypergraph partitioning prob-

lem to circuit design (Schweikert and Kernighan, 1979; Karypis and Kumar, 2000). But since

the “turn of the century”, this problem has certainly gained significance in terms of practi-

cal applicability. The versatility of hypergraph modeling has made hypergraph partitioning a

natural solution to several applications in parallel computing (Catalyurek and Aykanat, 1999),

database systems (Gibson et al., 2000), computer vision (Agarwal et al., 2005), machine learn-

ing (Zhou et al., 2007) and biology (Michoel and Nachtergaele, 2012). Related problems such

as hypergraph coloring have also found use in computer architecture (Capitanio et al., 1995)

and communication systems (Wu et al., 2015).

A special class of hypergraphs, called m-uniform hypergraphs, has also gained significance

in both theory and practice, and particularly in the context of partitioning. Such hypergraphs

have edges of a fixed cardinality (say, m), and can be seen as an immediate generalization

of graphs, which are essentially 2-uniform hypergraphs. The breadth of graph partitioning

methods has expanded to such an extent that one often poses standard data clustering problem

in terms of partitioning a similarity graph, whose vertices correspond to data instances and

edges provide information about pairwise similarities among vertices. Uniform hypergraph

partitioning broadens the horizon for this data clustering strategy, and has been of particular

interest in computer vision, where the problem requires computation of multi-way similarities

among data points. For instance, in subspace clustering (Agarwal et al., 2005; Chen and

Lerman, 2009) and geometric grouping (Govindu, 2005; Arias-Castro et al., 2011), one often
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constructs a weighted uniform hypergraph, where the weight of each edge is computed from the

error of fitting a particular geometric model through a set of data points. Even from a theoretical

stand point, uniform hypergraphs have recently gathered more attention than their non-uniform

counterparts. The reason for this is the alternative characterization of uniform hypergraphs

in terms of its adjacency tensor. Note that unlike graphs, which can be neatly represented in

terms of adjacency matrices, general hypergraphs do not comply with a simple representation.

However, in the case of m-uniform hypergraphs, the adjacencies can be expressed by means of

a symmetric tensor of order m. This allows one to use results from tensor theory (Qi, 2005) to

comment on the algebraic connectivity (Hu and Qi, 2012) and chromatic number (Cooper and

Dutle, 2012) of uniform hypergraphs.

It is needless to mention that the computational hardness of the partitioning problem does

not get any easier when one shifts the focus from graphs to hypergraphs (Khot, 2002; Khot

and Saket, 2014). Hence, heuristics approaches are “the order of the day”. The hypergraph

partitioning heuristics studied in the literature exhibit great diversity, perhaps even more than

the variety in graph partitioning techniques. The methods range from combinatorial move

based (Schweikert and Kernighan, 1979) or multi-level approaches (Karypis and Kumar, 2000)

to hypergraph reduction techniques (Hadley, 1995; Chen and Frieze, 1996) and spectral algo-

rithms (Rodŕıguez, 2002; Zhou et al., 2007), and even extend to tensor decomposition (Govindu,

2005) and other optimization methods (Rota Bulo and Pelillo, 2013).

Graph and hypergraph partitioning algorithms have been successfully used to solve several

practical problems, and comparative studies among various approaches are scattered around

the literature. But, a clear picture can only be achieved if these experimental findings also

follow from a theoretical comparison of the algorithms. This poses a crucial question:

Question 1. What is an appropriate theoretical unit for measuring ‘goodness’ of a

network partitioning algorithm?

To this end, one may note that partitioning essentially refers to a clustering of the vertices of

the network, and so, a theoretical framework for analyzing clustering algorithms also suits the

purpose. However, unlike supervised learning problems such as classification or regression, a

clustering problem or even other unsupervised tasks do not naturally involve concepts like true

labels or empirical risk (Vapnik, 1998). This makes it quite tricky to formalize a theoretical

study of unsupervised learning algorithms.

A natural approach arises from the observation that clustering algorithms typically optimize

a certain objective. While methods like k-means algorithm (Lloyd, 1982; Ostrovsky et al.,

2012) aim for a distance minimization objective, likelihood based approaches, like expectation
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maximization (Dempster et al., 1977), provide solutions that are local maxima for the likelihood

function. Similar objectives exist even in the case of graph partitioning. For instance, graph

theorists often pose a partitioning problem as that of finding a balanced min cut of graph.

Alternate, and more popular, objectives include minimization of s-t cut, ratio cut or normalized

cut (von Luxburg, 2007), or maximization of normalized associativity (Shi and Malik, 2000)

among others. In this context, one may ask whether an algorithm indeed achieves the global

optimum of the objective. To this end, classical results in spectral graph theory and in particular

isoperimetric inequalities show that methods based on spectral properties of the graph Laplacian

can provide reasonably good solutions (Chung, 1997). Similar observations have been extended

to hypergraphs as well (Friedman and Wigderson, 1995; Bolla, 1993; Zhou et al., 2007). Recent

works show that better solutions can be achieved using alternate optimization techniques that

solve tighter relaxation of the cut problems (Bühler and Hein, 2009; Rangapuram et al., 2014).

Though the above results provide some insights into the appropriateness of certain parti-

tioning algorithms, they are unable to provide any quantitative information about the accuracy

of different methods. A partial answer to this problem can be found in (Ng et al., 2002; Kannan

et al., 2004; Peng et al., 2015), where it is shown that under certain conditions, one can pro-

vide quantitative guarantees on the ‘goodness’1 of the solution obtained from certain spectral

algorithms. It is not too far-fetched to think that this quantitative theoretical guarantees have

been the important factor that has led to the immense popularity of the algorithm proposed

by Ng et al. (2002), which is presently well known as normalized spectral clustering or simply

spectral clustering. While these works provide worst case guarantees on graph partitioning,

the analysis need not hold in more general, and practical, situations. For instance, the results

in (Ng et al., 2002) only when the input graph closely resembles an ‘ideal graph’ with k disjoint

cliques, which is an unlikely situation in practice. Moreover, unlike a learning theory setting,

this result does not consider a statistical framework, where the data (or rather, the graph in

the present context) is obtained from a generative model.

This is an appropriate stage to recall the notion of consistency often used in statistical

learning theory (Vapnik, 1998). Here, one assumes that the training samples are obtained

from a particular probability measure. An algorithm is said to be consistent if the expected

misclassification error for the algorithm converges in probability to the optimal (Bayes) error

as the number of training samples increases.

A major step towards a statistical study of graph partitioning was first considered in (von

1 To preserve the simplicity of the text, we avoid explicit definitions for this notion. At this stage, we only
mention that such goodness measures are algorithm specific, and more importantly, they are not related to any
standard notion of accuracy used in practice. Further details can be found in (Ng et al., 2002; Kannan et al.,
2004), but in the present work, we use the clustering error to measure performance of an algorithm.

5



Luxburg et al., 2008; Shi et al., 2009), where the authors extended the notion of consistency

to the case of spectral clustering and its variants. Limiting the study to the case of similarity

graphs constructed from data instances, von Luxburg et al. (2008) established that if the data

is randomly generated from a specified probability measure, then the solution obtained from

normalized spectral clustering eventually converges to the optimal clustering. These results are

quite general provided that one restricts the study to similarity graphs. Though this class of

graphs has widespread applications in data analysis, their use is limited in the context real world

networks. Furthermore, the above mentioned studies do not provide room for characterizing

the algorithmic performance in terms of the clustering error, and cannot shed any light on the

behavior of an approach in the finite sample case. The last observation is in contrast with the

classical notion of consistency that can be easily translated to provide high probability error

bounds for supervised learning algorithms.

It turns out that the gaps in the previous theoretical frameworks can be filled up by studying

the performance on partitioning algorithms on random graphs. Random graphs originated in

the works of Erdös and Rényi (1959) and Gilbert (1959), and was initially used to study

connectivity properties of graphs. Informally, a random graph on n vertices is constructed by

adding edges independently to edge set with a pre-defined probability1. Since its inception,

the study of random graphs, and even random uniform hypergraphs, has been an exciting

field of research for theoreticians from various backgrounds, including mathematics, physics

and computer science. It has been proved over and over again that a rigorous analysis of

random graphs and hypergraphs provides insights into interesting physical phenomena such

as percolation and phase transition, that arise in the context of networks (Erdös and Rényi,

1959; Aizenman and Barsky, 1987), satisfiability problems (Achlioptas and Coja-Oghlan, 2008;

Panagiotou and Coja-Oghlan, 2012) and numerous other situations.

Classical random graphs are not very useful if one is interested in ‘testing’ the goodness of

partitioning algorithms. The simple reason for this is that a random graph need not exhibit an

appropriate partition of the vertices. Hence, one needs to look for so-called non-classical random

graph models, where the edges are not identically distributed. The particular model that is

of considerable significance in the present context is the stochastic block model or the planted

partition model. This model was originally proposed by sociologists to model the presence of

communities in random networks (Holland et al., 1983). Later, McSherry (2001) used the same

model to study the asymptotic properties of a spectral partitioning algorithm. In the planted

model, one considers a random graph on n vertices with a well defined k-way partition. Let

1 This model is usually referred to as a binomial random graph since the vertex degrees follow binomial
distribution. There also exists alternatives construction, which we do not discuss here.
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ψ : {1, . . . , n} → {1, . . . , k} denote the true labeling function for the n vertices. The edges are

randomly added with probabilities depending on the class labels of the participating vertices.

Goodness of graph (or hypergraph) partitioning algorithm is measured through a formal version

of Question 1.

Question 2. Let ψ′ be the partition obtained from an algorithm, then what is the

number of disagreements between ψ and ψ′?

One typically asks for a high probability bound on the above error in terms of n. Such error

bounds have been established for a variety of partitioning algorithms including spectral algo-

rithms (McSherry, 2001; Rohe et al., 2011; Krzakala et al., 2013), modularity and likelihood

based methods (Bickel and Chen, 2009; Choi et al., 2012), convex optimization (Amini and

Levina, 2014; Chen et al., 2014), belief propagation (Mossel et al., 2013a) among others. Chen

et al. (2014) compare the theoretical guarantees for many of these approaches.

While spectral methods were among the first studied algorithms under the block model (Mc-

Sherry, 2001), the popular variant of spectral clustering was studied only in recent times (Rohe

et al., 2011; Lei and Rinaldo, 2015). It is now known that for a planted graph with Ω(lnn) min-

imum vertex degree, spectral clustering has an error rate that is sub-linear in n. This property

of achieving o(n) error is commonly referred to as the weak consistency of spectral clustering.

This is not the best known error rate as exact recovery of the partition is known to be possible

using other approaches (Amini and Levina, 2014). Recent results (Vu, 2014; Lei and Zhu, 2014)

show that an additional refinement process can improve the partitioning of spectral clustering

to exactly recover the partition, which leads to strongly consistent algorithms. One can easily

relate such definitions for consistency with the finite sample error bounds studied for supervised

learning algorithms.

What is this thesis about?

In contrast to the extensive studies on graph partitioning, very little is known about the guar-

antees of hypergraph partitioning algorithms, and only few attempts have been made in the

literature to study the problem in some special cases of uniform hypergraphs partitioning. The

first known attempt was made by Chen and Frieze (1996), who analyzed a spectral algorithm

for coloring 3-uniform hypergraphs. More recently, Chen and Lerman (2009) extended the

perturbation analysis of Ng et al. (2002) to analyze a tensor decomposition based subspace

clustering approach. Arias-Castro et al. (2011) considered a different line of study, and pre-

sented a probabilistic model for generating random data from a union of geometric structures.
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The analysis of their tensor based approach in a way generalizes the consistency result of von

Luxburg et al. (2008).

While the above results shed some light on the performance of spectral methods used in

multi-way similarity based clustering or hypergraph coloring, the general question of “goodness

of hypergraph partitioning algorithms” is still open. The main aim of this thesis is to fill this

gap by providing performance guarantees and consistency results for uniform and non-uniform

hypergraph partitioning algorithms. As discussed earlier, a natural way of treating this problem

is in terms of Question 2, where a random hypergraph is generated from a planted model. To

the best of our knowledge, the only attempt to address this question was done in the special case

of coloring 3-uniform hypergraphs (Chen and Frieze, 1996). We provide an answer in the full

generality of the planted hypergraph model, and also address practical aspects of hypergraph

partitioning.

1.1 Revisiting the essentials

We rewind to the beginning of this chapter, and clarify the essential components in simple

mathematical terms and with examples.

1.1.1 Network: Graph or hypergraph?

The term ‘network’ has various definitions based on the context – it may mean a communication

network, the social connections formed in a networking website, molecular interactions in a cell

or various other physical or conceptual phenomena. But, essentially any network can be thought

of as a collection V of entities, where subsets of entities are related or connected in some sense.

Let us denote the collection of all such connections by E. Note that each e ∈ E is a subset of V.

A simple, and popular, example is a friendship network. Here, the entities are people, and

a two-sided connection occurs whenever two people are friends on a social networking site, say

Facebook. In this case, every connection involves exactly two entities. Such a network can be

represented as a graph (V,E), where V is a set of vertices, and E is the set of edges, each edge

connecting one vertex to another.

On the other hand, consider the network of Google groups. Here, the entities are various

email accounts, and several accounts form a group. One may model this network in the above

way, where V is the collection of accounts, and each e ∈ E denotes a group. It would be hard

to imagine that every Google group consists of exactly two members, and hence, in practice,

such a network cannot be modeled as a graph. However, one can easily represent it as a
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hypergraph (V,E), where the edges e ∈ E need not be of size two. Such edges are often termed

as ‘hyperedges’. However, we prefer to ignore this distinction, and hence, we use the term ‘edge’

to refer to both edges in graphs and hypergraphs.

Finally, consider a situation where every group has exactly m members, for example m = 11

if each group is a football or cricket team. Then the corresponding hypergraph is said to be

m-uniform. Thus, the use of a graph or a hypergraph model depends on the network and

the application at hand. One can also think of further generalizations, where every group has

a number or weight associated, such as number of posts in a Google group. This network

is appropriately modeled by a weighted hypergraph (V,E, w), where every edge e ∈ E has an

associated weight w(e). Here, w : E→ R is some predefined scalar function.

1.1.2 From community detection to data clustering

Typically, a community denotes a subset of vertices in a network that have a high number

of edges amongst themselves. Community detection stands for the task of detecting multiple

communities in a network. However, one often uses this term to refer to the problem of dividing

a network into several communities, which is also known as network partitioning. Formally, the

task is to partition V into k disjoint sets, V1,V2, . . . ,Vk, to meet certain specifications.

Several applications of community detection have been mentioned early in this chapter. As

an example, consider the friendship network of Facebook that is obviously too large to be stored

on a single server. While dividing the load into multiple servers, one would prefer to minimize

server communications. Thus, it is advantageous to allocate each community to a single server.

Observe that if the objective involves distribution of comparable load among the servers, while

reducing server communication, then the problem is similar to a balanced cut problem.

One may argue that community detection is equivalent to clustering the vertices of a network

based on ‘edge information’. The scope of network partitioning expands greatly if one exploits

the above point of view, and constructs networks based on similarities of data instances. A

classic example is the ε-neighborhood graph, where every data point is seen as a vertex of

the graph, and is connected to other points within an ε distance from itself. Subsequently, a

partition of the similarity network provides a clustering of the given data. Hence, a spectral

partitioning method is often coined as spectral clustering.

More generally, given a collection of data points x1, . . . , xn and a symmetric pairwise

similarity measure f(·, ·), one can define a similarity graph with weighted edges such that

w({xi, xj}) = f(xi, xj). This idea also extends to m-uniform hypergraphs when f measures

similarity among m data points. For instance, consider the situation where x1, . . . , xn belong
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to a union of k intersecting lines (one-dimensional subspaces). In this case, pairwise similarities

are inappropriate and one needs to check collinearity of three or more points. This leads to a

m-uniform hypergraph with m ≥ 3, and edges correspond to collinearity of m points. More

general applications are discussed later in Chapter 2.

1.1.3 What is random in ‘random networks’?

Random graphs and hypergraphs are repeatedly mentioned throughout the thesis. So it is

necessary to segregate the deterministic and random components of these structures. Let (V,E)

denote a random graph or hypergraph with |V| = n. We will assume the set of vertices to be

deterministic, and will denote this set as V = {1, 2, . . . , n}. Often, one studies the behavior of

these networks in the asymptotic case as n → ∞. However, the analysis is typically carried

out after fixing n. Furthermore, in a planted partition model, we assume that every vertex in

V has a deterministic class label.

The randomness of these networks is associated with the presence of edges, i.e, for any

subset e ⊂ V, there is a probability associated with the event {e ∈ E}. Hence, the collection E

is random. We also consider random weighted hypergraphs (V,E, w). Here, we assume that E is

the collection of all subsets of V, and for every e ∈ E, w(e) is a random variable. One may note

that, in a weighted hypergraph, the absence of an edge e is equivalent to setting w(e) = 0. As

is standard with random graphs, the model considered in the thesis assumes the events {e ∈ E}
to be mutually independent for all e ⊂ V. Similarly, the random variables {w(e) : e ∈ E} are

assumed to be mutually independent.

The Erdös-Rényi model is particular example of random networks, where all edges (or edge

weights) are independent and identically distributed. We consider models for random networks

in which all the edges do not follow the same law.

1.1.4 The spectral connection

It is quite surprising to see that spectral theory often provides answers about several combina-

torial problems related to graphs and hypergraphs. The primary spectral connection of graph

(V,E) is through its adjacency matrix A ∈ {0, 1}|V|×|V|, where Aij = 1 if and only if {i, j} ∈ E.

The definition also extends to weighted graphs (V,E, w), where one defines a weighted adjacency

matrix, or affinity matrix, A ∈ R|V|×|V| with Aij = w({i, j}). It turns out that the eigenval-

ues and eigenvectors of A, or related matrices, provide insights into several properties of the

corresponding graph, such as connectivity, colorability etc. (Spielman, 2011; Chung, 1997).
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The spectral theory of graphs has also been extended to m-uniform hypergraphs, where the

adjacencies (or edge weights) can be represented by a m-way tensor A ∈ R|V|×|V|×...×|V|. For

a set e = {i1, . . . , im} ⊂ V in an unweighted m-uniform hypergraph, Ai1...im = 1 if e ∈ E,

and 0 otherwise. On the other hand Ai1...im = w(e) in weighted m-uniform hypergraphs. This

representation enables one to comment on several uniform hypergraph problems by studying

the spectral properties of the adjacency tensor (Qi, 2005).

We later discuss how graph or hypergraph partitioning can be relaxed into a spectral prob-

lem, and present algorithms that provides a good partition by simply exploiting spectral de-

compositions of adjacency matrices and tensors, as well as related quantities.

1.2 Summary of contributions

The main purpose of this thesis is a statistical treatment of spectral algorithms used for hy-

pergraph partitioning. This is achieved in the form of a two-fold contribution: proposing a

model for random planted hypergraphs, and analysis of spectral algorithms under this model.

We provide some extended results related to consistency of partitioning sampled hypergraphs,

and also for the hypergraph coloring problem.

1.2.1 Planted partition model

We present a model for random hypergraphs that naturally extends the stochastic block model.

The requirements for such a model are: (i) the presence of a planted partition of the vertices, and

(ii) independent edges with label dependent probabilities. The challenge lies in formulating a

model that is appropriate for analysis of partitioning algorithms, and at the same time, conforms

with characteristics of real-world hypergraphs.

Extensions of random graph models (Erdös and Rényi, 1959) to uniform hypergraphs have

been often considered in theoretical computer science (Achlioptas and Coja-Oghlan, 2008; Feld-

man et al., 2015). In a version of this model, a m-uniform hypergraph is generated by indepen-

dently adding m-sized subsets of vertices to the edge set with a fixed probability. The proposed

planted model generalizes the above construction by allowing label dependent probabilities for

edges. The novelty of our model lies in viewing the uniform hypergraph in terms of its adjacency

tensor, which in turn leads to a simple, yet general, specification of the model parameters. The

model also allows the possibility of sparse hypergraphs, or the presence of weighted edges.

Non-uniform hypergraph generalizations of the Erdös-Rényi model have received less at-

tention in the literature (Schmidt-Pruzan and Shamir, 1985; Darling and Norris, 2005; Stasi
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et al., 2014). The key observation here is that one can consider a non-uniform hypergraph

as a collection of m-uniform hypergraphs for varying m. Based on this, we present a planted

hypergraph model that constructs a non-uniform hypergraph by independently generating a

sequence of uniform hypergraphs, each with a different size of edges.

1.2.2 Consistency of spectral methods

We complement the proposed model with an immediate application in the study of spectral

partitioning algorithms, and in particular provide an answer to Question 2.

We analyze the approach studied by Govindu (2005), which elegantly extends spectral clus-

tering to uniform hypergraphs by means of tensor decompositions. We observe that under

certain conditions, the algorithm is weakly consistent. Moreover, in particular cases, the algo-

rithm also exhibits strong consistency. In a search for algorithms with smaller error rates than

the above method, we formulate the hypergraph partitioning problem from the “first principles”

defined in the graph case. We observe that in the case of uniform hypergraphs, the problem

of finding a partition that maximizes normalized associativity is equivalent to a tensor trace

maximization problem. Surprisingly, this formulation generalizes a wide class of techniques

used in the machine learning, often termed as higher order learning algorithms. We show that

a spectral relaxation of the tensor trace maximization problem results in a weakly consistent

algorithm that has improved theoretical, as well as empirical, performance as compared to the

algorithm in (Govindu, 2005).

We next focus on non-uniform hypergraphs, and consider a popular spectral algorithm that

solves the normalized cut minimization problem for hypergraphs (Zhou et al., 2007). Analysis

of this method under a planted non-uniform hypergraph model proves its consistency properties

under certain sufficient conditions. At this stage, we also scrutinize some necessary conditions

for identifiability of the partition by a spectral algorithm, and observe that the algorithm

of Zhou et al. (2007) is capable of identifying the partition in reasonable circumstances. We

also briefly discuss an extension of the tensor trace maximization approach that solves the

normalized associativity maximization problem for non-uniform hypergraphs. The theoretical

properties of this approach can be argued to be similar to the previous method. The study of

both these techniques nearly accounts for all hypergraph reduction techniques via clique or star

expansions (Agarwal et al., 2006).

Our analysis of the spectral methods rely on few important tricks: (i) a suitable character-

ization of the adjacencies in a random hypergraph, and the associated matrices and tensors;

(ii) the use of matrix concentration inequalities (Tropp, 2012) that were previously used for
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studying spectral properties of sparse random graphs; (iii) matrix perturbation analysis (Davis

and Kahan, 1970; Stewart and Sun, 1990); and (iv) a rigorous study of the the distance based

clustering involved in a spectral partitioning algorithm. We spend few more words on this com-

ponent. Typically, spectral partitioning algorithms involve a post-processing stage of distance

based clustering. Though the k-means algorithm (Lloyd, 1982) or its approximate variants (Ku-

mar et al., 2004; Ostrovsky et al., 2012) are the popular choice in practice, such algorithms are

not always guaranteed to provide good clustering. Gao et al. (2015) discusses the implication of

this drawback on the consistency results for spectral clustering under the block model (Lei and

Rinaldo, 2015). On the other hand, we establish that under certain conditions, the approximate

k-means algorithm of Ostrovsky et al. (2012) provides a good clustering with high probability,

thereby addressing a long standing question in the block model literature.

1.2.3 Edge sampling in planted hypergraphs

The time complexity of graph or hypergraph partitioning is typically linear in the number

of edges. This limits the practical use of hypergraph partitioning algorithms, particularly

when the constructed hypergraph has a large number of weighted edges, a situation commonly

encountered in computer vision problems. Hence, one often studies efficient methods that

compute weights for only a small number of edges (Chen and Lerman, 2009; Duchenne et al.,

2011). To this end, the following question has considerable significance.

Question 3. Consider a weighted hypergraph (V,E, w). What is the smallest N

such that consistent partitioning of the hypergraph can be achieved by using the

weights of only N � |E| sampled edges?

We answer the above question by studying the statistical behavior of a sampled variant of the

tensor trace maximization approach. We show that if an appropriate sampling strategy is used,

then computing the weights of few sampled edges suffices to achieve a consistent partitioning.

In particular, frequent sampling edges with larger weights is observed to be provably better

than uniform edge sampling. We further propose a sampled algorithm that achieves state of

the art performance in benchmark subspace clustering problems.

1.2.4 Spectral hypergraph coloring

The final contribution in this thesis is a spectral algorithm for 2-coloring the vertices of a non-

uniform hypergraph. This problem is computationally hard, and no polynomial time algorithm

is known till date that can color a bipartite non-uniform hypergraph with a constant number of
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colors. We present a spectral coloring algorithm and show that if a random bipartite hypergraph

is generated from a planted partition model, then our algorithm succeeds, with high probability,

in properly coloring the hypergraph with exactly two colors. The significance of this study in

the context of the thesis is due to the following fact. While the other algorithms studied here

are weakly consistent in general, our coloring algorithm incorporates an additional refinement

procedure that helps to achieve strong consistency.

1.3 Organization of the thesis

We briefly summarize the results that are presented in the subsequent chapters of this thesis.

Chapter 2. Here, we discuss in detail some of the background materials that are essential for

subsequent technical developments of the thesis.

Chapter 3. This is the first contributing chapter of the thesis. We begin with a brief description

of higher order singular value decomposition (HOSVD) of tensors that forms the basis of the

uniform hypergraph partitioning algorithm proposed by Govindu (2005). We also list this

algorithm, which we refer to as HOSVD.

We discuss a perturbation type analysis for the algorithm, and comments on the drawbacks.

Subsequently, we present the planted partition model for uniform hypergraphs, and derive a

consistency result for the HOSVD algorithm.

Chapter 4. We continue our quest for uniform hypergraph partitioning algorithm. We ap-

proach the partitioning problem from a graph theoretic aspect. To be precise, we propose to

partition a hypergraph such that the normalized associativity of the partition is maximized.

This objective lies at the heart of spectral clustering.

It is observed that in case of a uniform hypergraph, the normalized associativity maxi-

mization problem can be reformulated as a tensor trace maximization (TTM) problem. The

interesting features of TTM include its connection with tensor eigenvalue problem, and tensor

diagonalization problem. But more interestingly, we show that a wide variety of higher order

learning algorithms solves different relaxations of TTM.

We present an algorithm, which we call as TTM, that solves a spectral relaxation of the above

problem. Consistency of this algorithm is proved under the planted uniform hypergraph model,

and as a consequence, it follows that TTM has better theoretical properties than HOSVD.

Numerical comparison of different hypergraph partitioning algorithms are also provided.

Chapter 5. In this chapter, we consider the problem of non-uniform hypergraph partition-

ing. We begin by extending the random model to the case of non-uniform hypergraphs. We
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present two partitioning algorithms: (i) a spectral method based on normalized hypergraph

cut minimization (Zhou et al., 2007), and (ii) extension of the TTM algorithm to non-uniform

hypergraphs that solves a the normalized associativity maximization problem. We refer to these

two techniques as NH-Cut and NH-Assoc, respectively.

Consistency of NH-Cut is proved under the planted partition model, and arguments are

given to show that NH-Assoc has similar consistency properties. As corollaries, we also study

the performance of NH-Cut in special cases of the planted partition model, and in particular,

compare our results with the existing results in the case of graphs.

Chapter 6. Here, we focus on efficient hypergraph partitioning, and provide a rigorous answer

to Question 3 in the case of the TTM algorithm. Consistency of TTM is studied when one has

access to few sampled edges of the hypergraph. Based on our result, we justify the success of

sampling techniques that are popular in practice.

We also propose a sampled variant TTM, which we refer to as tensor trace maximization

with iterative sampling or simply Tetris. The empirical efficacy of Tetris is demonstrated in

subspace clustering problems, and benchmark motion segmentation data sets.

Chapter 7. This chapter deals with the hypergraph coloring problem. We present a special

case of the planted hypergraph model that generates a 2-colorable non-uniform hypergraph

with equal color classes. A spectral coloring algorithm, called COLOR, is proposed, and it is

shown that under the planted model, this algorithm succeeds with high probability in coloring

a random hypergraph with only two colors.

Chapter 8. We include the numerical studies in this chapter. The purpose of our experiments

include both validation of the theoretical findings of this thesis, and demonstration of the

empirical performance of spectral partitioning algorithm in benchmark problems.

Chapter 9. This is the concluding chapter, where we discuss our final thoughts on the re-

sults presented in the thesis. We also provide an elaborate account of possible future research

directions related to hypergraph partitioning under a planted partition model.
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But just in case some of you may be tempted to skip

this particular section and go on to juicier things, let

me assure you that there will be juice in plenty

dripping from these pages. I wouldn’t have it otherwise.

Roald Dahl, My Uncle Oswald

Chapter 2

Preliminaries and Background

In this chapter, we briefly review some topics that need explanation before plunging into the

technical details and results in the thesis. Section 2.1 gives an overview of spectral theory that

has evolved from matrices to tensors. Sections 2.2 and 2.3 provides a quick recap of the graph

partitioning problem, including spectral approach, and the stochastic block model for analyzing

graph partitioning methods, respectively. We present a review of the hypergraph partitioning

literature in Section 2.4, and conclude this chapter with a list of standard results in Section 2.5

that are used in the subsequent chapters. One may refer to the front matter for the list of

notations and abbreviations used in this thesis.

2.1 Spectral theory: From matrices to tensors

Before beginning our journey on network partitioning, we present an overview of spectral theory

of both matrices and tensors. This discussion is crucial since the partitioning algorithms that

are studied in this thesis have a spectral flavor.

2.1.1 Spectral decomposition of matrices

Spectral theory, or more precisely matrix spectral theory, has often transcended the boundaries

of linear algebra, and has played important roles in various branches of science and engineering.

The core relation in matrix spectral theory is the following. Let A ∈ Rn×n be a matrix, and let

λ ∈ R and u ∈ Rn satisfy

Au = λu. (2.1)
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Then λ is called an eigenvalue of A, and u is an eigenvector of A corresponding to λ. A

consequence of this relation is more useful in our context, which states that if the matrix A is

symmetric then

A =
n∑
i=1

λiuiu
T
i = UΛUT , (2.2)

where (λi, ui) are eigen pairs of A with u1, . . . , un being an orthonormal set of eigenvectors. In

matrix notation, this can be written as A = UΛUT , where Λ is a diagonal matrix of eigenvalues,

and U is the orthonormal eigenvector matrix. A similar decomposition exists for asymmetric

matrices as well. If A ∈ Rn×` with n ≤ `, then one can express A as

A =
n∑
i=1

σiuiv
T
i = UΣV T , (2.3)

where σ1, . . . , σn ∈ [0,∞) are called singular values of A, and correspond to the entries of the

principal diagonal of Σ ∈ Rn×`. The matrices U ∈ Rn×n and V ∈ R`×` are orthonormal with

columns u1, . . . , un and v1, . . . , v`, respectively. These are called the left and right singular

vectors of A.

One may refer to (Horn and Johnson, 2013) for further material on this topic. We take

a different course and discuss how the above results can be generalized from two-dimensional

arrays (matrices) to m-dimensional arrays for m > 2 (tensors). We conclude this discussion by

introducing a terminology that will be followed throughout this thesis.

Definition 2.1. Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

For k ≤ n, we say λ1, . . . , λk are the k dominant eigenvalues of A. The corresponding vectors

u1, . . . , uk in (2.2) are called the k dominant orthonormal eigenvectors.

If A is positive semi-definite, i.e, λn ≥ 0, then the eigenvalues λn−k+1, . . . , λn are called the

k leading eigenvalues of A, and un−k+1, . . . , un are the k leading orthonormal eigenvectors.

In the asymmetric case (2.3), the notion of k dominant singular vectors will be used to refer

to the columns of U and V that correspond to the k largest singular values of the matrix.

2.1.2 Tensors and basic operations

Let A ∈ Rn×n×...×n be a tensor of order m. Note that it suffices our purpose to discuss only

about tensors whose size is same along each dimension. In addition, we will often assume the

tensor to be symmetric.

17



Definition 2.2. A tensor A ∈ Rn×n×...×n of order m is said to be symmetric1 if for any

i1, . . . , im ∈ {1, . . . , n} and a permutation map σ on {1, . . . ,m},

Ai1...im = Aiσ(1)...iσ(m)
.

Before elaborating on tensor decompositions, it will be useful to describe few tensor notations

and operations. Similar to the notion of trace of a matrix, a tensor trace denotes the sum of

the diagonal entries, i.e, Trace(A) =
n∑
i=1

Aii...i. A matrix representation of tensor often comes

in handy. One such representation involves defining a matrix Ã ∈ Rn×nm−1
such that

Ãij = Aii2...im when j = 1 +
m∑
`=2

(i` − 1)n`−2. (2.4)

Here, Ã is known as the flattened matrix, or more technically mode-1 flattened matrix, of A.

See illustration in Figure 2.1.

Figure 2.1: A 5× 5× 5 tensor (left), and the corresponding 5× 25 flattened matrix (right).

A special class of tensor, called a rank-one tensor, often arises in the context of decomposi-

tions.

Definition 2.3. A tensor A ∈ Rn×n×...×n of order m is said to be of rank one if there exist m

vectors u(1), . . . , u(m) ∈ Rn

Ai1i2...im = u
(1)
i1
u

(2)
i2
. . . u

(m)
im

for all i1, . . . , im ∈ {1, . . . , n}. We denote such a tensor as A = u(1) ⊗ u(2) ⊗ . . . u(m).

Observe that Definition 2.3 naturally generalizes the notion of rank-one matrices to tensors,

which useful in extending the decomposition in (2.3). An useful operation on a tensor is its

1In some works, this property is termed as super-symmetry of a tensor.
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mode-k multiplication with a matrix, defined as follows.

Definition 2.4. Let A ∈ Rn×n×...×n and U ∈ Rr×n. The mode-k product of A and U is a

mth-order tensor, denoted by A×k U , whose size is n along all dimensions except the kth one,

for which the the dimension is r. The entries of A×k U are given by

(A×k U)i1...ik−1jik+1...im =
n∑

ik=1

Ai1...ik−1ikik+1...imUjik .

for i1, . . . , ik−1, ik+1, . . . , im ∈ {1, . . . , n} and j ∈ {1, . . . , r}.

We will be mostly interested in repeated multiplications along all dimensions. For instance,

if A ∈ Rn×n×...×n is mode-k multiplied by U (k) ∈ Rr×n for every k = 1, . . . ,m, then the resultant

mth-order tensor A×1 U
(1) ×2 U

(2) . . .×m U (m) ∈ Rr×r×...×r, and has entries

(A×1 U
(1) ×2 U

(2) . . .×m U (m))j1...jm =
n∑

i1,...,im=1

Ai1...imU
(1)
j1i1
U

(2)
j2i2

. . . U
(m)
jmim

(2.5)

for j1, . . . , jm = 1, . . . , r. An interesting special case arises for r = 1, i.e, when a tensor is

multiplied by m row vectors and the product is a scalar. Here, one can view a tensor A as a

m-linear functional such that for any m vectors u1, . . . , um ∈ Rn, we have

(u1, . . . , um) 7→ A×1 u
T
1 ×2 u

T
2 . . .×m uTm . (2.6)

One may recall the case for m = 2, a matrix A can be thought of a bilinear functional such

that (u, v) 7→ uTAv. This functional is significant in several problems, including Rayleigh’s

principle that provides an useful characterization of the eigen pairs of A. In the next section,

we mention a generalization of this characterization to the case of tensors.

2.1.3 Tensors decompositions and spectral theory

This thesis does not involve all components of the spectral theory of tensors. Still we provide

a brief overview of different aspects. A major impact of tensors in the machine learning com-

munity is due to the generalizations of the spectral decompositions (2.2) and (2.3) to the case

of tensors. Quite interestingly, the two equivalent representations in (2.3) do not lead to the

same generalization in the case of tensors of order 3 or more.

The representation in (2.2) states that a symmetric matrix A ∈ Rn×n can be expressed

as a sum of n rank-one matrices. The CP decomposition extends this result to the case of
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tensors, and attempts to represent any tensor A of order m as sum of rank-one tensors of

same order and dimension. CP stands for CANDECOMP/PARAFAC, which in turn denote

canonical decomposition (Carroll and Chang, 1970) or parallel factorization (Hitchcock, 1927)

of a tensor, respectively. These two decompositions were independently proposed, but result in

the same representation. Formally, the CP decomposition is defined as follows.

Definition 2.5. Let A ∈ Rn×...×n be a tensor of order m. If there exists vectors u
(j)
i ∈ Rn for

each i = 1, . . . , r and j = 1, . . . ,m such that

A =
r∑
i=1

u
(1)
i ⊗ u

(2)
i ⊗ . . . u

(m)
i ,

then the above representation is said to be a CP decomposition of A. The minimal r ∈ N for

which such a representation exists is called the rank of A.

This decomposition, illustrated in Figure 2.2 (top row), finds use in several problems in

machine learning (Anandkumar et al., 2014) as well as in other disciplines (Kolda and Bader,

2009), and has received considerable attention in recent years (Anandkumar et al., 2014; Jain

and Oh, 2014). However, a major drawback of the CP decomposition of tensors is that, unlike

the case of matrices, this decomposition need not exist for tensors of order 3 or more. This

limits the use of such a representation in a theoretical framework.

Alternatively, one could extend the second representation in (2.3), which essentially ex-

presses A in terms of a core diagonal matrix, Σ, multiplied by orthonormal matrices along its

two dimensions: U is multiplied along rows of Σ (left multiplication), while V is multiplied along

the columns (right multiplication). An extension of this to the case of tensors is given by the

Tucker decomposition (Tucker, 1966), or rather its more formal variant known as higher order

singular value decomposition (HOSVD) (De Lathauwer et al., 2000). Unlike CP decomposition,

this representation exists for all tensors and can be easily computed from eigendecompositions

of certain matrices. A formal description of this decomposition is given below.

Definition 2.6. One can express any tensor A ∈ Rn×...×n of order m as

A = Σ×1 U1 ×2 U2 ×3 . . .×m Um ,

where U1, . . . , Um ∈ Rn×n are orthonormal matrices. The mth order tensor Σ ∈ Rn×...×n is the

core tensor that satisfies a certain property of all-orthogonality1.

1 We do not elaborate on the all-orthogonality property since it is complicated, and has no direct bearing
on the discussions in this thesis.
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Furthermore, if A is symmetric, then U1 = . . . = Um, and this matrix can be computed as

the matrix of the orthonormal left singular vectors of Ã defined in (2.4).

Figure 2.2: (top) CP-decomposition of a rank-r 3rd-order tensor A, and (bottom) higher order

singular value decomposition of A. Observe that u
(i)
1 , . . . , u

(i)
r correspond to columns of Ui only

when Σ is diagonal.

Unlike matrix theory, the research on tensor decompositions and the tensor eigenvalue prob-

lem have always been quite independent of one another. We briefly mention two variants of

the eigenvalue value problem, one of which has a connection to the tensor trace maximization

problem presented in Chapter 4.

Consider (2.6), where we relate a tensor to a m-linear functional. One can study the problem

maximizing the functional over all possible argument vectors. For instance, consider the matrix

case, i.e, m = 2. Let A be a symmetric matrix, then the optimization problem is stated as

maximize
u:‖u‖2=1

uTAu . (2.7)

It is well known that the solution to this problem is the largest eigenvalue of A, which is

achieved when u is the dominant eigenvector. By imposing additional constraints on u leads

to the famous Rayleigh’s principle, which states that other eigen pairs are obtained as solution

depending on the constraint space of the optimization problem. The moral here is that the

eigenvectors of A are the stationary points for the problem (2.7). This forms the basis for the

tensor eigenvectors defined by Lim (2005), which we state only for symmetric tensors. For a
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symmetric tensor A, one considers the following optimization

maximize
u:‖u‖p=1

A×1 u
T ×2 . . .×m uT , (2.8)

and the stationary points for the problem are said to be the `p-eigenvectors of A, and the

corresponding values for the objective function are the `p-eigenvalues of A. Similarly, the

`2-eigenvectors obtained from (2.8) satisfy the relation

A×2 u
T ×3 . . .×m uT = λu , (2.9)

where A acts as as a multilinear transformation, which is linear in all its (m−1) arguments. The

above relation suggests that an `2-eigenvector, also called the Z-eigenvector, is simply scaled by

the corresponding Z-eigenvalue under this transformation. This is known as the Z-eigenvalue

problem. A similar study in the `m case has also been studied, which is popular termed as the

H-eigenvalue problem (Qi, 2005).

2.2 Graph partitioning and spectral clustering

The graph partitioning problem has been formalized in several ways, which makes it quite dif-

ficult to review all possible approaches towards this problem. We briefly discuss a particular

line of study along which several formal definitions of the problem have been proposed. This

particular direction based on cut or associativity of partitions has mostly been popular in the

machine learning community (von Luxburg, 2007), and is also related to graph edge expansion

studied in theoretical computer science (Spielman, 2011). Alternative formal ways of graph

partitioning have also been considered, which include max flow problem that plays role in opti-

mization theory (Arora et al., 2004), network modularity studied in statistical physics (Girvan

and Newman, 2002) among others.

2.2.1 Formal definitions of balanced graph partitioning

Given a graph (V,E), one of the principle approaches of k-way graph partitioning is to remove

some edges from E such that the residual graph has k disconnected components. The objective

is to minimize the total number of removed edges. This is usually formalized by means of a

cut. For any set of vertices V1 ⊂ V, the boundary of V1 is defined as

∂V1 =
{
{i, j} ∈ E : i ∈ V1, j /∈ V1

}
, (2.10)
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and the cut of V1 is simply given as Cut(V1) = |∂V1|, i.e, the number of edges that need to be

removed to partition the vertices of the graph into V1 and its complement, Vc1. In the case of

a weighted graph (V,E, w), one extends the definition of cut as Cut(V1) =
∑

e∈∂V1
w(e).

A collection of sets V1, . . . ,Vk is said to be a partition of V if V` ∩ Vr for all ` 6= r, and

V =
k⋃
`=1

V`. We will often refer to these subsets as clusters of vertices. The optimization problem

associated with the above k-way graph partitioning problem is to find a partition V1, . . . ,Vk of

V that solves

minimize
V1,...,Vk

1

2

k∑
i=1

Cut(Vi) , (2.11)

where the above objective is equal to the total number of edges removed. Observe that (2.11)

has a trivial solution, where one may assign all vertices to one of the clusters while the others

can be empty. Thus, this formulation, which is also called the min-cut problem, does not

provide useful partitions.

Several applications of graph partitioning, including VLSI design, often require the sets

to be of comparable sizes. This leads to the balanced graph partitioning problem, where one

imposes the constraint of |V`| ≤ (1+ε)
k
|V| for all ` = 1, . . . , k. This ensures that the cluster sizes

differ by at most εV vertices. Such an explicit constraint is not essential in typical machine

learning applications, and hence, one introduces implicit constraints by defining the following

objectives for the minimization problem (von Luxburg, 2007):

R-Cut(V1, . . . ,Vk) =
1

2

k∑
`=1

Cut(V`)

|V`|
, (2.12)

which is known as the ratio cut of a partition, or

N-Cut(V1, . . . ,Vk) =
1

2

k∑
`=1

Cut(V`)

Vol(V`)
, (2.13)

called the normalized cut of a partition. Here, the volume of a set of vertices quantifies the

total connectivity of the set. It is defined as the sum of the degrees of the vertices in the set,

i.e, Vol(V`) =
∑

i∈V` deg(i), where deg(i) is the total number (or weight) of edges connected to

vertex i.

The quantities in (2.12) and (2.13) are closely related to the notions of edge expansion and

conductance of a graph, which are often studied in theoretical computer science (Chung, 1997;
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Arora et al., 2004; Peng et al., 2015), where one replaces the summation of the ratios by their

maximum.

A problem that is equivalent to (2.13) was suggested by Shi and Malik (2000), and forms the

theoretical basis for the spectral clustering algorithm of (Ng et al., 2002). Here, one reformulates

the cut minimization as a maximization problem. For any set V1 ⊂ V, define its associativity

as Assoc(V1) =
∣∣{{i, j} ∈ E : i, j,∈ V1

}∣∣ for an unweighted graph, or Assoc(V1) =
∑

e∈E:e⊂V1

w(e)

in the case of a weighted graph. Note that the associativity of a set is inversely related to its

cut since
Assoc(V1)

Vol(V1)
+

1

2

Cut(V1)

Vol(V1)
=

1

2
.

In view of the above relation, one may restate the problem of minimizing (2.13) as

maximize
V1,...,Vk

N-Assoc(V1, . . . ,Vk) =
k∑
`=1

Assoc(V`)

Vol(V`)
. (2.14)

The optimization problems presented in (2.12)–(2.14) are known to be NP-Hard. Hence,

it is common to solves relaxations of these problems. In the next section, we focus on a

spectral relaxation that leads to spectral partitioning algorithms. In this respect, we may also

introduce a related quantity that is not explicitly defined in the literature. We call this the

ratio associativity of a partition, defined as

R-Assoc(V1, . . . ,Vk) =
k∑
`=1

Assoc(V`)

|V`|
. (2.15)

However, spectral relaxation of maximizing ratio associativity leads to a variant of spectral

clustering that is often considered in the statistics community (Lei and Rinaldo, 2015).

2.2.2 Spectral relaxation of cut minimization and related problems

As pointed out in Chapter 1, the spectral connection of graph theory arises due to the rep-

resentation of a graph in terms of its adjacency matrix, A. For a graph (V,E) with |V| = n,

the matrix A ∈ Rn×n is binary with Aij = 1 if and only if {i, j} ∈ E. For weighted graph

(V,E, w), we define Aij = w({i, j}). It turns out that spectral properties of A, or related ma-

trices, provide insights into several properties of the corresponding graph, such as connectivity,

colorability etc. (Spielman, 2011). In the context of graph partitioning, it is well known that

spectral properties of a graph are closely related to the notions of normalized cut and graph
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conductance through the discrete Cheeger inequality (Chung, 1997; Lee et al., 2012). More

precisely, the optimal value of the objective function in (2.13) can be bounded in terms of the

eigenvalues of the normalized graph Laplacian L ∈ Rn×n defined as

L = I −D−1/2AD−1/2 , (2.16)

where A is the adjacency matrix of the graph (or weighted adjacency in case of weighted graphs),

and D ∈ Rn×n is a diagonal matrix with Dii = deg(i).

The primary concern of this thesis is to exploit the spectral properties of the adjacency

matrix or the graph Laplacian to obtain a partition of V, which is achieved by considering a

spectral relaxation of the optimization problem based on the quantities defined in (2.12)-(2.15).

A spectral relaxation of minimizing (2.13) is obtained as follows. For any partition V1, . . . ,Vk,

define a matrix Y ∈ Rn×k such that

Yi` =

√
deg(i)

Vol(V`)
1{i ∈ V`} . (2.17)

It is easy to see that

(
Y TLY

)
``

=
1

Vol(V`)

(∑
i∈V`

Dii −
∑
i,j∈V`

Aij

)
=

Cut(V`)

Vol(V`)
,

which, in turn, implies that N-Cut(V1, . . . ,Vk) = Trace
(
Y TLY

)
. Thus, one can rewrite the

normalized cut minimization problem as

minimize
V1,...,Vk

Trace
(
Y TLY

)
, (2.18)

where Y has the form specified in (2.17). The above optimization is well known to be NP-hard,

but one can observe that the matrix Y also has orthonormal columns, i.e, Y TY = I. This fact

motivates one to relax the problem in (2.18) as

minimize
Y : Y TY=I

Trace
(
Y TLY

)
. (2.19)

Standard results in matrix theory show that L is positive semi-definite, and the solution of (2.19)

corresponds to the matrix of the leading k orthonormal eigenvectors of L. Hence, there exists a

simple solution to the above relaxation of the N-Cut problem, which is referred to as a spectral

relaxation due to its spectral connection. In a similar manner, one can relax the problems and
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the solutions can be listed as in Table 2.11.

Table 2.1: Graph partitioning objectives and spectral relaxations.
Problem Solution from spectral relaxation

Minimize N-Cut (2.13) Leading k orthonormal eigenvectors of normalized
graph Laplacian L = I −D−1/2AD−1/2

Maximize N-Assoc (2.14) Dominant k orthonormal eigenvectors of normalized
adjacency matrix D−1/2AD−1/2

Minimize R-Cut (2.12) Leading k orthonormal eigenvectors of unnormalized
graph Laplacian Lun = D − A

Maximize R-Assoc (2.15) Dominant k orthonormal eigenvectors of adjacency
matrix A

The spectral solutions mentioned in Table 2.1 motivates a spectral graph partitioning ap-

proach. Several variants of this method, listed below, are commonly known as the spectral

clustering algorithm.

Algorithm Spectral Clustering : Finds a k-way partition of a graph

Input: Adjacency matrix A of a graph on vertex set V with |V| = n.
Compute the matrix X ∈ Rn×k whose columns are one of the following:

• Leading k orthonormal eigenvectors of L = I −D−1/2AD−1/2

• Dominant k orthonormal eigenvectors of D−1/2AD−1/2

• Leading k orthonormal eigenvectors of Lun = D − A

• Dominant k orthonormal eigenvectors of A

Normalize rows of X to have unit norm, and denote this matrix as X.
Cluster the rows of X using a distance based clustering algorithm.

Output: Partition of V that corresponds to the cluster assignment of the rows of X.

The last step of distance based clustering needs some discussion. If the solution of the

spectral relaxation results in a matrix X that conforms with the structure given in (2.17),

then one can see after row normalization, X corresponds to a binary matrix with exactly one

non-zero term in each row. In other words, X corresponds to a cluster assignments matrix for

the vertex set. Hence, one obtains the desired partition simply by inspecting the rows of X.

In general, X does not follow the nice structure in (2.17), but provided that it is close to such

a representation, one can expect a pair of rows of X to be nearly identical if and only if the

1 Please refer to Definition 2.1 for the terminology of leading and dominant eigenvectors.
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corresponding vertices lie in the same cluster. Hence, one resorts to clustering the rows of X

based on pairwise distances.

The popular choice for distance based clustering is the k-means algorithm (Lloyd, 1982), and

hence, one typically uses this method in spectral clustering. Even for the extensions of spectral

clustering to the case of hypergraphs that are studied in this thesis, we use k-means as the

distance based clustering algorithm. However, theoretical guarantees of the classical k-means

method is not convincing, and in fact, convergence of the algorithm is not guaranteed. Hence,

for theoretical analysis, one relies on approximate versions of k-means (Kumar et al., 2004;

Ostrovsky et al., 2012) or alternative clustering schemes (Gao et al., 2015) that have well

studied guarantees. In the consistency results of this thesis, we assume that the distance based

clustering is performed using the algorithm proposed by Ostrovsky et al. (2012).

2.3 Planted partition in graphs: Stochastic block model

The purpose of this thesis is to provide analytical bounds on the goodness of spectral methods

for hypergraph partitioning. So, it is important to explain this notion before proceeding further.

2.3.1 Goodness of partitioning algorithms

Earlier we observed that partitioning the vertices of a graph is essentially a clustering problem.

This implies that one may quantify the performance of a network partitioning algorithm using

measures for clustering performance evaluation. This is followed in practice, and various metrics

such as F1 score, normalized mutual information (NMI), Rand index or its adjusted form (ARI)

etc. are used to measure the accuracy of partitioning algorithms. A more natural measure in

terms of clustering error is commonly used in the statistics literature for studying performance

of partitioning algorithms. The clustering error is measured as the number of disagreements

between two sets of labels. Let ψ : {1, . . . , n} → {1, . . . , k} denote the true labeling function

for a given a set of n vertices, i.e, ψi is the true label of vertex i. Let ψ′1, . . . , ψ
′
n be the labels

obtained from a partitioning algorithm. We define the clustering error as

Error(ψ, ψ′) = min
σ

n∑
i=1

1{ψi 6= σ(ψ′i)} , (2.20)

where 1 denotes the indicator for disagreements and the minimum is taken over all permutation

maps σ on the set {1, . . . , k}, i.e, all possible permutation of output labels. This allowance for

permuting the output labels is crucial since a partitioning algorithm, or any unsupervised
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method, does not distinguish among the labels. The quantity in (2.20) will be used later to

formally answer Question 2 mentioned in the introduction.

It is quite tricky to theoretically analyze the performance of clustering or partitioning algo-

rithms. Due to the absence of training data, any unsupervised learning approach is unaware of

the true labels, and clusters are estimated by solving a variety of objectives that are not even

closely related to (2.20). Hence, worst case bounds on (2.20) or related quantites are usually

meaningless. One possible study, that plays fair to the algorithm, is to judge an algorithm

based on the objective function optimized by the method. Guarantees are provided on the

optimality of the solutions, usually under certain assumptions (Kannan et al., 2004).

A statistical treatment of the problem is to assume that the data or the network is generated

from a random model, and then one derives bounds on (2.20) (Rohe et al., 2011). Such a study

is capable of guaranteeing both the accuracy of the algorithm as well as the appropriateness

of the underlying objective function. Both forms of analysis are prevalent in statistics and

computer science, and mixture of these can also be found in several results (von Luxburg et al.,

2008; Shi et al., 2009). The latter approach for theoretical analysis, which we describe in the

next section, allows one to comment on both finite sample as well as asymptotic performance of

the algorithm. In the asymptotic case, one can study notions of consistency similar to the case

of supervised learning methods. The stochastic block model literature refers to two notions of

consistency:

• A partitioning algorithm is strongly consistent if Error(ψ, ψ′) = o(1) with high probability,

i.e, P(Error(ψ, ψ′) = o(1)) → 1 as n → ∞. This condition implies that for sufficiently

large n, Error(ψ, ψ′) < 1 and hence, the algorithm accurately clusters all vertices.

• A weaker notion of consistency is also studied in the literature, and is usually satisfied

by most of the practical approaches (Rohe et al., 2011; Choi et al., 2012). A partitioning

algorithm is weakly consistent if Error(ψ, ψ′) = o(n) with high probability.

The condition of weak consistency seems quite strange at the first glance since it allows an

algorithm to incur a large error that can grow ‘almost’ linearly with the number of vertices.

However, this notion is still useful from a practical perspective, where we are typically interested

in percentage clustering error or 1
n
Error(ψ, ψ′). For weakly consistent algorithms, this quantity

is o(1) and hence, eventually vanishes. Refinement procedures are known in the literature (Vu,

2014; Gao et al., 2015) that can refine the partition obtained from a weakly consistent algorithm

to provide a strongly consistent solution. This observation further emphasizes the importance

of weakly consistent algorithms.
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2.3.2 Stochastic block model and the related literature

Classical random graphs, generated from the Erdös-Rényi model, has identically distributed

edges. It is known that if the edge probability is very small, then there are a large number

of disconnected components, whereas for a large edge probability, one can observe a giant

connected component in the graph (Erdös and Rényi, 1959). It is obvious that such a model

cannot account for true partition in a graph.

The study of strongly connected communities in a network has always been of interest in

the context of social networks. To model this phenomenon in a random graphs, sociologists

considered the stochastic block model (Holland et al., 1983). Here, we describe a particular

version of the model, known as the sparse stochastic block model (Lei and Rinaldo, 2015).

Consider a vertex set V = {1, . . . , n}, where the vertices are labeled using k class labels.

Let ψ : {1, . . . , n} → {1, . . . , k} denote the labeling function. Assume that there is a scalar

α ∈ (0, 1] that may vary with n, and a fixed symmetric matrix B ∈ [0, 1]k×k. The edge set E is

constructed as follows. For every i, j ∈ V, one considers the event
{
{i, j} ∈ E

}
. These events

are assumed to be mutually independent, and they occur with probability

P({i, j} ∈ E) = αBψiψj .

Observe that presence of an edge (i, j) is governed by the class labels ψi and ψj. We do not

allow the entries of B to vary with n. Hence, if α = 1, every edge occurs with a fixed specified

probability. This leads to formation of dense graphs where the expected number of edges has

a quadratic dependence on the number of vertices. This behavior is not common in real world

graphs, where the number of edges grow almost linearly with the number of vertices. To account

for this factor, one set α as a decreasing function of n that controls the sparsity of a graph.

From the point of view of the adjacency matrix, the above model generates a binary sym-

metric matrix A with P(Aij = 1) = αBψiψj for all i 6= j. It is quite interesting to observe the

structure of the matrix A = E[A], where the expectation is considered entry wise and over the

probability measure of the random graph. One can see that A, commonly called the population

adjacency matrix, has a block structure since it is constant over each block, where ψi and ψj are

fixed. Hence, this model is known as the stochastic block model. The use of this model, in its

general form, for the analysis of graph partitioning algorithms was first considered by McSherry

(2001), who preferred to call this model a planted partition model. This name is due to the fact

that a partition is planted or hidden in the random graph, and generalizes previously studied

graph problems related to planted cliques and planted colorings. A similar model termed as

k-partite random graphs was earlier studied by Simonovits and Sós (1991).
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The study of spectral clustering under this model is relatively recent (Rohe et al., 2011;

Lei and Rinaldo, 2015), and lies amidst a vast literature that study the weak consistency of

several algorithms under the stochastic block model. Some of the notable works are mentioned

in Chapter 1. Specific instances of the model have been studied for a long time.

Planted k-coloring. In the graph vertex k-coloring problem, one aims to color the vertices

of a graph using k colors such that there is no edge that connects two vertices of same color.

Formally, the objective is to find a labeling ψ′ such that ψ′i 6= ψ′j for all {i, j} ∈ E.

A planted coloring model is defined as follows. Given V and a true label function ψ, the

matrix B is defined such that Bψiψj = 0 if ψi = ψj, otherwise it takes a fixed value p ∈ (0, 1).

Alon and Kahale (1997) considered the case k = 31 with classes of equal size. It was showed

that if α ≥ C
n

for an absolute constant C > 0, then a spectral algorithm correctly colors all the

vertices with probability (1 − o(1)) . A converse statement was recently proved by Chen and

Xu (2014), which states that there is a constant C ′ > 0, such that, if α ≤ C′

n
, then no algorithm

can provide a proper k-coloring with success probability close to 1.

Planted clique. Here, one considers a clique (fully connected component) planted in a random

graph. Technically, the planted model has two classes, where one is of size s < n, and represents

the planted clique. Thus, α = 1 and B ∈ [0, 1]2×2 is such that B11 = 1, and 1
2

otherwise.

If s ≥ C
√
n for some constant C > 0, then a spectral trick can identify the planted

clique (Alon et al., 1998). However, there are no known polynomial time algorithm till date

that can find planted cliques of size o(
√
n), while a Markov Chain Monte Carlo method can

find a clique of size nearly lnn is super polynomial time (Jerrum, 1992). We refer the reader

to the papers by (Feldman et al., 2012; Raghavendra and Schramm, 2015) for developments

related to the planted clique problem.

Planted bisection. This special case is the closest relative of the clustering or community

detection framework, and hence, it is of considerable interest in statistics and machine learning.

The model consists of k = 2 classes of equal size, and for given parameters p, q ∈ [0, 1] such that

(p+q) ≤ 1, the matrix B ∈ [0, 1]2×2 is defined as B11 = B22 = (p+q), and B12 = B22 = q. This

implies that edges across cluster boundaries occur with probability αq, while within cluster

edges occur with a higher probability α(p+ q). Here, the nature of the sparsity factor α mostly

governs the difficulty of the problem, and bisection gets harder if the graph is sparser, i.e, when

α decays rapidly with n.

The best known error bound for spectral clustering (Lei and Rinaldo, 2015) shows that if

α ≥ C lnn
n

, then the algorithm makes o(n) incorrect assignments, i.e, the method is weakly

1 The case k = 2 corresponds to bipartite graphs, which can be easily 2-colored by breadth first search.
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conistent. Additional refinement procedures (Vu, 2014; Lei and Zhu, 2014; Gao et al., 2015)

can be used to exactly recover the partition with probability (1 − o(1)). Other methods are

also known to exactly recover the partition under similar conditions (Amini and Levina, 2014).

Owing to the impossibility results of Chen and Xu (2014), one can not achieve a high success

probability for smaller growth rate of α.

However, it was empirically observed that even when α = Ω( 1
n
), the partition can be identi-

fied by a belief propagation algorithm (Decelle et al., 2011). Subsequently, Mossel et al. (2013a)

proved that there is a sharp threshold C0 > 0 such that if α < C0

n
then it is impossible to de-

tect the partition with positive probability by any algorithm, whereas the belief propagation

schemes succeeds with a constant probability when α > C0

n
. Until recently, it was not known

whether a spectral method works in such sparse cases. While the question is still open whether

the spectral properties of graph adjacency or Laplacian is useful for partitioning in this regime,

it has been shown that exact recovery is possible with a positive probability if one considers

spectral decomposition of a regularized adjacency matrix (Le et al., 2015) or a non-backtracking

matrix (Krzakala et al., 2013).

The above discussions are limited to studies on the standard sparse stochastic block model.

Some recent studies have also incorporated practical aspects of networks such as degree hetero-

geneity (Karrer and Newman, 2011), or overlapping communities (Zhang et al., 2014). Consis-

tency results for spectral clustering and alternative approaches have been studied under such

modifications (Lei and Rinaldo, 2015; Zhang et al., 2014).

2.4 A review of hypergraph partitioning

We take this opportunity to mention different applied problems that have been modeled as

hypergraph partitioning problems, and the variety of approaches that have proposed to solve

the problem. The early research on hypergraph partitioning was restricted to circuit design

applications, and a review of different methods used in the VLSI community can be found

in (Alpert and Kahng, 1995; Karypis and Kumar, 2000). We only describe the principle be-

hind these classical approaches. Later, Agarwal et al. (2006) reviewed some of the spectral

algorithms based on hypergraph reduction. However, since these reviews, considerable research

has been done on this problem in machine learning and computer vision. We categorize the

algorithms based on the underlying applications, and briefly describe various techniques used

for hypergraph partitioning.
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2.4.1 Circuit partitioning

Consider a logic circuit that contains several logic gates, called modules, connected amongst

themselves. The modules are viewed as vertices, and the connections, called nets, act as edges.

Interestingly, a single net is often used to connect several modules, which leads to the hypergraph

structure. A balanced partitioning objective arises in the following way. Typically, integrated

circuits contain arbitrarily large number of modules, and may not fit on a single chip. Hence, it

is desirable to divide the modules into smaller groups that are integrated on the same chip. The

primary concerns include reducing the signal transmission across chips (minimizing cut), and

allocating nearly equal number of modules to each chip (balanced partitioning). Partitioning of

modules is also essential for a divide and conquer strategy in VLSI design. Several techniques

have been used for circuit partitioning.

Move based approach. The classical Kernighan-Lin scheme (Kernighan and Lin, 1970),

originally proposed for graphs, has been often used in practice for hypergraph partitioning.

This is an iterative approach, where in each iteration, one sequentially scans the vertices, and

assigns each vertex to a cluster such that the objective function is optimized.

The process gets quite cumbersome for very large number of vertices. This is typically

tackled through a multi-level paradigm (Karypis and Kumar, 2000). Here, one coarsens the

hypergraph by repeatedly merging strongly connected vertices in a hierarchical manner. Once,

the number of vertices are significantly reduced, one can use an iterative scheme to obtain a par-

tition. An uncoarsening phase follows, where the merged vertices are split and the partitioning

is refined. This approach is known to achieve significant computational advantages.

Hypergraph reduction techniques. An alternative strategy is to reduce the hypergraph

to a weighted or unweighted graph (Hadley, 1995). Though it is known that cut properties of

a hypergraph cannot be always retained through such reductions (Ihler et al., 1993), yet this

approach is popular since it allows one to rely on the extensive graph partitioning literature to

solve the hypergraph partitioning problem.

Agarwal et al. (2006) classifies hypergraph reduction techniques into two principal ap-

proaches. In the clique expansion of a hypergraph, every edge e is replaced by
(|e|

2

)
pairwise

edges, one for every pair vertices in e. Often these new edges assigned with some weights (Agar-

wal et al., 2005). The star expansion of a hypergraph involves addition of new vertices, one for

every edge e. Subsequently, the edge is replaced |e| pairwise edges, each connecting the vertex

for e to every vertex i ∈ e.

Spectral algorithms. Typically, such algorithms involve a hypergraph reduction technique
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followed by a spectral graph partitioning algorithm. To this end, it is known that the spectral

properties of both clique and star expansions are closely related (Agarwal et al., 2006).

There are several alternative circuit partitioning approaches (Alpert and Kahng, 1995),

but the hypergraph reduction strategy combined with spectral techniques undoubtedly has

the widest reach over several domains. The non-uniform hypergraph partitioning algorithms

discussed in Chapter 5 can be described as clique or star expansion based techniques.

2.4.2 Categorical data clustering and attribute clustering

This is one of the less popular hypergraph partitioning applications. We describe the problem

through an example. Table 2.2 lists few animals and their characteristics. For the purpose

clustering the animals based on their characteristics, one may consider a following hypergraph

problem. Let the animals correspond to the vertices, and a feature value (for example, “cannot

swim”) corresponds to an edge among all animals with the particular feature value.

Table 2.2: Example of categorical dataset.
Characteristics

Animal Domestic Swims Agility Size

Cat Yes No Medium Small
Elephant No No Slow Enormous

Whale No Yes Slow Enormous
Horse Yes No Fast Medium

Piranha No Yes Fast Small
...

A related problem of attribute clustering has also been studied, where the purpose is to

initially cluster the attributes based on their co-occurrence. Subsequently, these clusters can be

used to group the rows of the database based on their coincidence with each cluster. In case of

attribute clustering, the attribute value acts as vertices and every row corresponds to an edge

among these values. Note that this leads to a uniform hypergraph. For instance, Table 2.2

corresponds to a 4-uniform hypergraph among the attribute values: ‘domestic’, ‘wild’, ‘can

swim’, ‘fast’, ‘slow’ etc.

Extension of such a formulation to co-authorship networks or related networks has also been

suggested in the literature. Few hypergraph partitioning approaches have been been studied

for such clustering problems. These include multi-level schemes (Han et al., 1997), iterative

approaches based on evolution of dynamical systems (Gibson et al., 2000).
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2.4.3 Subspace clustering and geometric grouping

The study of the subspace clustering problem has led to an elevated interest in hypergraph

partitioning in machine learning. The problem is formulated in the following way.

Consider a collection of n points Y1, Y2, . . . , Yn ∈ Rra in an high dimensional ambient space.

Assume that there exist k subspaces, each of dimension at most r < ra, such that one can

represent Yi as

Yi = Ỹi + ηi ,

where Ỹi lies in one of the k subspaces, and ηi is a noise term. The objective of a subspace clus-

tering algorithm is to group Y1, . . . , Yn into k disjoint clusters such that each cluster corresponds

to exactly one of the k low-dimensional subspaces.

A hypergraph based approach for the subspace clustering problem (Agarwal et al., 2005)

involves construction of a weighted m-uniform hypergraph such that m ≥ (r+2) and the weight

of an edge e = {i1, . . . , im} is given by

w(e) = w({i1, . . . , im}) = exp

(
−fr(Yi1 , . . . , Yim)

σ2

)
. (2.21)

Here, fr(·) computes the error of fitting a r-dimensional subspace for the given m points, and

σ is a scaling parameter. The reason for considering m ≥ (r + 2) is because in the absence of

noise, any (r + 1) points fit a r-dimensional subspace. However, when m = (r + 2) or higher,

the fitting error fr(·) is zero only if the points belong to the same subspace, i.e, they belong

to the same cluster. As a consequence, the edge weight w(e) is high for vertices in the same

cluster, otherwise it can be considerably small.

Different choices for fr(·) has been considered in the literature based on Euclidean dis-

tance of points from the estimated subspace (Jain and Govindu, 2013), polar curvature of the

points (Chen and Lerman, 2009) among others.

The problem has an immediate extension to applications, where the underlying clusters

may not correspond to subspaces but can be general manifolds. This problem is referred to as

geometric grouping (Govindu, 2005). The hypergraph formulation extends identically, but the

choice of fr(·) depends on the underlying geometric structure and plays a crucial role in the

appropriateness of a hypergraph partitioning approach.

The subspace clustering literature is quite broad, and several solution techniques have been

studied. We mention some of the uniform hypergraph partitioning techniques that have been

proposed for this problem.

Spectral algorithms. Agarwal et al. (2005) first observed that one could formulate the
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subspace clustering problem in terms of hypergraph partitioning. The authors proposed an

algorithm that performs spectral partitioning of the clique expansion of a hypergraph. Later,

spectral techniques have been used in other approaches that compute a certain matrix from the

weighted adjacencies of the hypergraph (Arias-Castro et al., 2011).

Tensor decomposition based methods. The subspace clustering problem is modeled in

terms of a uniform hypergraph, which in turn provides a tensorial flavor to the problem. This

class of algorithms attempts to exploit the spectral properties of adjacency tensor to obtain the

partition. In this respect, one may call these methods as uniform hypergraph generalization of

spectral clustering.

Govindu (2005) proposed to use the orthonormal matrix obtained from higher order singular

value decomposition (see Defintion 2.6) as a generalization of the eigenvector matrix used in

spectral clustering. On the other hand, Shashua et al. (2006) suggested an approximation of

the normalized adjacency tensor by a rank k CP-decomposition as defined in Definition 2.5. In

Chapter 3, we analyze the former method in considerable detail, whereas Chapter 4 shows that

the latter method is a special case of a general partitioning framework.

More refined and efficient variants of these tensor based methods have been studied (Chen

and Lerman, 2009; Jain and Govindu, 2013). A major challenge addressed in the literature is

reduction of the computational complexity of tensor based methods. We address this aspect in

Chapter 6.

Optimization techniques. As in the case of graphs, the hypergraph partitioning problem

essentially involves the optimization of a certain objective function under certain constraints.

Both hypergraph reduction as well as tensor decomposition methods solve a spectral relaxation

of a certain optimization problem. One may alternatively directly solve the optimization prob-

lem. A wide variety of objective functions have been proposed, where the `2-norm constraint

of spectral methods is often replaced by `1-norm constraints. Rota Bulo and Pelillo (2013)

formulate the partitioning problem as an evolutionary game, and the resulting optimization is

similar to the tensor `1-eigenvalue problem in (2.8). Improvements of this formulation have

been suggested that impose additional constraints (Liu et al., 2010).

2.4.4 Hypergraph coloring

We now deviate from clustering applications based on hypergraphs, and discuss other instances

of hypergraph partitioning. Here, we discuss extensions of the graph coloring problem to the

case of hypergraphs. Hypergraph coloring has received considerable attention in theoretical

studies (e.g., Achlioptas and Coja-Oghlan, 2008). Hypergraph coloring algorithms have also
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been used in several applications such as DNF counting, resource allocation, scheduling etc. (Lu,

2004; Capitanio et al., 1995; Ahuja and Srivastava, 2002).

Recall that in graph coloring, the two vertices in every edge needs to be different colors. This

problem can be generalized in several ways. In the strong coloring problem, one needs to color

every vertex in an edge with a different color, i.e, no edge is allowed to have repeated colors.

One can observe that a strong coloring problem can be reduced to the coloring problem for the

clique expansion of the graph. Hence, this is typically solved using graph coloring techniques.

A more interesting problem is that of weak coloring, where one needs to only ensure that no

edge is monochromatic, i.e, every edge consists of vertices from at least two color classes. Unlike

the case of graphs, the presence of larger edges makes the weak coloring problem quite tricky

even for two colors. Hardness results related to this problem are well known (Khot and Saket,

2014). Several combinatorial and spectral algorithms for graph coloring have been extended to

solve this problem (Alon et al., 1996; Chen and Frieze, 1996).

Intermediate problems that lie between the two extreme cases of strong and weak coloring

have also been studied in the hypergraph literature (Schmidt, 1987).

2.4.5 Hypergraph matching

Here, the problem of interest is that of finding one-one correspondences between two collection

of points. We describe a simple version of it below. Consider two sets of points, each containing

s points. Each collection typically corresponds to the features of interest in an image, and a

solution to the matching problem finds correspondences between two images. One can see that

there are s2 candidate matches, out of which only s matches are correct.

Based on the theory of computer vision, one can conclude that if one image is a transfor-

mation of the other, then certain properties are preserved for correct pairings. For instance,

let {1, . . . , s} and {1′, . . . , s′} denote the two collections of points with i corresponding to i′.

If the image is merely rotated, one can claim that ‖i − j‖2 = ‖i′ − j′‖2. Even under more

complex transformations, there are functions computed on three or four points (for instance,

sine of angles formed or ratio of areas of triangles) that are preserved between the two images.

A tensor or hypergraph based formulation is often used for this problem. Let the vertices

of be all the candidate matches, i.e, V = {(i, j′) : i = 1, . . . , s; j′ = 1′, . . . , s′}. If gm(·) is

a function of m points that is preserved under the transformation, then one constructs a m-

uniform hypergraph with edge weights given by

w(e) = w({(i1, j′1), . . . , (im, j
′
m}) = exp

(
−|gm(i1, . . . , im)− gm(j′1, . . . , j

′
m)|2

σ2

)
, (2.22)
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where σ is an appropriately chosen value. One can note that the edge is close to one for correct

matches of all m vertices, otherwise it is small.

Tensor eigenvalue problems. The problem is often solved by means of the adjacency tensor

of the uniform hypergraph. Duchenne et al. (2011) defined a score function for the correspon-

dences that is quite similar to the multilinear functional defined in (2.6). As a consequence,

the associated optimization is identical to the variational form of the eigenvalue problem (2.8),

and is solved via tensor power iterations. An alternative approach of Chertok and Keller (2010)

formulates the correct matching as a solution of the higher order singular value decomposition

stated in Definition 2.6.

Optimization techniques. The problem can be approached more directly by solving the

associated optimization by numerical techniques (Liu et al., 2010). Other related methods

based on tensor power iterations (Nguyen et al., 2015) and random walks on hypergraphs (Lee

et al., 2011) are known to provide accurate solutions.

The above discussion follows the lines of the existing literature, where one formulates the

problem as a hypergraph, but no direct connection is made with hypergraph partitioning.

However, there exists an intrinsic relation that is revealed from a closer look at (2.22). The edge

weights suggest the s vertices corresponding to the correct matches are strongly connected, and

closely resembles a ‘clique’. Thus, the hypergraph matching is similar, in spirit, to the planted

clique problem.

2.5 Few important results

We conclude this chapter with few standard results that will be repeatedly used in the subse-

quent chapters of the thesis.

2.5.1 Matrix perturbation results

Matrix perturbation theory studies the variation of eigenvalues and eigenvectors of a matrix

when the entries of the matrix are perturbed. The following results provide bounds on the

deviation of the eigenvalues and eigenvectors under additive perturbation.

Theorem 2.7 (Weyl’s inequality (Weyl, 1912)). Let K ∈ Rn×n be a symmetric matrix, and K

be an additive perturbation of K, i.e,

K = K +H
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for a symmetric matrix H ∈ Rn×n. Let the eigenvalues of K be λ1 ≥ . . . ≥ λn, the eigenvalues

of K be ν1 ≥ . . . ≥ νn, and those for H be ρ1 ≥ . . . ≥ ρn. Then for each i = 1, . . . , n,

λi + ρn ≤ νi ≤ λi + ρ1 .

As a consequence, |νi − λi| ≤ max{|ρ1|, |ρn|} = ‖H‖2.

A similar result also exists for asymmetric matrices, where the above inequalities hold for

singular values. This is known as Mirsky’s theorem (Stewart and Sun, 1990). The next theorem

deals with the deviation of eigenvectors.

Theorem 2.8 (sin Θ theorem (Davis and Kahan, 1970)). Let K ∈ Rn×n be a symmetric matrix,

and K be an additive perturbation of K. Let S ⊂ R be any interval that contains exactly k

eigenvalues of K. Define

δ0 = min{|λ− λ′| : λ ∈ S, λ′ /∈ S, and λ, λ′ are eigenvalues of K}.

If δ0 > 2‖K −K‖2, then S also contains exactly k eigenvalues of K.

Let X,X ∈ Rn×k be orthonormal eigenvector matrices for the eigenvalues in S of K,K

respectively. Then

‖ sin Θ(X,X)‖2 ≤
‖K −K‖2

δ0

,

where sin Θ(X,X) ∈ Rk×k is diagonal with entries same as the sine of the canonical angles

between the subspaces X and X.

The first statement is a consequence of Weyl’s inequality, and the second claim deals with

deviation of the subspaces spanned by X,X. The following corollary to Theorem 2.8 is more

useful in our context. This result was proved in (Lei and Rinaldo, 2015). We provide a simpler

proof.

Corollary 2.9. Consider the quantities defined in Theorem 2.8. If δ0 > 2‖K−K‖2, then there

is an orthonormal matrix U ∈ Rk×k such that

‖X − XU‖F ≤
2
√

2k‖K −K‖2

δ0

.

Proof. Let the angles in sin Θ(X,X) be denoted by θ1, . . . , θk ∈ [0, π
2
], where θ1 ≥ . . . ≥ θk.

Then ‖ sin Θ(X,X)‖2 = sin θ1. On the other hand, one can see that the singular values for

the matrix XTX are given by cos θ1, . . . cos θk. Thus, if XTX = U1ΣUT
2 is the singular value
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decomposition of XTX, then

‖X − XU2U
T
1 ‖2

F = Trace
(
(X − XU2U

T
1 )T (X − XU2U

T
1 )
)

= 2Trace(I − U1ΣUT
1 )

= 2
k∑
i=1

(1− cos θi) ≤ 2
k∑
i=1

(1− cos2 θi) ≤ 2k sin2 θ1 .

Hence, we can conclude that for δ0 > 2‖K −K‖2,

‖X − XU‖F ≤
√

2k
‖K −K‖2

δ0

, (2.23)

where U = U1U
T
2 .

2.5.2 Concentration inequalities

Concentration inequalities play a vital role in various branches of probability and statistics,

and have been central to the development of the theory of learning algorithms. There is a vast

literature on concentration bounds, but in this thesis, we will use only two results, which deal

with sums of random variables or matrices.

Theorem 2.10 (Bernstein inequality). Let Y1, Y2, . . . , YN be N real-valued independent random

variables with finite second moments and |Yi − E[Yi]| ≤ R almost surely for all i. If Y =
N∑
i=1

Yi,

then for all t > 0,

P (|Y − E[Y ]| ≥ t) ≤ 2 exp

(
−t2

2Var(Y ) + 2
3
Rt

)
.

Recently, it was observed that the above result can also be extended to study concentration

of random matrices (Tropp, 2012; Chung and Radcliffe, 2011).

Theorem 2.11 (Matrix Bernstein inequality). Consider a finite sequence of independent, ran-

dom, symmetric matrices Y1, Y2, . . . , YN ∈ Rn×n. Assume that each random matrix satisfies

‖Yi−E[Yi]‖2 ≤ R almost surely. Define Y =
N∑
i=1

Yi, and let Var(Y ) = E [(Y − E[Y ])2], where we

assume all the above expectations exist. Then for all t > 0,

P (‖Y − E[Y ]‖2 ≥ t) ≤ 2n exp

(
−t2

2Var(Y ) + 2
3
Rt

)
.
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2.5.3 A performance guarantee for k-means algorithm

Let Y ∈ Rn×r be a data matrix, where each row corresponds to a r-dimensional data instance.

The formal problem associated with k-means is as follows:

minimize
S∈Mn×r(k)

‖Y − S‖F , (2.24)

where Mn×r(k) is the set of all n × r matrices with at most k distinct rows. In practice, the

rows of S correspond to the centers of the obtained clusters. Achieving a global optimum for

this problem is NP-hard. However, there are algorithms (Kumar et al., 2004; Ostrovsky et al.,

2012) that can provide a solution S∗ from the above class of matrices such that

‖Y − S∗‖F ≤ γ min
S∈Mn×r(k)

‖Y − S‖F (2.25)

for some γ > 1. The factor γ depends on the algorithm under consideration. For instance, γ

grows with k in the case of (Kumar et al., 2004), while Ostrovsky et al. (2012) showed that a

constant factor approximation is possible if the data (rows of Y in our case) is well-separated.

To be precise, define ηk(Y ) to be the minimum of the objective function when k clusters are

found, i.e,

ηk(Y ) = min
S∈Mn×r(k)

‖Y − S‖F . (2.26)

The rows of Y is said to be ε-separated if ηk(Y ) ≤ εηk−1(Y ). We state here Theorem 4.15

in (Ostrovsky et al., 2012), which provides a performance guarantee for an approximate k-

means algorithm.

Theorem 2.12. Assume that ηk(Y ) ≤ εηk−1(Y ), where ε ≤ 0.015. Then the k-means algorithm

of Ostrovsky et al. (2012) returns a solution S∗ such that

‖Y − S∗‖F ≤ γηk(Y )

with probability (1−O(
√
ε)) in time O(nrk + rk3). Here, γ =

√
1− ε2

1− 37ε2
.

We note that the above result holds for slightly modified variant of k-means, which runs

in O(nkr + k3r) time. We provide an informal description of the algorithm here, and refer

the interested reader to (Ostrovsky et al., 2012) for the exact procedure. Given data points

y1, . . . , yn ∈ Rd, one performs the following steps:

1. Sample O(k) points sequentially to define the initial centers. Let any step, the sampled
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points be ŝ1, . . . , ŝj, then the next point is sampled with probability proportional to its

minimum distance from ŝ1, . . . , ŝj. This step chooses O(k) random centers that reasonably

far apart.

2. Compute the clustering cost (objective in (2.24)) when all the O(k) clusters are used, and

then recursively remove centers from the sampled set such that increase in the clustering

cost is minimum. These recursions are carried out this there are only k centers.

3. Let ŝ1, . . . , ŝk be the surviving k centers. For each center ŝi, compute its distance d̂i to

the nearest of the other (k− 1) centers. Compute the centroid s̄i of all points in a ball of

radius d̂i/3 centered at ŝi.

4. Return the clustering that corresponding to the Voronoi diagram with the k points

s̄1, . . . , s̄k.
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So many things are possible just as long as you don’t

know they’re impossible.

Norton Juster, The Phantom Tollbooth

Chapter 3

A Tensor Spectral Method for Uniform

Hypergraphs

The moment has arrived to embark on our mission of analyzing spectral methods for hypergraph

partitioning. We simplify the matters at hand by considering uniform hypergraphs, and study

one of the earliest works on higher order learning.

Through this chapter, we aim to establish the need for a planted partition model for hyper-

graphs. This task will certainly be incomplete without a discussion on the nature of existing

studies on hypergraphs. Hence, after describing the algorithm in Section 3.1, we present a

perturbation based analysis in Section 3.2 that extends the techniques of Ng et al. (2002) to

hypergraphs. Subsequently, we discuss the limitations of this analysis, and present our anal-

ysis based on a planted partition model. Section 3.3 describes the model, and Section 3.4

provides an analysis of the algorithm under this model. In particular, we state and prove a

consistency result. The technical lemmas used here are proved in the appendix to this chapter,

Appendix 3.A.

3.1 Tensor decomposition and partitioning

Let (V,E, w) be a weighted m-uniform hypergraph on |V| = n vertices, i.e, every edge in E

is of size m. Recall that the edge weights of this hypergraph can be expressed in terms of a

symmetric tensor A of order m and dimension n. The algorithm studied in this chapter is based

on the the higher order singular value decomposition of A (see Definition 2.6), and hence, we

prefer to refer to this method as Algorithm HOSVD.

This method was proposed by Govindu (2005) as a multi-way extension of spectral cluster-
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ing, which relies on the following idea. Spectral clustering embeds the vertices of a graph in

an Euclidean space by means of the dominant eigenvectors of the adjacency matrix, or its nor-

malized equivalent. This approach can be replicated in uniform hypergraphs by using columns

of the orthonormal matrices obtained from higher order SVD of the adjacency tensor A. More

precisely, one would be interested in the dominant eigen pairs, and in this respect, Definition 2.6

suggests the use of the dominant left singular vectors of the flattened matrix (2.4) for A, which

we denote by Ã ∈ Rn×nm−1
.

Note here that it is not clear how this idea can be extended to normalized adjacencies.

Govindu (2005) proposed to use the following heuristic, which is listed in Algorithm HOSVD.

One defines a symmetric matrix A ∈ Rn×n as A = ÃÃT , and normalizes A following the degree

normalization in spectral clustering. Subsequently the dominant eigenvectors of the normalized

matrix are computed, and used for distance based clustering. The construction of A = ÃÃT is

natural for transforming the SVD into an eigen decomposition, but the matrix normalization

step has not been justified in the literature.

Algorithm HOSVD : Partitioning via higher order SVD

Input: Affinity tensor A of the m-uniform hypergraph (V,E, w).

1: Let Ã be flattened matrix of A, and D ∈ Rn×n diagonal with Dii =
n∑
j=1

nm−1∑̀
=1

Ãi`Ãj`.

2: Compute k dominant orthonormal eigenvectors of D−1/2ÃÃTD−1/2, denoted by X ∈ Rn×k

.
3: Normalize rows of X to have unit norm, and denote this matrix as X.
4: Run k-means on the rows of X.

Output: Partition of V that corresponds to the clusters obtained from k-means.

The subsequent steps of the algorithm are similar to spectral clustering. Hence, one can

observe that HOSVD is equivalent to reducing the hypergraph to a graph with weighted ad-

jacency matrix A, and performing normalized spectral clustering on this graph. Variants of

the above algorithm, in particular spectral curvature clustering (Chen and Lerman, 2009), are

often used in practice. We postpone the discussion on such variants to Chapter 6.

The performance of HOSVD and its variants in practice has been established in the litera-

ture (Govindu, 2005; Chen and Lerman, 2009; Chen and Lerman, 2009; Jain and Govindu, 2013;

Ghoshdastidar and Dukkipati, 2014). One can also refer to the qualitative results in Figure 8.1,

as well as other numerical studies in Chapter 8. This chapter deals with the theoretical guaran-

tees of HOSVD, studied from different perspectives. In particular, if ψ and ψ′, respectively, are

the true labeling function and the output labeling from HOSVD, then we derive upper bounds

on the clustering error defined in (2.20). We denote this error by ErrorHOSVD(ψ, ψ′).
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3.2 A perturbation based analysis

In this section, we consider an analysis that is along the lines of the results in (Ng et al., 2002).

More precisely, we extend the deterministic analysis of spectral clustering to HOSVD, and then

discuss the limitations of such a study. The analysis described here is partly based on the

works of Chen and Lerman (2009), who studied HOSVD under the name of theoretical spectral

curvature clustering.

The principal approach of this analysis is to study the method in an ideal case, where

HOSVD provides a perfect clustering. This observation is extended to derive error bounds for

more general hypergraphs that satisfy certain conditions.

Consider a hypergraph (V,E) on |V| = n vertices, and let ψ1, . . . , ψn ∈ {1, . . . , k} denote the

labels of the vertices corresponding to the desired partition. Let n1, . . . , nk be the cluster size,

and without loss of generality, we may assume n1 ≥ . . . ≥ nk. We define an ideal hypergraph

corresponding to ψ as follows.

Definition 3.1. For a set of vertices V with labels ψ1, . . . , ψn, and ideal m-uniform hypergraph

(V, Ẽ) is such that for any set ofm vertices {i1, . . . , im} ⊂ V, there is an edge e = {i1, . . . , im} ∈ Ẽ

if and only if ψi1 = . . . = ψim .

In other words, (V, Ẽ) consists of k disjoint components, each being a complete m-uniform

hypergraph on the vertices belonging to a particular class.

The first observation, adapted from (Chen and Lerman, 2009, Proposition 4.1), studies the

performance of HOSVD on an ideal hypergraph. Let K̃ = D−1/2ÃÃTD−1/2 be the matrix

computed in HOSVD when the input is an ideal hypergraph, and let X̃ denote the matrix of

its k dominant eigenvectors

Lemma 3.2. The largest eigenvalue of K̃ is one, with multiplicity k, and the other eigenvalues

lie in the interval
[

m−1
(n1−1)(n1+1−m)

, m−1
(nk−1)(nk+1−m)

]
.

If Z ∈ {0, 1}n×k is the assignment matrix corresponding to the label ψ, i.e, Ziψi = 1, and

zero otherwise, then the eigenvector matrix X̃ is given by X̃ = (ZTZ)−1/2Z, ignoring rotation

of the matrices.

Observe that the matrix (ZTZ)−1/2Z has exactly k distinct rows that are orthogonal to

each other, and each distinct row corresponds to a particular cluster. Hence, any distance

based clustering algorithm can identify ψ from the rows of the row normalized version of X̃.

However, recall that the actual input to HOSVD is the hypergraph (V,E) instead of the ideal one

(V, Ẽ). Let K = D−1/2ÃÃTD−1/2 denote the matrix computed in HOSVD for the hypergraph
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(V,E). Hence, one needs to identify the clusters from the rows of X that corresponds to the

row normalized dominant eigenvector matrix for K. To this end, the following consequence of

Corollary 2.9 is useful.

Lemma 3.3. If the given hypergraph (V,E) satisfies

‖K − K̃‖2 ≤
nk(nk −m)

2(nk − 1)(nk + 1−m)
, (3.1)

then there is an orthonormal matrix Q ∈ Rk×k such that

‖X − ZQ‖F ≤
√

8kn1
(nk − 1)(nk + 1−m)

nk(nk −m)
‖K − K̃‖2 . (3.2)

The above result suggests that the rows of X are quite close to the rows of Z after an

appropriate rotation. Hence, one can expect a good recovery of the partition from the rows of

X. Standard tricks for analyzing the solution of k-means (Rohe et al., 2011) will be discussed

later in the chapter, which can be used to argue that if the global optimum of k-means is

achieved then the k-means error is bounded from above by 2‖X − ZQ‖2
F . Thus, we can state

the following result for HOSVD.

Theorem 3.4. Let a m-uniform (V,E) be partitioned using HOSVD. Let the true cluster sizes

be n1 ≥ . . . ≥ nk, and assume that the global optimum of k-means can be achieved.

There exists ζ > 0, such that, if nk > m and

ζ <
nk(nk −m)

2(nk − 1)(nk + 1−m)
, (3.3)

then clustering error of HOSVD is bounded as

ErrorHOSVD(ψ, ψ′) ≤ 64kn1

(
ζ(nk − 1)(nk + 1−m)

nk(nk −m)

)2

= O(kn1ζ
2) . (3.4)

Proof of Lemma 3.2 can be found in (Chen and Lerman, 2009). We do not provide proofs for

Lemma 3.3 or Theorem 3.4 since these can be derived from the arguments used in the proof of

Theorem 3.7, presented later in this chapter. We now discuss the implications and limitations

of Theorem 3.4.

Note that the quantity ζ corresponds to ‖K−K̃‖2, and hence, quantifies the distance of the

given hypergraph from an ideal hypergraph with the desired partition. As is expected, a better

error rate is guaranteed for smaller ζ, but for large ζ, which violates (3.3), the error bound does
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not hold. To this end, observe that even when (3.3) is marginally satisfied, the error bound is

not useful, and hence, Theorem 3.4 makes sense only in regime ζ = O( 1
n
). The above result can

be extended to weighted hypergraphs as well, where a similar definition of ideal hypergraph

can be stated.

3.2.1 Limitations of Theorem 3.4

Perhaps the limitations of the present analysis is evident from Theorem 3.4. We still elaborate

of the various factors. To this end, we note that the main result in (Chen and Lerman, 2009)

also has a similar flavor, but the resulting bound is on ‖X−ZQ‖F instead of ErrorHOSVD(ψ, ψ′),

and hence, less useful from a practical perspective.

The major limitation of Theorem 3.4 arises from the limited allowable hypergraphs that

can be analyzed using this approach. The condition on ζ implies that the result is applicable

only for hypergraphs that are close to a “ideal hypergraph” with k disjoint components. This

assumption is quite strict, and cannot be expected to be true in general. Interestingly, the

above analysis overlooks the fact that HOSVD is able to perfectly cluster certain hypergraphs

that need not be ideal. Examples of such hypergraphs will be evident from the discussions in

the next section.

Furthermore, in Theorem 3.4, we assume that the global optimum of k-means is achieved.

This assumption does not hold in practice. While approximate k-means strategies are known

that provide near optimal solutions, their success probability is less than one. More importantly,

the optimality and running time of such approaches depend critically on the number of classes

k, and require careful considerations. In the next section, we analyze HOSVD when the k-

means step is performed using the algorithm of Ostrovsky et al. (2012), and thereby avoid any

assumption on the performance of k-means. A more detailed discussion on the effect of various

assumptions on the k-means step can be found in Chapter 5.

Arias-Castro et al. (2011) analyzed a different tensor based approach for the problem of

geometric grouping, where a weighted uniform hypergraph is constructed from multi-way sim-

ilarities among data instances that are generated from an union of manifolds. As discussed

in Section 2.4.3, the problem gets more interesting when the given data is perturbed by ran-

dom noise. Due to the inherent randomness of the model, the analysis of Arias-Castro et al.

(2011) provides a high probability guarantee on perfect cluster assignments by their algorithm

under certain restrictions on the model and the noise level. Such an analysis can be derived

from Theorem 3.4 by restating assumptions of the result in terms of the parameters of the

underlying model. However, the obtained result typically involves strong conditions, similar to
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Theorem 3.4, and it does not provide any error bound even under minor violations of these

conditions.

3.3 Planted partition in uniform hypergraphs

We now set aside the above non-statistical analysis, and present theoretical guarantees of

HOSVD under a stochastic framework, where the hypergraphs are generated from a random

model. The model presented in this section is a natural extension of the stochastic block model

discussed in Chapter 2.

We consider the following random model for generating a m-uniform hypergraph (V,E) for

a fixed integer m ≥ 2. Let V = {1, 2, . . . , n} be the set of n vertices, and ψ : {1, 2, . . . , n} →
{1, 2, . . . , k} be a (hidden) partition of the vertices into k classes. For a vertex i, we denote its

class by ψi. We allow the number of clusters k to grow with n, though this is not made explicit

in the notation.

Let αm ∈ [0, 1], and B(m) ∈ [0, 1]k×k×...×k be a symmetric k-dimensional tensor of order m.

The edge set E is constructed as follows. For every e = {i1, i2, . . . , im} ⊂ V, we assume that

the event {e ∈ E} occurs with probability

P(e ∈ E) = P({i1, i2, . . . , im} ∈ E) = αmB
(m)
ψi1ψi2 ...ψim

. (3.5)

Furthermore, the collection of all such events is assumed to be mutually independent.

It is easy to relate this model to the stochastic block model. The term αm governs the

sparsity of the hypergraph and is allowed to vary with n, whereas B(m) specifies the label

dependent edge probabilities. The only difference arises from the fact that one needs to generate

edges of size m, and hence, B(m) is a tensor of order m instead of a matrix. We also make the

following remark.

Remark 3.5. In the model, we allow k and αm to vary with n, though this is not made clear

in the notations. However, the entries in B(m) are assumed to be Θ(1), i.e, depend only on the

class labels and not on n.

We also present an extension of the model to weighted m-uniform hypergraph (V,E, w). To

this end, observe that an unweighted m-uniform hypergraph may be viewed as a special case

of (V,E, w), where E is the collection of all subsets of V of size m, and w : E → {0, 1}. We

say an edge e is present if w(e) = 1. From this perspective, one can describe the above model

for planted hypergraphs in terms of a collection of independent Bernoulli random variables
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{w(e) : e ∈ E} with

E[w({i1, i2, . . . , im})] = αmB
(m)
ψi1ψi2 ...ψim

(3.6)

for all e = {i1, i2, . . . , im} ∈ E. For convenience, we use we = w(e) to denote the weight of an

edge e ∈ E.

We extend this model to an arbitrary weight function w : E → [0, 1] by assuming that

{we : e ∈ E} are mutually independent random variables with first moment given by (3.6).

Note here that, in this case, the sparsity factor αm controls the expected total weight of all

edges, and a smaller αm corresponds to the presence of a large number of edges with considerably

small weights.

The condition we ∈ [0, 1] has been imposed for convenience, and can be relaxed to any

bounded non-negative weight function. However, in this practice, one may normalize the edge

weights to the interval [0, 1], thereby satisfying the above condition.

As in the case of graphs, in the above setting, the objective of a partitioning algorithm is to

estimate ψ from a given random instance of the m-uniform hypergraph (V,E, w). If the labels

obtained from the algorithm are given by ψ′1, ψ
′
2, . . . , ψ

′
n, then we bound the clustering error

between ψ and ψ′ as defined in (2.20). Before proving such a result, we briefly relate the above

model to hypergraphs arising from practical problems.

3.3.1 Modeling hypergraph applications

We have earlier associated uniform hypergraphs with three applications: attribute clustering,

subspace clustering and hypergraph matching. We show that the above planted partition model

can be used to generate instances of these applications.

Attribute clustering. Here, V corresponds to the set of all possible values of all attributes,

and each entry in the database is an edge with a fixed size, say m (see Section 2.4.2). This

corresponds to an unweighted hypergraph (V,E), and can be modeled by a planted model, where

B(m) specifies the edge probabilities. The factor αm controls the growth rate of the number of

entries in the database as the number of attribute values increase. Formally, |E| = Θ (αm|V|m).

Subspace clustering. Recall that in the subspace clustering problem (Section 2.4.3), the n

vertices corresponds points in the Euclidean space, and edge weight are computed using (2.21)

based on the error of fitting a subspace through the points.

Observe that in the absence of noise, the uniform hypergraph corresponds to an ideal hy-

pergraph with k disjoint components, where m vertices are connected by an edge if and only
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if they span a subspace, or in other words, belong to the same cluster (see Definition 3.1).

However, in the presence of noise, the edge weights are no longer binary, and take values within

[0, 1]. An edge can be expected to have a large weight if all vertices belong to the same group,

else the weight is expected to be smaller. Thus, in a simplified setting, one may assume that

for some p, q ∈ [0, 1], (p+ q) ≤ 1, the tensor B(m) is such that B
(m)
i...i = p+ q for all i = 1, . . . , k,

and Bi1...im = q for all the other entries.

The sparsity factor αm also contributes to the model. Observe that if all clusters are of equal

size and there is no added noise, then there are only |E| = k
(
n/k
m

)
= Θ

(
nm

km−1

)
edges. Thus, the

above fact implies that one should let αm = O(k1−m), which decreases if k grows with n.

Hypergraph matching. Consider the problem described in Section 2.4.5, where a weighted

hypergraph (V,E, w) is constructed with V being set of all candidate matches, and edge weights

given by (2.22).

As noted in the problem description, this problem is quite similar to finding cliques. Hence,

the corresponding planted hypergraph may be viewed as a generalization of the planted clique

problem to the case of m-uniform hypergraphs. Here, αm = 1 and there are two classes with

B(m) such that B11...1 = p ≈ 1, and Bi1i2...im = q < p otherwise.

3.4 Consistency under planted partition model

We now derive an upper bound on the clustering error achieved by HOSVD under the above

random model. The result presented here is in its general form. Special cases are considered

in the next two chapters, where we analyze alternative approaches, and compare HOSVD with

these methods.

Before presenting the main result, we provide some intuitive arguments about why HOSVD

is expected to find the true partition. The principle idea behind stochastic block model is the

block structure of the population adjacency matrix. It is worth investigating whether a similar

structure exists in the aforementioned model for uniform hypergraphs. This is indeed the case

as revealed by (3.6). If A is the random adjacency tensor of order m, it is evident that A is

symmetric with

E[Ai1,i2,...,im ] = αmB
(m)
ψi1ψi2 ...ψim

(3.7)

whenever {i1, i2, . . . , im} are distinct. To clarify further, let us define the matrix Z ∈ {0, 1}n×k

such that Ziψi = 1, and zero otherwise. Note that Z denotes the assignment matrix correspond-
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ing to the true labels. With this notation, it is easy to see that one can write

E[A] ∼= αmB(m) ×1 Z ×2 Z ×3 . . .×m Z , (3.8)

where we use ∼= to denote that the two tensors are essentially equal except at entries with

repeated indices. For such entries, the population adjacency is zero but not the term on the

right. For graphs (m = 2), the difference occurs only on the diagonal.

Figures 3.1 illustrates the situation for m = 3, where we assume k = 2 and αm = 1,

and observe that E[A] essentially has a block structure that can be decomposed as in (3.7).

Furthermore, the decomposition on the right shows the higher order SVD of E[A] where, under

certain conditions (discussed later), the core tensor has B(m) in the first principal block, and

zero everywhere else. Corresponding columns of the associated orthonormal columns are similar

to Z, up to normalization. This loosely explains the significance of considering the dominant

eigenvectors of ÃÃT , or its normalized form as used in Algorithm HOSVD.

Figure 3.1: Illustration of the block structure in the population adjacency tensor, E[A], for
m = 3, k = 2 and αm = 1.

3.4.1 The main result

We now formally prove the above arguments. To simplify the notation, we define the matrix

A = ÃÃT . Note that Dii =
∑

j Aij. Let us also define A = E[A] and D = E[D]. We

call D−1/2AD−1/2 the population version of the normalized matrix D−1/2AD−1/2 considered in

HOSVD. Also, let n1, . . . , nk denote the size of the k clusters, i.e, n =
∑

` n`.

The following result formalizes the above discussions by providing a characterization of A,

revealing its block structure.

Lemma 3.6. Let Z ∈ {0, 1}n×k denote the assignment matrix corresponding to the partition ψ.

Then there exist matrices G ∈ Rk×k and J ∈ Rn×n diagonal with Jii = Jjj whenever ψi = ψj,
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such that A can be expressed as

A = ZGZT − J . (3.9)

Above lemma shows that A is essentially of rank k, except for the diagonal entries. Owing

to the first term in (3.9), one does expect D−1/2AD−1/2, to have k eigenvectors whose entries

are constant in each community. Later we show that these k eigenvectors correspond to the

dominant eigenvalues under the condition δ > 0. Here δ is given by

δ =

(
λmin(G) min

1≤i≤n

nψi
Dii

)
− max

1≤i,j≤n

∣∣∣∣ JiiDii

− Jjj
Djj

∣∣∣∣ , (3.10)

where nψi is the size of the community in which node i belongs.

While the above discussions show the correctness of using the dominant eigenvectors in the

population version, we still need to argue our case when one only has access to the random

hypergraph. This is stated in the following theorem.

Theorem 3.7. Let (V,E, w) be a m-uniform hypergraph on |V| = n vertices generated from a

random model with k planted classes. Let Amin = min{Aij : Aij > 0}, δ be as defined in (3.10),

and the cluster sizes be n1 ≥ . . . ≥ nk. Also assume n to be sufficiently large, and the algorithm

of Ostrovsky et al. (2012) is used in the k-means step.

There exists an absolute constant C > 0, such that, if δ > 0 and

Amin >
Ckn1(lnn)2

nkδ2
, (3.11)

then with probability (1− o(1)), the clustering error of HOSVD

ErrorHOSVD(ψ, ψ′) = O

(
kn1 lnn

δ2Amin

)
= o(n). (3.12)

The above bound immediately implies weak consistency of HOSVD. We note here that apart

from the absolute constant C and the order of the hypergraph m, other quantities vary with n.

To this end, the error bound in (3.12) is true only when the quantities vary in an appropriate

fashion with n such that (3.11) is satisfied.

We postpone further discussions on the implications of Theorem 3.7 to Corollary 4.6 pre-

sented in the next chapter. For the moment, we assure the reader that in the setting of subspace

clustering mentioned earlier, if we assume all clusters to be of equal size, then the condition

in (3.11) holds for all k = O(lnn). Thus, even for growing number of subspaces, the above
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result shows that HOSVD is weakly consistent for the subspace clustering problem.

3.4.2 Proof of Theorem 3.7

We now provide an outline of the proof of the above result through a series of lemmas, which

are proved in the appendix to this chapter. We start by formally proving the correctness of the

algorithm in the population case discussed in Lemma 3.6.

Lemma 3.8. If δ > 0, then there exists an orthonormal matrix U ∈ Rk×k such that the k

dominant orthonormal eigenvectors of D−1/2AD−1/2 correspond to the columns of the matrix

X = Z(ZTZ)−1/2U .

The row normalized matrix computed in the subsequent step is given by ZU , which can be

trivially clustered using k-means without incurring any error.

Thus, we can conclude that when HOSVD is performed on the population adjacency tensor

E[A], then perfect clustering is obtained. In other words, the tensor E[A] replaces the ideal

adjacency tensor used in the analysis of Section 3.2.

We now extend this observation to the random case. We still rely on matrix perturba-

tion results, and this, in turn, requires a bound on the deviation between the random matrix

D−1/2AD−1/2 and its population version D−1/2AD−1/2.

Lemma 3.9. Let Amin = min{Aij : Aij > 0}. If Amin > 9(m− 1)! lnn, then

‖D−1/2AD−1/2 −D−1/2AD−1/2‖2 ≤ 12

√
(m− 1)! lnn

Amin

(3.13)

with probability (1−O(n−1)).

Due to the above result, Theorem 2.8 allows us to claim the following.

Lemma 3.10. If Amin > 9(m − 1)! lnn and δ > 24
√

(m−1)! lnn
Amin

, then the following statements

hold with probability (1−O(n−1)).

1. The matrix X does not have any row with zero norm, and hence, its row normalized form,

denoted by X, is well-defined.

2. There is an orthonormal matrix Q ∈ Rk×k such that

∥∥X − ZQ∥∥
F
≤ 24

δ

√
(m− 1)!2kn1 lnn

Amin

. (3.14)
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From Lemmas 3.8 and 3.10, one can argue that since the rows of ZQ can be correctly

clustered by k-means, and X does not deviate significantly from ZQ, hence the error can be

bounded from above. We could proceed follow the lines of Theorem 3.4, and derive an error

bound under an assumption on the performance of the k-means. On the other hand, we do

not assume any such algorithmic guarantees and derive a bound on the error incurred by the

k-means step when one uses the approximate method of Ostrovsky et al. (2012).

The performance guarantee of approximate k-means is stated in Theorem 2.12, where a

sub-optimal solution is achieved if the data is well-separated. The following result shows that

in our case, the rows of X are indeed well-separated.

Lemma 3.11. If condition in (3.11) holds, then rows of X are ε-separated with ε = (lnn)−1/2.

As a consequence of Lemma 3.11, it follows that if n is sufficiently large, i.e, ε is small

enough, then the result of (Ostrovsky et al., 2012) holds. Moreover, one can also observe that

for large n, we have γ = O(1). Finally, one needs to combine the above results in order to prove

Theorem 3.7. For this, define the set Verr ⊂ V as

Verr =

{
i ∈ V : ‖S∗i· − Zi·Q‖2 ≥

1√
2

}
. (3.15)

Rohe et al. (2011) used a similar definition for the number of incorrectly assigned vertices, and

discussed the intuition behind this definition. In the following result, we formally prove that

the vertices that are not in Verr are correctly assigned. We also provide an upper bound on the

size of Verr.

Lemma 3.12. Let i, j /∈ Verr and S∗i· = S∗j·, then ψi = ψj. Hence,

ErrorHOSVD(ψ, ψ′) ≤ |Verr|.

In addition,

|Verr| ≤ 4(1 + γ2)‖X − ZQ‖2
F .

Theorem 3.7 follows by combining the above bound with (3.14), and using the fact γ = O(1).

3.A Proofs for results in this chapter

As mentioned earlier, we do not provide proofs for results in Section 3.2. The proof of Lemma 3.3

is quite similar to that of Lemma 3.10, proved here, while Theorem 3.4 follows from by com-
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bining Lemma 3.3 with arguments used in the proof of Lemma 3.12.

Proof of Lemmas 3.6 and 3.8

We begin by characterizing the matrices A = ÃÃT and A = E[A]. Observe that

Aij =
nm−1∑
`=1

Ãi`Ãj` = (m− 1)!
∑

i2<...<im
i,j /∈{i2,...,im}

Aii2...imAji2...im , (3.16)

where we ignore the zero entries of Ã corresponding to repeated indices. We also account for

the fact that for every i2 < . . . < im, there are (m − 1)! copies due to permutation of indices.

The representation in (3.16) is useful since it expresses Aij as a sum of independent random

random variables. Based on (3.16), one can conclude that for any i 6= j,

Aij = (m− 1)!α2
m

∑
i2<...<im

i,j /∈{i2,...,im}

B
(m)
ψiψi2 ...ψim

B
(m)
ψjψi2 ...ψim

, (3.17)

Note that the above sum remains same if i, j are replaced by some i′, j′ such that ψi = ψi′ and

ψj = ψj′ . This is true since the terms in (3.17) depend on ψi, ψj instead of i, j. This observation

motivates us to define the matrix G ∈ Rk×k such that for any i, j ∈ V, i 6= j,

Gψiψj = (m− 1)!α2
m

∑
i2<...<im

i′,j′ /∈{i2,...,im}

B
(m)
ψi′ψi2 ...ψim

B
(m)
ψj′ψi2 ...ψim

, (3.18)

where i′, j′ are two distinct arbitrary vertices satisfying ψi = ψi′ and ψj = ψj′ . Hence, one can

write Aij = (ZGZT )ij for all i 6= j, where Z is the assignment matrix. However,

Aii = (m− 1)!
∑

i2<...<im
i/∈{i2,...,im}

E[A2
ii2...im

] 6= Gψiψi .

So, one can write the matrix A as A = ZGZT − J , where J ∈ Rn×n is a diagonal matrix

defined as Jii = Gψiψi − Aii. We also note that for i, i′ in the same group, i.e, ψi = ψi′ , we

have Dii = Di′i′ and Jii = Ji′i′ . So we can define matrices D̃, J̃ ∈ Rk×k diagonal such that

Dii = D̃ψiψi and Jii = J̃ψiψi for all i ∈ V. It is easy to see that DZ = ZD̃ and JZ = ZJ̃ .

Using above definitions, we now characterize the eigenpairs of the matrix D−1/2AD−1/2.

First, observe that since G ∈ Rk×k, A is composed of a matrix of rank at most k that is
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perturbed by the diagonal matrix J . We show that the orthonormal basis for the range space

of ZGZT are the eigenvectors that are of interest to us. For this, consider the matrix G =

(D̃−1ZTZ)1/2G(ZTZD̃−1)1/2 − J̃D̃−1 ∈ Rk×k, and suppose its eigen-decomposition is given by

G = UΛ1U
T , where U ∈ Rk×k contains the orthonormal eigenvectors and Λ1 ∈ Rk×k is a

diagonal matrix of eigenvalues of G. Defining X = Z(ZTZ)−1/2U ∈ Rn×k, we can write that

D−1/2AD−1/2X = D−1/2(ZGZT − J)D−1/2Z(ZTZ)−1/2U

= D−1/2(ZG(ZTZ)1/2 − Z(ZTZ)−1/2J̃)D̃−1/2U

= Z(ZTZ)−1/2GU

= Z(ZTZ)−1/2UΛ1 = XΛ1,

which implies that the columns of X are the eigenvectors of D−1/2AD−1/2 corresponding to the

k eigenvalues in Λ1. Note that the above equalities are derived by repeated use of the facts that

diagonal matrices commute and DZ = ZD̃, JZ = ZJ̃ . Also, since U is orthonormal, it is easy

to verify that the columns of X are orthonormal. We need to derive conditions under which

X contain the dominant eigenvectors of D−1/2AD−1/2. Equivalently, we need to show that the

eigenvalues in Λ1 are strictly larger than other eigenvalues of D−1/2AD−1/2.

Since, D−1/2AD−1/2 is symmetric and hence, diagonalizable, we can conclude that remaining

eigenvectors of the matrix are orthogonal to columns of X. Let the columns of Y ∈ Rn×(n−k)

be the matrix of the remaining orthonormal eigenvectors of D−1/2AD−1/2, with corresponding

eigenvalues given by the diagonal matrix Λ2 ∈ R(n−k)×(n−k). So Y TZ(ZTZ)−1/2U = 0. Due to

the non-singularity of ZTZ or U , it follows that ZTY = 0, and

Y Λ2 = D−1/2AD−1/2Y = −D−1JY,

that is, the columns of Y are eigenvectors of (−D−1J). Further, since D−1J is diagonal, the

eigenvalues in Λ2 are a subset of the entries of (−D−1J). Thus, to ensure that X are the leading

eigenvectors, one needs to ensure mini(Λ1)ii > maxi(Λ2)ii, and hence, one may define δ̃ as the

eigen-gap,

δ̃ = min
1≤i≤k

(Λ1)ii − max
1≤i≤(n−k)

(Λ2)ii. (3.19)

The condition δ̃ > 0 ensures that columns of X are the dominant eigenvectors of D−1/2AD−1/2.

Though the above definition of δ̃ suffices, it cannot be easily verified for a given model. Below,
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we show that δ̃ ≥ δ, where the latter is as defined in (3.10). Note that

max
1≤i≤(n−k)

(Λ2)ii ≤ max
1≤i≤n

(
− Jii
Dii

)
= min

1≤i≤n

Jii
Dii

On the other hand, using Weyl’s inequality, we have

min
1≤i≤k

(Λ1)ii = λmin(G) ≥ λmin((D̃−1ZTZ)1/2G(ZTZD̃−1)1/2)− ‖J̃D̃−1‖2 ,

where λmin(G) denotes the minimum eigenvalue of G. The inequality follows by viewing G as

the matrix (D̃−1ZTZ)1/2G(ZTZD̃−1)1/2 perturbed by −D̃−1J̃ . To simplify further, we note

‖J̃D̃−1‖2 = max
1≤i≤k

J̃ii

D̃ii

= max
1≤i≤n

Jii
Dii

,

and using Rayleigh’s principle, one can show that

λmin((D̃−1ZTZ)1/2G(ZTZD̃−1)1/2) ≥ λmin(G) min
1≤i≤k

(ZTZ)ii

D̃ii

.

Combining the above bounds, we conclude that δ̃ ≥ δ. Here, we use the observation that

(ZTZ)jj equals the size of the jth community. Thus, δ > 0 is a sufficient condition for the first

claim of Lemma 3.8.

The second claim is straightforward. Since X = (ZTZ)−1/2ZU , it is easy to verify that the

norm of the ith row of X is ‖Xi·‖2 = 1√
ZTZψiψi

. Hence, row normalization of X provides the

matrix ZU . Moreover, the nature of the matrix Z implies that (ZU)i· = Uψi·, and hence, there

are only k distinct rows in ZU each corresponding to a particular cluster. As a consequence,

k-means trivially provides the optimal result.

Proof of Lemma 3.9

We observe that

‖D−1/2AD−1/2 −D−1/2AD−1/2‖2

≤ ‖D−1/2AD−1/2 −D−1/2AD−1/2‖2 + ‖D−1/2AD−1/2 −D−1/2AD−1/2‖2

+ ‖D−1/2(A−A)D−1/2‖2

≤ ‖I −D1/2D−1/2‖2 + ‖D1/2D−1/2‖2‖I −D1/2D−1/2‖2 + ‖D−1(A−A)‖2
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since ‖D−1/2AD−1/2‖2 = 1.

Let t = 3
√

(m−1)! lnn
Amin

, and observe that t < 1 under the condition Amin > 9(m− 1)! lnn. We

claim that for every i = 1, . . . , n,

P

(
n∑
j=1

|Aij −Aij| > tDii

)
≤ 2

n2
. (3.20)

Assuming that (3.20) is true, we can observe that the following hold with probability (1− 2
n
):

max
i

1

Dii

n∑
j=1

|Aij −Aij| ≤ t . (3.21)

Due to this, one can also verify that

‖D−1(A−A)‖2 ≤ max
i

1

Dii

n∑
j=1

|Aij −Aij| ≤ t (3.22)

and

‖I −D1/2D−1/2‖2 = max
i

∣∣∣∣∣
√
Dii

Dii

− 1

∣∣∣∣∣
= max

i

∣∣∣∣Dii

Dii

− 1

∣∣∣∣ ≤ max
i

1

Dii

n∑
j=1

|Aij −Aij| ≤ t. (3.23)

Similarly, ‖D1/2D−1/2‖2 ≤ ‖I +D1/2D−1/2‖2 ≤ (1 + t) < 2 since t < 1. Thus, we can conclude

that

‖D−1/2AD−1/2 −D−1/2AD−1/2‖2 ≤ 4t

with probability 1−O(n−1), which is the claim of the lemma.

We complete the proof by deriving the bound in (3.20). Note that Dii =
∑
j

Aij =
∑

j:Aij>0

Aij.

Hence, we can bound

P

(
n∑
j=1

|Aij −Aij| > tDii

)
≤
∑

j:Aij>0

P (|Aij −Aij| > tAij) .
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Thus, it suffices to show that for every i, j

P (|Aij −Aij| > tAij) ≤
2

n3
. (3.24)

To prove (3.24), we recall from (3.16) that Aij is a sum of independent random variables, and

we can use Bernstein inequality (Theorem 2.10) to bound its deviation from Aij. So, we have

P (|Aij −Aij| > tAij)

≤ P


∣∣∣∣∣∣∣∣

∑
i2<...<im

i,j /∈{i2,...,im}

Aii2...imAji2...im − E[Aii2...imAji2...im ]

∣∣∣∣∣∣∣∣ >
tAij

(m− 1)!


≤ 2 exp

 − t2A2
ij

2(m−1)!∑
i2<...<im

i,j /∈{i2,...,im}
Var(Aii2...imAji2...im) +

tAij
3(m−1)!

 .

Recall the assumption that the edge weight lie in [0, 1]. Hence, one can argue that

Var(Aii2...imAji2...im) ≤ E[Aii2...imAji2...im)].

So, one can bound the sum of variances from above by Aij. Using the condition t < 1 and

Aij ≥ Amin > 9(m− 1)! lnn, one arrives at (3.24).

Proof of Lemma 3.10

This proof is a typical example of the use of the matrix perturbation results, Theorems 2.7

and 2.8, in the analysis of spectral methods.

Note that in order to perform a valid row normalization of X, first we need to ensure that

the rows of X are non-zero with high probability. We use standard graph theoretic arguments to

prove this. For this, consider a graph with weighted adjacency matrix A. Then Dii corresponds

to the degree of vertex i, and the subsequent steps of HOSVD correspond to normalized spectral

clustering. The bound (3.23) shows that for all i ∈ V,

Dii ≥ Dii

1− 3

√
(m− 1)! lnn

Amin

 > 0

under the condition on Amin. Thus, the associated graph does not have any isolated vertex
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with probability (1−O(n−1)).

von Luxburg (2007) studied the normalized graph Laplacian L = I − D−1/2AD−1/2, and

concludes the following:

• L is positive semi-definite with eigenvalues in [0, 2].

• The multiplicity of 0 eigenvalue of L is equal to the number of connected components of

the hypergraph.

• Provided that Dii > 0 for all i, for each zero eigenvalue of L, there is an eigenvector with

non-zero coordinates for one connected component.

Though we deal with the matrix D−1/2AD−1/2 instead of the Laplacian, one can note that

these matrices are equivalent in the sense that if (λ, v) is an eigen pair of D−1/2AD−1/2, then

(1− λ, v) is an eigen pair of L. Hence, the dominant k eigenvectors of D−1/2AD−1/2, given in

X, are same as the leading eigenvectors of L.

From the condition δ > 0 in Lemma 3.8, there is a strictly positive eigen-gap between the

kth and (k + 1)th eigenvalues of D−1/2AD−1/2, and hence, L = I −D−1/2AD−1/2 has atmost k

zero eigenvalues. Denoting λi(L), λi(L) as the ith smallest eigenvalues of L,L respectively, we

have δ ≤ δ̃ = λk+1(L)− λk(L), where δ̃ is defined in (3.19). Also, we can use Weyl’s inequality

(Theorem 2.7) to claim that for all i = 1, . . . , n,

|λi(L)− λi(L)| ≤ ‖L− L‖2 = ‖D−1/2AD−1/2 −D−1/2AD−1/2‖2 ≤ 12

√
(m− 1)! lnn

Amin

<
δ

2

if δ and Amin satisfy the prescribed condition. Thus

λk+1(L) ≥ λk+1(L)− δ

2
= λk(L) +

δ

2
> 0,

which means L has at most k zero eigenvalues, i.e, at most k connected components. Since,

all vertices have positive degrees almost surely, hence, every vertex corresponds to a connected

component. Due to third property of L, for every vertex, at least one of the k leading eigenvec-

tors has a non-zero component, and hence, every row of X is non-zero. Thus, X is well-defined.

We now prove the second claim of the lemma. Let us view D−1/2AD−1/2 as an additive per-

turbation of D−1/2AD−1/2. Corollary 2.9 derived from the Davis-Kahan perturbation theorem

suggests that for an orthonormal matrix U1 ∈ Rk×k,

‖X − XU1‖F ≤
√

2k
‖D−1/2AD−1/2 −D−1/2AD−1/2‖2

δ
,
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and hence,

‖X − Z(ZTZ)−1/2Q‖F ≤
√

2k
‖D−1/2AD−1/2 −D−1/2AD−1/2‖2

δ
, (3.25)

where Q = UU1 is also orthonormal.

One can see that ith row of Z(ZTZ)−1/2Q is Zi·(Z
TZ)−1/2Q, and the norm of ith row is

(ZTZ)
−1/2
ψiψi

. Thus, on row normalization of this matrix, one obtains ZQ. Hence,

‖X − ZQ‖2
F =

n∑
i=1

∥∥∥ 1
‖Xi·‖2Xi· − Zi·Q

∥∥∥2

2

=
n∑
i=1

∥∥∥( 1
‖Xi·‖2 − (ZTZ)

1/2
ψiψi

)
Xi· + (ZTZ)

1/2
ψiψi

(
Xi· − Zi·(ZTZ)−1/2Q

)∥∥∥2

2

Now, ∥∥∥( 1
‖Xi·‖2 − (ZTZ)

1/2
ψiψi

)
Xi· + (ZTZ)

1/2
ψiψi

(
Xi· − Zi·(ZTZ)−1/2Q

)∥∥∥2

2

≤
√

(ZTZ)ψiψi
(∣∣‖Zi·(ZTZ)−1/2Q‖2 − ‖Xi·‖2

∣∣+ ‖Xi· − Zi·(ZTZ)−1/2Q‖2

)
≤ 2
√

(ZTZ)ψiψi‖Xi· − Zi·(ZTZ)−1/2Q‖2 .

Substituting this bound above, we get

‖X − ZQ‖2
F ≤ 4

n∑
i=1

(ZTZ)ψiψi‖Xi· − Zi·(ZTZ)−1/2Q‖2
2

≤ 4n1‖X − Z(ZTZ)−1/2Q‖2
F ,

where n1 = maxj(Z
TZ)jj is the size of the largest cluster since we assumed that n1 ≥ . . . ≥ nk.

The bound in (3.14) follows by combining above bound with (3.25) and Lemma 3.9.

Proof of Lemma 3.11

From (3.14), we have an upper bound on ‖X − ZQ‖F with probability (1−O(n−1)). For

convenience, let us denote this upper bound by β. The condition in (3.11) implies that

β ≤ 24

√
2(m− 1)!nk

C lnn
≤
ε
√
nk

2
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if C is chosen sufficiently large. For large enough n, above inequality implies

β ≤ ε (
√
nk − β) , (3.26)

which will be used to prove ε-separability, i.e, ηk(X) ≤ εηk−1(X). Since ZQ has exactly k

distinct rows, we have ηk(X) ≤ ‖X −ZQ‖F ≤ β. On the other hand, observe that all matrices

in Mn×k(r) have rank at most r. Hence,

ηk−1(X) = min
S∈Mn×k(k−1)

‖X − S‖F ≥ min
rank(S)≤(k−1)

‖X − S‖F .

It is well known that the minimum of the last quantity is λk(X), which is the smallest singular

value of X. Also Mirsky’s theorem (Stewart and Sun, 1990) gives a bound on the perturbation

of singular values, and hence, we have

∣∣λi(X)− λi(ZQ)
∣∣ ≤ ‖X − ZQ‖2 ≤ β

for i = 1, . . . , k. Note here that the singular values of ZQ are λi(ZQ) =
√
ni, where the ordering

of the values is due to our assumption n1 ≥ . . . ≥ nk. From above arguments

ηk−1(X) ≥ λk(X) ≥ (λk(ZQ)− β) = (
√
nk − β) .

Hence, it follows that ε-separability holds when (3.26) is satisfied, which is true under the

assumption in (3.11).

Proof of Lemma 3.12

We observe from the proof of Lemma 3.10 that the k distinct rows of ZQ, form an orthonormal

set of vectors in Rk. Hence, for any i, j ∈ V, ‖Zi·Q − Zj·Q‖2 = 0 or
√

2, where the former

occurs if Zi· = Zj·, i.e, ψi = ψj, and the latter occurs if ψi 6= ψj. Now, consider i, j /∈ Verr. We

have ‖S∗i· − Zi·Q‖2 <
1√
2
, ‖S∗j· − Zj·Q‖2 <

1√
2
, and hence,

‖Zi·Q− Zj·Q‖2 ≤ ‖S∗i· − Zi·Q‖2 + ‖S∗j· − Zj·Q‖2 + ‖S∗i· − S∗j·‖2 <
√

2

whenever S∗i· = S∗j·. So, from the previous observation, ‖Zi·Q−Zj·Q‖2 = 0, i.e, ψi = ψj, which

proves the first claim.
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To prove the second claim, note that for all i ∈ Verr, we have 2‖S∗i·−Zi·Q‖2
2 ≥ 1. Therefore,

|Verr| =
∑
i∈Verr

1 ≤ 2
∑
i∈Verr

‖S∗i· − Zi·Q‖2
2 ≤ 2‖S∗ − ZQ‖2

F . (3.27)

Since, S∗ is a sub-optimal solution satisfying (2.25), we can write ‖X − S∗‖F ≤ γ‖X − S‖F ,

for all S ∈Mn×k(k). In particular, ZQ ∈Mn×k(k) and so ‖X − S∗‖F ≤ γ‖X − ZQ‖F . Hence,

‖S∗ − ZQ‖F ≤ ‖X − ZQ‖F + ‖X − S∗‖F ≤ (1 + γ)‖X − ZQ‖F .

The lemma follows by combining above inequality with (3.27), and using the relation (1+γ)2 ≤
2(1 + γ2).
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‘As you yourself have said, what other explanation can

there be?’

Poirot stared straight ahead of him. ‘That is what I

ask myself,’ he said. ‘That is what I never cease to ask

myself.’

Agatha Christie, Murder on the Orient Express

Chapter 4

Revisiting Uniform Hypergraph

Partitioning

We begin this chapter with our minds reset to the starting point of the hypergraph partitioning

problem. We attempt to formulate the problem from the scratch following the lines of the

graph partitioning formulation developed in Section 2.2. Extensions of the cut minimization

problems (2.12)–(2.13) have been studied for both uniform (Hu and Qi, 2012) as well as non-

uniform hypergraphs (Bolla, 1993; Zhou et al., 2007). The latter extension will be discussed in

Chapter 5, while the former is known to be quite complex and applicable only for even uniform

hypergraphs. Hence, the results in (Hu and Qi, 2012) do not immediately lead to practical

algorithms.

Instead of discussing hypergraph cut formulations, we dedicate this chapter for extension

of the associativity maximization problems (2.14)–(2.15) to uniform hypergraphs. Section 4.1

presents this extension, while Section 4.2 shows that our formulation has connections with a

wide variety of approaches in machine learning as well as some tensor problems. We then

present a spectral algorithm in Section 4.3, and establish its consistency, and superiority over

HOSVD. The proofs of the technical results are given in Appendix 4.A. Further extension to

non-uniform hypergraphs is postponed to Chapter 5.

4.1 Tensor trace maximization for uniform hypergraphs

We define the notion of associativity and volume in the case of a weighted hypergraph (V,E, w).

The corresponding definitions for unweighted hypergraph can be obtained by simply considering

a binary weight function w : E→ {0, 1}. For ease of notation, we use we = w(e) to denote the
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weight of an edge e ∈ E.

The degree of a vertex i ∈ V is the total weight of edges on which i is incident, i.e, deg(i) =∑
e∈E:i∈e

we. For any collection of vertices V1 ⊆ V, let the volume be defined as in graphs,

Vol(V1) =
∑
i∈V1

deg(i), and the associativity of V1 be given by Assoc(V1) =
∑

e∈E:e∈V1

we|e|. We

define the normalized hypergraph associativity of a partition V1, ...,Vk as

NH-Assoc(V1, . . . ,Vk) =
k∑
`=1

Assoc(V`)

Vol(V`)
=

k∑
`=1

∑
e∈E:e⊂V`

we|e|
Vol(V`)

. (4.1)

Observe that the above definition of normalized associativity coincides with the same quantity

defined in graphs (Shi and Malik, 2000), up to a factor of 2. For a m-uniform hypergraph, the

associativity of a cluster V1 is the total weight of edges contained in V1 scaled by a factor m.

The reason for this additional will be discussed in Remark 5.3 in Chapter 5, where we deal with

non-uniform hypergraphs.

We now consider the problem of finding a partition of V that maximizes the normalized

hypergraph associativity (4.1). Section 2.2 discusses a reformulation of the problem in terms

of the adjacency matrix. Subsequently, a trace maximization1 objective can be stated, whose

spectral relaxation leads to the spectral clustering algorithm. A similar approach is possible in

the case of m-uniform hypergraphs. Let |V| = n and A ∈ Rn×...×n be the weighted adjacency

tensor of order m such that

Ai1i2...im =

{
we if there exists e ∈ E such that e = {i1, i2, . . . , im},
0 otherwise.

(4.2)

We make the following claim, which is derived in Appendix 4.A.

Proposition 4.1. Consider β1, . . . , βm ∈ [0, 1] such that
m∑
r=1

βr = 1, and define the matrices

Y
(1)
, . . . , Y

(m) ∈ Rn×k with

Y
(r)

i` =

(
1{i ∈ V`}
Vol(V`)

)βr
. (4.3)

Then, one may express the normalized associativity (4.1) as

NH-Assoc(V1, . . . ,Vk) =
1

(m− 1)!
Trace

(
A×1 Y

(1)T ×2 Y
(2)T ×3 . . .×m Y

(m)T
)
. (4.4)

1The trace minimization for normalized graph Laplacian (2.18) is equivalent to a trace maximization problem
for the normalized adjacency matrix D−1/2AD−1/2.
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Thus, for a chosen set of parameters β1, . . . , βm, one can pose the normalized associativity

maximization problem as the that of multiplying a tensor with appropriate orthogonal matrices

such that the trace of the resultant tensor is maximized. More precisely, the optimization

problem at hand is the following:

maximize
Y

(1)
,...,Y

(m)
Trace

(
A×1 Y

(1)T ×2 Y
(2)T ×3 . . .×m Y

(m)T
)
, (4.5)

where Y
(1)
, . . . , Y

(m)
are of the form given in (4.3). We call this a tensor trace maximization

(TTM) problem, and show that this problem lies at the heart of higher-order learning. One can

also extend the definition of ratio associativity (2.15) to uniform hypergraphs, where Vol(V`)

is replaced by |V`| in (4.1).

4.2 Connection with existing works

The purpose of this section is to demonstrate the ubiquity of the problem of maximizing

NH-Assoc(V1, . . . ,Vk). This formulation unifies a variety of uniform hypergraph partitioning

techniques that are apparently quite different from each other. Moreover, the trace maximiza-

tion problem also finds use in signal processing, and has connections to the tensor eigenvalue

problem.

4.2.1 Relation with popular partitioning algorithms

Spectral clustering. Recall the formulation for normalized spectral clustering (Ng et al.,

2002) discussed in Section 2.2. The problem in (2.18) can be expressed for maximization of

normalized associativity (2.14), which reads as

minimize
Y

Trace
(
Y TD−1/2AD−1/2Y

)
, (4.6)

where Y ∈ Rn×k is of the form given in (2.17).

Consider the TTM problem (4.5) for m = 2, and choose β1 = β2 = 1
2
. It immediately

follows that (4.5) is equivalent to (4.6), where Y
(1)

= Y
(2)

= D−1/2Y . Modifications of the

objective function in (4.5) retrieves other variants of spectral clustering such as maximizing

ratio associativity (2.15), spectral relaxation of the k-means algorithm Zha et al. (2001) or

or spectral clustering with doubly stochastic normalization Zass and Shashua (2006). For

instance, ratio associativity maximization follows from (4.5) by choosing β1 = β2 = 1
2

and
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replacing Vol(V`) by |V`|.

Non-negative tensor factorization. Shashua et al. (2006) generalized the use of non-

negative matrix factorization for clustering to the case of tensors. The objective is to approx-

imate a normalized version of the adjacency tensor A by a sum of k rank-one tensors similar

to the CP-decomposition (Definition 2.5). The approximation is justified using probabilistic

arguments, and the associated optimization problem is stated as

minimize
y1,...,yk∈[0,∞)n orthonormal

∥∥∥∥∥A′ −
k∑
j=1

y⊗mj

∥∥∥∥∥
2

F

, (4.7)

where A′ is a normalized version A and ‖ · ‖2
F is the sum of squares of entries in the tensor

(similar to the matrix Frobenius norm). Ignoring the normalization, one can observe that∥∥∥∥∥A−
k∑
j=1

yj ⊗ yj ⊗ . . .⊗ yj

∥∥∥∥∥
2

F

= ‖A‖2
F + k − 2 Trace

(
A×1 Y

T ×2 . . .×m Y T
)
,

where Y = [y1 . . . yk]. Thus, (4.7) is equivalent to a relaxation of (4.5), where Y
(1)

= . . . =

Y
(m)

= Y is allowed to be a non-negative matrix with orthonormal columns.

Hypergraph reduction by clique expansion. In Chapter 2, we discussed the approach

of reducing a hypergraph to a graph. Agarwal et al. (2006) showed that various reduction

strategies and hypergraph Laplacian definitions primarily rely on a clique expansion or a star

expansion of a hypergraph. Moreover, both expansions have similar spectral properties in the

case of uniform hypergraphs.

Consider the spectral approach of (Agarwal et al., 2005), where the authors propose a spec-

tral partitioning of the graph obtained via clique expansion. This is equivalent to solving (2.18)

or (4.6) for a graph with adjacency matrix A ∈ Rn×n given by Aij =
∑

e∈E:e3i,j
we. For a m-uniform

hypergraph, this can be written in terms of the adjacency tensor A as

Aij =
1

(m− 2)!

n∑
i3,...,im=1

Aiji3...im . (4.8)

A similar reduction, without the constant scaling, was is used in the tensor based approach

geometric grouping method of (Arias-Castro et al., 2011).

The combined formulation of (4.8) followed by (4.6) is a special case of the TTM prob-

lem (4.5), where β1 = β2 = 1
2

and β3 = . . . = βm = 0. This follows since for βr = 0, Y
(r)

is
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a constant matrix of ones, which in turn leads to summation of all entries of A along the rth

dimension. Hence, one obtains the matrix A in (4.8) for β3 = . . . = βm = 0.

Hypergraph matching via tensor power iterations. The hypergraph matching problem,

described in Section 2.4.5, is to find one-one correspondences between two sets, each consisting

of s points. As discussed in Section 2.4.5, the problem is similar to partitioning a m-uniform

hypergraph with n = s2 vertices.

Let A be the associated weighted adjacency tensor, and let S ∈ {0, 1}s×s denote the cor-

respondence matrix. Note that ‖S‖2
F = s. Typically, one solves this problem by optimizing a

score function as (Duchenne et al., 2011; Lee et al., 2011)

maximize
y∈{0,1}s2 :‖y‖22=s

n∑
i1,i2,...,im=1

Ai1i2...imyi1yi2 . . . yim . (4.9)

where y ∈ {0, 1}s2 is a vectorized form of S.

Observe that the objective in (4.9) is same as A×1 y
T ×2 . . .×m yT , and hence, the above

problem is identical to (4.5), where one finds a single cluster V1 with |V1| = s vertices that

maximizes normalized associativity, i.e, k = 1. Duchenne et al. (2011) relaxed the problem to

the space y ∈ Rs2 , and proposed a tensor power iteration based algorithm to solve the relaxed

optimization.

Optimization with `p-norm constraint. This approach for hypergraph partitioning is quite

similar to the relaxation of (4.9) studied in (Duchenne et al., 2011), and has been used various

applications such as molecular network alignment (Michoel and Nachtergaele, 2012), subspace

clustering (Rota Bulo and Pelillo, 2013) and hypergraph matching (Liu et al., 2010),

Given the adjacency tensor A of a m-uniform hypergraph, the principle approach involves

finding a cluster V1 ⊂ V by solving the problem

maximize
y∈Rn:‖y‖p=1

n∑
i1,i2,...,im=1

Ai1i2...imy
1/p
i1
y

1/p
i2

. . . y
1/p
im

. (4.10)

The cluster is estimated from the entries of the optimal y and removed from the hypergraph.

This procedure is continued till all the clusters are found.

One class of methods (Rota Bulo and Pelillo, 2013; Liu et al., 2010) views y as a probability

distribution, that leads to restriction of the search space to non-negative vectors with unit

`1-norm constraint. On the other hand, a particular instance of the approach in (Michoel and
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Nachtergaele, 2012)1 is obtained by setting p = m in (4.10).

For p = m, we draw connection of this optimization problem to (4.5) by choosing β1 =

. . . = βm = 1
m

and k = 1. In this case, if Y (r) ∈ Rn×1 in (4.3) is defined using |V1| instead of

Vol(V1), then (4.10) coincides with a relaxation of this TTM problem. On the other hand, the

`1-norm version is similar to assuming β1 = . . . = βm = 1. Alternatively, one may also view it

as a `2-norm problem involving a 2m-uniform hypergraph on V with the adjacency tensor A′

of order 2m such that

A′i1i2...i2m = Ai1i3...i2m−11{i` = i`+1∀` = 1, 3, ..,m− 1}.

for all i1, i2, . . . , i2m ∈ V. The `1-norm constraint gets modified to `2-norm by defining y′ ∈ Rn

with y′i =
√
yi for i = 1, . . . , n. This shows that (4.10) with `1-norm constraint is similar to

the `2-norm problem (4.9). A further connection of these formulations to the tensor eigenvalue

problem is established below.

4.2.2 Related problems in tensor literature

Due to the form of the matrix Y
(r)

in (4.3), one can note that the optimization in (4.5) is essen-

tially that of maximizing the trace of a tensor via orthogonal transformations. This problem has

been previously studied in the signal processing community for blind source separation (Comon,

2001). One also solves a variant of this where the sum of squares of diagonal elements is maxi-

mized, and hence, one finds an approximate solution in the form of

maximize
Y

(1)
,...,Y

(m)

k∑
`=1

(
A×1 Y

(1)T ×2 Y
(2)T ×3 . . .×m Y

(m)T
)2

``...`

, (4.11)

One can argue that such an objective leads to an higher order SVD based approach (Defini-

tion 2.6). To this end, the formulation in (4.5) complements the discussions in Chapter 3 in the

sense that both methods try to perform higher-order clustering by formulating the problem as

two well-known tensor problems related to maximization of diagonal terms.

The normalized associativity maximization formulation (4.5) is also related to the tensor

eigenvalue problem of Lim (2005) presented in (2.8), where the mth-order tensor A is viewed

as a m-linear functional. This connection follows from (4.9) and (4.10), where we showed that

these approaches are closely related to (4.5). A more general result can be stated in this respect.

1Michoel and Nachtergaele (2012) proposed their method for non-uniform hypergraphs, where the exponent
of y is 1/|e|, and the unit `p-norm constraint uses a fixed parameter p.
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Corollary 4.2. Consider a special case of (4.5), where we impose the condition Y
(1)

= . . . =

Y
(m)

= Y , and let y1, . . . , yk be the columns of Y ∈ Rn×k. The objective in (4.5) simplifies as

Trace
(
A×1 Y

T . . .×m Y T
)

=
k∑
`=1

A×1 y
T
` ×2 y

T
` ×3 . . .×m yT` , (4.12)

where each term in the sum is the normalized associativity of individual clusters.

Subsequently, if the problem (4.5) is relaxed with the only constraint being ‖y`‖p = 1 for

` = 1, . . . , k, then the stationary points of the optimization correspond to matrices Y , whose

columns correspond to `p-eigenvectors of A.

4.3 A consistent spectral algorithm

A spectral relaxation of (4.5) is a two-fold procedure, where first we construct a matrix from the

weighted adjacency tensor A, and then relax the problem into a matrix spectral decomposition

type objective. This principle is reminiscent of the classical technique for studying spectral

properties of hypergraphs (Chung, 1992; Bolla, 1993), and is closely related to approach of

clustering graph approximations of hypergraphs (Agarwal et al., 2006).

Algorithm TTM : Spectral relaxation of tensor trace maximization problem

Input: Affinity tensor A of the m-uniform hypergraph (V,E, w) with |V| = n.

1: Define the matrix A ∈ Rn×n as Aij =
n∑

i3,...,im=1

Aiji3...im .

2: Let D ∈ Rn×n be diagonal with Dii =
n∑
j=1

Aij.

3: Compute k dominant orthonormal eigenvectors of D−1/2AD−1/2, denoted by X ∈ Rn×k .
4: Normalize rows of X to have unit norm, and denote this matrix as X.
5: Run k-means on the rows of X.

Output: Partition of V that corresponds to the clusters obtained from k-means.

4.3.1 Consistency under planted partition model

In the rest of the section, we study the consistency of the above spectral algorithm under the

planted partition model described in Section 3.3. Recall that if ψ and ψ′ denote the true and

output labels, the the clustering error is defined as in (2.20). The following result shows the

consistency of Algorithm TTM.
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Theorem 4.3. Let (V,E, w) be a m-uniform hypergraph on |V| = n vertices generated from

a random model with k planted vertex classes, where n is sufficiently large. Define d =

min
1≤i≤n

E[deg(i)] and, without loss of generality, assume that the cluster sizes are n1 ≥ n2 ≥
. . . ≥ nk. Also assume that the algorithm uses the approximate k-means method (Ostrovsky

et al., 2012).

There exists an absolute constant C > 0 and a quantity δ (function of n), such that, if δ > 0

and

d >
Ckn1(lnn)2

nkδ2
, (4.13)

then with probability (1− o(1)), the clustering error of TTM is

ErrorTTM(ψ, ψ′) = O

(
kn1 lnn

δ2d

)
= o(n). (4.14)

Note that d obviously grows with n though this dependence is not made explicit in the

notation. We also allow k to vary with n. The lower bound of d in (4.13) ensures that the

hypergraph is sufficiently dense so that the following three conditions hold, respectively: (i) the

matrix A computed in Algorithm TTM concentrates near its expectation, (ii) the k dominant

eigenvectors of D−1/2AD−1/2 contain information about the partition, and (iii) the k-means step

provides a near optimal solution. The result proves a weak consistency of the TTM algorithm.

However, we show later in Section 4.3.2, stronger results can be achieved in certain cases.

4.3.2 A Special Case

To gain insights into the implications of Theorem 4.3, we consider the following special case of

the planted partition model. The partition ψ is defined such that the k clusters are of equal

size. Moreover, the tensor B(m) in (3.6) is given by B
(m)
j1j2...jm

= (p + q) if j1 = j2 = . . . = jm,

and q otherwise, where p, q ∈ [0, 1] with q ≤ (1− p). Thus, in this model, edges residing within

each cluster have a high weight (in the expected sense) as compared to other edges1. We state

the following consistency result for dense hypergraphs.

Corollary 4.4. Let αm = 1 and k = O
(
n1/4

lnn

)
. Then with probability (1− o(1)),

ErrorTTM(ψ, ψ′) = O

(
n(3−m)/2

(lnn)2m−3

)
. (4.15)

1 The model considered here may be viewed as the four parameter stochastic block model (Rohe et al.,
2011) defined by the parameters (n, k, pn, qn), where n vertices are divided into k parts of equal size. Edges
within a cluster occur with probability (pn + qn), while inter-cluster edges occur with probability qn. Here, we
set pn = αmp and qn = αmq for some constants p, q ∈ [0, 1] with q ≤ (1− p).
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According to the notions of consistency defined in (Mossel et al., 2013b), it can be seen

that for m = 2, Algorithm TTM is weakly consistent, i.e, ErrorTTM(ψ, ψ′) = o(n). We note

here that, in this sense, the algorithm is not worse than spectral clustering that is also known

to be weakly consistent (Rohe et al., 2011). However, for m ≥ 3, ErrorTTM(ψ, ψ′) = o(1) for

Algorithm TTM, which implies that it is strongly consistent in this case. In other words,

the algorithm can exactly recover the partition for large n. Intuitively, this conclusion seems

appropriate since in this case, uniform hypergraphs for large m have a large number of edges

that provides ‘more’ information about the partition. Hence, a faster decay rate for the error

should be expected.

In the sparse regime, the question one is interested in is the minimum level of sparsity

under which weak consistency of an algorithm can be proved. The following result answers this

question.

Corollary 4.5. Let k = O (lnn). There exists an absolute constant C > 0, such that, if

αm ≥
C(lnn)2m+1

nm−1
, (4.16)

then ErrorTTM(ψ, ψ′) = O
(

n
(lnn)2

)
= o(n) with probability (1− o(1)).

In the case of graphs (m = 2), Lei and Rinaldo (2015) showed that weak consistency is

achieved by spectral clustering for αm ≥ C lnn
n

. It is important to note that our bound is

worse by logarithm factors, but at the same time, Corollary 4.5 makes no assumption about

the performance of k-means.

We also comment on the theoretical performance of TTM in comparison with the Algo-

rithm HOSVD. In particular, we focus on the settings of Corollaries 4.4 and 4.5, and argue that

in both cases, TTM is provably better than HOSVD.

Corollary 4.6. Under the setting of Corollary 4.4, the error bound for the HOSVD algorithm

is

ErrorHOSVD(ψ, ψ′) = O

(
n(4−m)/2

(lnn)2m−1

)
.

Thus TTM has a smaller error bound than HOSVD.

Similarly, in the case of Corollary 4.5, the lower bound on sparsity for HOSVD is

αm ≥
C ′(lnn)m+1.5

n(m−1)/2
,

which is larger than the allowable sparsity for TTM.

71



4.3.3 Proof of Theorem 4.3

Here, we give an outline of the proof of Theorem 4.3 using a series of technical lemmas. The

proofs of these results are given in Appendix 4.A. The proof has a modular structure which

consists of (i) deriving certain conditions on the model parameters such that Algorithm TTM

incurs no error in the expected case, (ii) subsequent use of matrix concentration inequalities

and spectral perturbation bounds to claim that (almost surely) the dominant eigenvectors in

the random case do not deviate much from the expected case, and (iii) finally, the proof of

correctness of the k-means step.

To analyze the algorithm in the expected case, let A = E[A] and D = E[D], where A and

D are the matrices computed in Algorithm TTM. Observe that if the expected affinity tensor

is input to the system, then A corresponds to the matrix computed in the first step of the

algorithm, and Dii =
n∑
j=1

Aij. From the definition of the model, it can be seen that Aii = 0 for

all i, and for i 6= j,

Aij = (m− 2)!
∑

i3<i4<...<im,
i,j /∈{i3,...,im}

αmB
(m)
ψiψjψi3 ...ψim

, (4.17)

where the factor (m−2)! takes into account all permutations of {i3, . . . , im}. The key observation

here is that Aij = Ai′j′ whenever ψi = ψi′ and ψj = ψj′ , which holds since, under the present

model, vertices in the same cluster are statistically identical. Thus, one can define a matrix

G ∈ Rk×k such that Aij = Gψiψj for all i 6= j. This implies that, ignoring the diagonal entries,

A is essentially of rank k.

Let Z ∈ {0, 1}n×k be the assignment matrix corresponding to partition ψ, i.e, Zij = 1{i ∈
ψ−1(j)}, and let the sizes of the k clusters be n1 ≥ n2 ≥ . . . ≥ nk. We define

δ = λk(G) min
1≤i≤n

nψi
Dii

− max
1≤i,j≤n

∣∣∣∣Gψiψi

Dii

−
Gψjψj

Djj

∣∣∣∣ , (4.18)

where λk(G) is the smallest eigenvalue of G. Also define Dmin = min
1≤i≤n

Dii. One can argue that

Dmin = (m − 1)!d. Hence, for the subsequent analysis as well as for all the proofs, it is more

convenient to state (4.13) as

Dmin >
Ckn1(lnn)2

nkδ2
, (4.19)

where the constant C takes into account the additional factor of (m − 1)!. Similarly, one can

replace d by Dmin in the error bound (4.14). We now state the following result, which is proved
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in Appendix 4.A.

Lemma 4.7. If δ in (4.18) satisfies δ > 0, then there exists an orthonormal matrix U ∈ Rk×k

such that the k dominant orthonormal eigenvectors of D−1/2AD−1/2 correspond to the columns

of the matrix X = Z(ZTZ)−1/2U .

It is easy to see that X has k distinct rows, each corresponding to a true cluster. Hence,

clustering the rows of X (or its row normalized form) using k-means results in an accurate

clustering of the vertices. The subsequent results show that the eigenvector matrix X computed

from a random realization of the hypergraph is close to X almost surely, and hence, one can

expect a good clustering even in that case.

Lemma 4.8 proves a concentration bound for the normalized affinity matrix L computed in

Algorithm TTM. The proof, given in the appendix, relies on an useful characterization of the

matrix A. To describe this representation, we define for each edge e ∈ E, a matrixRe ∈ {0, 1}n×n

as (Re)ij = 1 if i, j ∈ e, i 6= j, and zero otherwise. Quite similar to the representation of (4.17),

one can note that

A = (m− 2)!
∑
e∈E

weRe . (4.20)

This characterization is quite useful since the independence of (we)e∈E ensures that A is repre-

sented as a sum of independent random matrices, and hence, one can use matrix concentration

inequalities (Tropp, 2012) to derive a tail bound for ‖A−A‖2.

Lemma 4.8. If Dmin > 9(m− 1)! lnn, then with probability (1−O(n−2))

‖D−1/2AD−1/2 −D−1/2AD−1/2‖2 ≤ 12

√
(m− 1)! lnn

Dmin

. (4.21)

Notice the similarity of the above result with Lemma 3.9 stated for the HOSVD algorithm,

where we had Amin instead of Dmin. As a consequence, the subsequent analysis of HOSVD

presented in Lemmas 3.10–3.12 can be directly borrowed to prove Theorem 4.3.

4.A Proofs for results in this chapter

Proof of Proposition 4.1

Observe that the claim follows if we show that

Assoc(V`)

Vol(V`)
=

1

(m− 1)!

(
A×1 Y

(1)T ×2 Y
(2)T ×3 . . .×m Y

(m)T
)
``...`

.
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This holds since(
A×1 Y

(1)T ×2 Y
(2)T ×3 . . .×m Y

(m)T
)
``...`

=
n∑

i1,i2,...,im=1

Ai1i2...imY
(1)

i1`
Y

(2)

i2`
. . . Y

(m)

im`

=
n∑

i1,i2,...,im=1

Ai1i2...im

1{i1 ∈ V`, . . . , im ∈ V`}
Vol(V`)

as
∑

r βr = 1, and taking power of indicator does not change the function. Note that in the

above summation, the terms with repeated indices are zero, while the other terms correspond

to each edge e = {i1, . . . , im} and have m! identical copies. Thus, we can write(
A×1 Y

(1)T ×2 Y
(2)T ×3 . . .×m Y

(m)T
)
``...`

= m!
∑
e∈E

we
1{e ⊂ V`}

Vol(V`)

= (m− 1)!
Assoc(V`)

Vol(V`)
,

which completes the proof.

Proof of Corollary 4.2

The relation in (4.12) follows from the definition of mode-k product using computations similar

to the above proof. For the second claim, observe that if the orthogonality constraint on

y1, . . . , yk is not imposed, then one could separately maximize each term of the summation.

Hence, the claim follows from the definition of `p-eigenvectors (see (2.8)).

Proof of Corollary 4.4

We begin by computing A as defined in (4.17)

Aij =



(m− 2)!αm

(
p
( n
k
−2

m−2

)
+ q
(
n−2
m−2

))
if i 6= j, ψi = ψj

(m− 2)!αmq
(
n−2
m−2

)
if i 6= j, ψi 6= ψj

0 if i = j.
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From the definition of G, Dmin and δ, one can compute that

Dmin = (m− 1)!αm

(
p

(
n
k
− 1

m− 1

)
+ q

(
n− 1

m− 1

))
, (4.22)

and

δ = λk(G)
n

kDmin

=
(m− 2)!αmpn

kDmin

(
n
k
− 2

m− 2

)
(4.23)

We need to validate that the conditions in (4.13), or equivalently (4.19), are satisfied. Given

αm = 1, one can see that Dmin = Θ(nm−1). Also

δ2Dmin = Θ

((n
k

)2m−2 1

Dmin

)
= Θ

(
nm−1

k2m−2

)
= Ω

(
n(m−1)/2(lnn)2m−2

)
,

taking into account that k = O
(
n1/4

lnn

)
. Thus, the condition in (4.19) holds for large n and for

all m ≥ 2. Subsequently, one can applying the bound in (4.14) to claim the result.

Proof of Corollary 4.5

Assume the condition k = O(lnn) as stated. Then one can see that (4.19) holds if

Dmin = Ω

(
(lnn)3

δ2

)
.

From (4.22) and (4.23), we have Dmin = Θ(αmn
m−1) and δ2Dmin = Ω (αmn

m−1(lnn)2−2m).

Hence, choosing αm ≥ C(lnn)2m+1

nm−1 for sufficiently large C ensures that (4.19) is satisfied. Subse-

quently with probability
(
1−O

(
n−2 + (lnn)−1/4

))
= (1− o(1)), we obtain an error bound

ErrorTTM(ψ, ψ′) = O

(
n lnn

δ2Dmin

)
= O

(
n lnn

αmnm−1(lnn)2−2m

)
= O

(
n

(lnn)2

)
= o(n) ,

which completes the proof.

Proof of Corollary 4.6

From the balanced k-partition model described in the section, one can verify that in the case

of HOSVD, Amin = Θ(α2
mn

m−1) and δ = Θ(k−m).

Let us first look at the setting of Corollary 4.4 with αm = 1 and k = O
(
n1/4

lnn

)
. Then the
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right hand side of (3.11) is

Ck(lnn)2

δ2
= Θ(k2m+1(lnn)2) = o(nm−1)

and hence, eventually must be smaller than Amin. So, the condition of Theorem 3.7 is satisfied

and the error bound is

ErrorHOSVD(ψ, ψ′) = O

(
n lnn

δ2Amin

)
= O

(
k2m lnn

nm−2

)
,

which simplifies to the stated error bound.

In the sparse case, i.e, setting of Corollary 4.5, the right hand side of (3.11) is Θ((lnn)2m+3),

while Amin = Θ(α2
mn

m−1). Thus, the condition (3.11) holds only if the stated lower bound on

αm is satisfied.

Proof of Lemma 4.7

From the discussions following (4.17), one can see that the matrix A may be expressed as

A = ZGZT − J ,

where J ∈ Rn×n is diagonal with Jii = Gψiψi . From the proof of Lemma 3.8, one can see that

there is a matrix G ∈ Rk×k with eigen decomposition G = UΛ1U
T such that

D−1/2AD−1/2X = XΛ1,

where X = Z(ZTZ)−1/2U , and it satisfies XTX = I. Thus, the columns of X are orthonormal

eigenvectors of D−1/2AD−1/2 corresponding to the eigenvalues in Λ1. The other (n − k) or-

thonormal eigenvectors correspond to eigenvalues from the set
{
− Jii

Dii
: 1 ≤ i ≤ n

}
. The claim

follows by proceeding along the lines of the proof of Lemma 3.8.

Proof of Lemma 4.8

We begin the proof with the claims that if Dmin > 9(m− 1)! lnn, then

P

max
1≤i≤n

∣∣∣∣Dii

Dii

− 1

∣∣∣∣ > 3

√
(m− 1)! lnn

Dmin

 ≤ 2

n2
, (4.24)
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and

P

‖D−1/2(A−A)D−1/2‖2 > 3

√
(m− 1)! lnn

Dmin

 ≤ 2

n2
. (4.25)

We now bound ‖D−1/2AD−1/2 − D−1/2AD−1/2‖2 using arguments as in Lemma 3.9, and can

write

‖D−1/2AD−1/2 −D−1/2AD−1/2‖2

≤ max
1≤i≤n

∣∣∣∣Dii

Dii

− 1

∣∣∣∣ (2 + max
1≤i≤n

∣∣∣∣Dii

Dii

− 1

∣∣∣∣)+ ‖D−1/2AD−1/2 −D−1/2AD−1/2‖2. (4.26)

Using the bounds in (4.24) and (4.25) along with the fact that 3
√

(m−1)! lnn
Dmin

< 1, one arrives at

the claim.

We now prove the concentration bound in (4.24). Observe that

Dii =
n∑
j=1

Aij =
n∑

i2,...,im=1

Aii2...im = (m− 1)!
∑

e∈E:e3i

we ,

where the last equality holds since the summation over all i2, . . . , im counts each edge containing

the ith vertex (m− 1)! times. Since, Dii is a sum of independent random variables, we can use

Bernstein inequality to obtain for any t > 0,

P (|Dii −Dii| > tDii) = P

(∣∣∣∣∣ ∑
e∈E:e3i

we − E[we]

∣∣∣∣∣ > tDii

(m− 1)!

)

≤ 2 exp

 −
(

tDii
(m−1)!

)2

2
∑

e∈E:e3i
Var(we) + 2

3
tDii

(m−1)!

 . (4.27)

Since we ∈ [0, 1], we have

∑
e∈E:e3i

Var(we) ≤
∑

e∈E:e3i

E[we] =
Dii

(m− 1)!
.

Substituting this in (4.27), we have

P (|Dii −Dii| > tDii) ≤ 2 exp

(
− t2Dii

3(m− 1)!

)
≤ 2 exp

(
− t2Dmin

3(m− 1)!

)
.
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The bound in (4.24) follows from above by setting t = 3
√

(m−1)! lnn
Dmin

, and using a union bound

over all i = 1, . . . , n.

Finally, we derive (4.25) using a matrix version of the Bernstein inequality (see Theo-

rem 2.11). Owing to the representation in (4.20), one can write

D−1/2(A−A)D−1/2 =
∑
e∈E

(m− 2)! (we − E[we])D
−1/2ReD

−1/2

as a sum of independent, zero mean random matrices. One can verify that ‖Re‖2 ≤ (m − 1),

and hence,

∥∥(m− 2)! (we − E[we])D
−1/2ReD

−1/2
∥∥

2
≤ (m− 1)!

Dmin

.

In addition, one can bound∥∥∥∥∥∑
e∈E

E
[(

(m− 2)! (we − E[we])D
−1/2ReD

−1/2
)2
]∥∥∥∥∥

2

= ((m− 2)!)2

∥∥∥∥∥∑
e∈E

Var(we)D
−1/2ReD

−1ReD
−1/2

∥∥∥∥∥
2

= ((m− 2)!)2

∥∥∥∥∥∑
e∈E

Var(we)
(
D−1Re

)2

∥∥∥∥∥
2

≤ ((m− 2)!)2 max
1≤i≤n

n∑
j=1

∑
e∈E

Var(we)
((

D−1Re

)2
)
ij

≤ ((m− 2)!)2

Dmin

max
1≤i≤n

1

Dii

∑
e∈E

E(we)
n∑
j=1

(
R2
e

)
ij
.

Here, the first inequality holds due to Gerschgorin’s theorem. Observing that the row sum of R2
e

is at most (m−1)2, the expression can be simplified to show that the quantity is bounded from

above by (m−1)!
Dmin

. Setting t = 3
√

(m−1)! lnn
Dmin

in Theorem 2.11, and combining above arguments,

one arrives at (4.25). This completes the proof.
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Whence, I often asked myself, did the principle of life

proceed? It was a bold question and one which has

ever been considered as a mystery; yet with how many

things are we upon the brink of becoming acquainted, if

cowardice or carelessness did not restrain our inquiries.

Mary Shelley, Frankenstein

Chapter 5

Partitioning Non-uniform Hypergraphs

Non-uniform hypergraphs do not come with simple representations in terms of symmetric adja-

cency matrices or tensors. The matrix that arises naturally in this case is the incidence matrix

H ∈ {0, 1}|V|×|E|, where Hie = 1 if the vertex i is contained in the edge e, and 0 otherwise. One

can note that the degree of any vertex i can be written as deg(i) =
∑

e∈EHie. Similarly, the

cardinality of any edge e is |e| =
∑

i∈VHie.

We start our discussions in Section 5.1 by extending the planted partition model to non-

uniform hypergraphs. Note here that the incidence matrix does not provide information about

edge weights. But Section 5.1 discusses an alternative representation that allows the possiblity

of edge weights. However, for simplicity, we restrict the subsequent analysis in this chapter

to unweighted non-uniform hypergraphs (V,E). We then present two approaches for non-

uniform hypergraph partitioning in Section 5.2. The consistency results are stated and proved

in Section 5.3, while its consequences under specific examples of the planted model are studied

in Section 5.4. The technical lemmas and corollaries in this chapter are proved in Appendix 5.A.

5.1 Planted partition in non-uniform hypergraphs

Let the set of vertices be V = {1, 2, . . . n}, and let ψ : {1, 2, . . . , n} → {1, 2, . . . , k} be a

partition of the vertices into k classes. A direct approach to define a model for planted non-

uniform hypergraphs would be in terms of a model for the random incidence matrix. This turns

out to be quite tricky as a block structure cannot be immediately seen from H. Instead, we

observe the following.

Remark 5.1. LetM ≥ 2 be an integer, representing the range or the maximum edge cardinality

in the hypergraph (V,E). For each m = 2, . . . ,M , define Em = {e ∈ E : |e| = m}. Then
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E =
M⋃
m=2

Em, and one may view (V,E) as a collection of m-uniform hypergraphs (V,Em) for

m = 2, . . . ,M .

We assume that there is no edge of size 0 or 1, which are not useful in a partitioning

problem. Remark 5.1 implies that it is possible to construct planted models for non-uniform

hypergraphs from a collection of uniform hypergraph models. Based on this observation, we

consider the planted partition model described below. In view of practical situations, we allow

both k and M to vary with n though this dependence is not made explicit in the notation. One

may set M = n to allow occurrence of all possible edges, but in practice, one often finds that

M = O(lnn) (see Section 8.1).

For every n and for each m = 2, . . . ,M , let αm ∈ [0, 1], and let B(m) ∈ [0, 1]k×k×...×k be a

symmetric tensor of order m. A random hypergraph on V is generated as follows. For each

m = 2, . . . ,M , and for every set {i1, i2, . . . , im} ⊂ V, an edge is included independently with

probability αmB
(m)
ψi1ψi2 ...ψim

. This process generates a random hypergraph of maximum edge

cardinality M . The tensor B(m) contains the probabilities of forming m-way edges among the

different classes if αm = 1. On the other hand, αm allows for a sparsity scaling that does

not depend on the partition. In real-world non-uniform hypergraphs, one often finds that the

density of 2 or 3-way edges is much more than edges of larger size (say, 10). To account for this

generality, we allow αm to vary both with m and n1. For instance, if α2 = 1 and αm = 1
nm−1

for all m > 2, then the generated hypergraph contains O(n2) number of 2-way edges, but only

O(n) number of m-way edges for every m > 2.

As a special case, note that for graphs, M = 2 for all n, and the model corresponds to the

sparse stochastic block model, where an edge {i, j} is formed with probability α2B
(2)
ψiψj

. In other

words, if Z ∈ {0, 1}n×k denotes the assignment matrix, then the probability of edge {i, j} is

same as the corresponding entry of α2ZB(2)ZT . For m-uniform uniform hypergraphs, one has

αr = 0 for all r 6= m. Thus, the above model specifies a hypergraph of range M as a collection

of uniform hypergraphs of orders m = 2, . . . ,M . Each m-uniform hypergraph is specified in

terms of αm and B(m). Following the lines of Chapters 3 and 4, one can easily extend this

model to weighted hypergraphs.

5.2 Spectral algorithms for non-uniform hypergraphs

We now turn our focus to hypergraph partitioning. It would be quite natural to continue our

discussions from Chapter 4, where we partition a hypergraph by maximizing the normalized

1 The dependence on n is not made explicit in the notation.
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hypergraph associativity (4.1).

5.2.1 Normalized hypergraph associativity maximization

Viewing a non-uniform hypergraphs as a collection of uniform hypergraphs motivates one to

extend TTM. We present this extended algorithm, listed in Algorithm TTM-ext, without ten-

sorial terminology and in terms of the incidence matrix H. However, Proposition 5.2 shows

this method indeed solves a relaxation of normalized associativity maximization problem (4.5).

Algorithm TTM-ext : Extension of TTM to non-uniform hypergraphs

Input: Incidence matrix H of a hypergraph (V,E) with |V| = n.

1: Let D ∈ Rn×n,∆|E|×|E| be diagonal with Dii =
|E|∑̀
=1

Hi`, and ∆`` =
n∑
i=1

Hi`.

2: Define the matrix A ∈ Rn×n as

Aij =

{ (
H(∆− I)−1HT

)
ij

if i 6= j,

0 if i = j.
(5.1)

3: Compute k dominant orthonormal eigenvectors of D−1/2AD−1/2, denoted by X ∈ Rn×k .
4: Normalize rows of X to have unit norm, and denote this matrix as X.
5: Run k-means on the rows of X.

Output: Partition of V that corresponds to the clusters obtained from k-means.

Proposition 5.2. For a non-uniform hypergraph (V,E), Algorithm TTM-ext is equivalent to

either of the following two procedures:

1. (Spectral relaxation of trace maximization)

Let A(m), m = 2, . . . ,M , denote the adjacency tensors for the m-uniform components of

(V,E) described in Remark 5.1. Then Algorithm TTM-ext is a standard spectral relaxation

(see (4.6)) of the following optimization:

maximize
V1,...,Vk

M∑
m=2

1

(m− 1)!
Trace

(
A(m) ×1 Y

(1)T ×2 Y
(2)T ×3 . . .×m Y

(m)T
)
, (5.2)

where Y
(r) ∈ Rn×k is given by Y

(r)

i` =

(
1{i ∈ V`}
Vol(V`)

)βr
with β1 = β2 = 1

2
and βr = 0 for all

r ≥ 3.

2. (Spectral partitioning of clique expansion)

Ignoring the edge scaling due to (∆− I)−1, the matrix A computed in (5.1) is identical to
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the adjacency matrix of the clique expansion defined in (Rodŕıguez, 2002). Thus, Algo-

rithm TTM-ext corresponds to normalized spectral clustering on the clique expansion of a

hypergraph.

Note that the objective in (5.2) is same as the the normalized hypergraph associativity,

NH-Assoc(V1, . . . ,Vk) (4.1), when there are edges of varying size. Thus, the above result

shows that TTM-ext is a spectral relaxation of the associativity maximization problem. It also

indicates that from the perspective of normalized associativity maximization, simply expanding

each edge into a clique (Rodŕıguez, 2002) may not be sufficient, and one should put additional

weights for the constructed edges.

5.2.2 Normalized hypergraph cut minimization

Till now, we have only dealt with the associativity maximization problem. We now discuss

extensions of the normalized cut minimization problem to the case of hypergraphs. While

it was argued in Chapter 2 that both problems are equivalent in the case of graphs, their

extensions to hypergraphs do not result in identical formulations.

Several notions of hypergraph cut and hypergraph Laplacian have been proposed in the

literature for both uniform (Hu and Qi, 2012) as well as non-uniform hypergraphs (Bolla, 1993;

Rodŕıguez, 2002). We consider the generalization studied in (Bolla, 1993; Zhou et al., 2007),

where the boundary of any set V1 ⊂ V is defined as ∂V1 = {e ∈ E : e ∩ V1 6= φ, e ∩ Vc1 6= φ}.
Observe that, as in the case of graphs (see Section 2.2), the boundary denotes the set of edges

that are cut when the vertices are divided into V1 and Vc1 = V\V1. Subsequently, the cut is

defined as

Cut(V1) =
∑
e∈∂V1

|e ∩ V1||e ∩ Vc1|
|e|

.

Remark 5.3. In a weighted hypergraph (V,E, w), one may define the cut for a set V1 as

Cut(V1) =
∑
e∈E

we
|e ∩ V1||e ∩ Vc1|

|e|
, (5.3)

where we could replace ∂V1 by E since the edges outside ∂V1 do not contribute in the summation.

This representation (5.3) also forms the basis for the definition of associativity used in Chapter 4.

Recall that in graphs, the definitions of Cut(V1) and Assoc(V1) have an implicit similarity that

while the former is the total edge weight between V1 and Vc1, the latter corrsponds to the total
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edge weight between V1 and itself. Similarly, if Vc1 is replaced by V1 in (5.3), then one retrieves

the definition of associativity.

We consider the problem of partitioning the vertex set V into k disjoint sets, V1, . . . ,Vk,

that minimizes the normalized hypergraph cut

NH-Cut(V1, . . . ,Vk) =
k∑
j=1

Cut(Vj)

Vol(Vj)
. (5.4)

One can observe that for graphs, the above definition (5.4) retrieves the standard notion of a

normalized cut in the case of graphs. Zhou et al. (2007) also define the notion of a normalized

hypergraph Laplacian matrix L ∈ R|V|×|V| given by

L = I −D−1/2H∆−1HTD−1/2, (5.5)

where the matrices D ∈ R|V|×|V|,∆ ∈ R|E|×|E| are diagonal with Dvv = deg(v) and ∆ee = |e|.
The importance of (5.5) stems from the following fact.

Proposition 5.4. The problem of minimizing NH-cut(V1, . . . ,Vk) is equivalent to

minimize
V1,...,Vk

Trace
(
Y
T
LY
)
, (5.6)

where Y ∈ R|V|×k is such that Y i` =
√

deg(i)
Vol(V`)

1{i ∈ V`}, and satisfies Y
T
Y = I.

Since the optimization in (5.6) is NP-hard, one considers a spectral relaxation of the problem

by minimizing over all X ∈ R|V|×k with orthonormal columns as discussed in Section 2.2, and

the solution to this relaxed problem is the matrix of k leading orthonormal eigenvectors of L.

The above discussion motivates a spectral k-way partitioning approach based on minimizing

NH-cut. The method is listed in Algorithm NH-Cut. The form of Laplacian matrix in (5.5)

also suggests that the problem of minimizing NH-cut may be alternatively expressed as the

problem of partitioning a graph with weighted adjacency matrix

A = H∆−1HT . (5.7)

Such a graph is related to the star expansion of the hypergraph (Agarwal et al., 2006). The

intuition behind the k-means step of Algorithm NH-Cut follows similar to that of Spectral

Clustering, and we assume that the approximate k-means method of (Ostrovsky et al., 2012)

is used, that provides a near optimal solution in a single iteration.
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Algorithm NH-Cut : Normalized hypergraph cut minimization

Input: Incidence matrix H of a hypergraph (V,E).

1: Let D ∈ Rn×n,∆|E|×|E| be diagonal with Dii =
|E|∑̀
=1

Hi`, and ∆`` =
n∑
i=1

Hi`.

2: Define the matrix L ∈ Rn×n as L = I −D−1/2H∆−1HTD−1/2.
3: Compute k leading orthonormal eigenvectors of L, denoted by X ∈ Rn×k .
4: Normalize rows of X to have unit norm, and denote this matrix as X.
5: Run k-means on the rows of X.

Output: Partition of V that corresponds to the clusters obtained from k-means.

5.3 Consistency of spectral hypergraph partitioning

We now analyze the spectral algorithms TTM-ext and NH-Cut. One can easily observe the

similarity between both methods, particularly in adjacency matrices corresponding to the clique

and star expansions, (5.1) and (5.7), respectively. Hence, it suffices to study either one of them.

We consider the NH-Cut algorithm, and will show that its asymptotic properties are quite

similar to TTM. Hence, a straightforward combination of the analysis of both NH-Cut and

TTM easily leads to conclusions about TTM-ext.

5.3.1 The random hypergraph Laplacian

Unlike previous chapters, where we dealt with random adjacency tensors of dimension n, the

size of the random incidence matrix H in this case is a not deterministic as it depends on the

number of generated edges. This poses difficulties in working with the form of hypergraph

Laplacian in (5.5), and so we rely on an alternative representation. The Laplacian can be

written as

L = I −
∑
e∈E

1

|e|
D−1/2aea

T
eD
−1/2 , (5.8)

where for e ⊂ E, ae ∈ {0, 1}n with (ae)i = 1, if vertex i ∈ e, and 0 otherwise.

Let βM =
M∑
m=2

(
n

m

)
. Note that βM is the maximum number of edges the hypergraph

can contain given the fact that its range is M . For convenience, we define a bijective map

ξ : {1, 2, . . . , βM} → {e ⊂ V : 2 ≤ |e| ≤ M}, where each ξj refers to a subset of vertices, i.e, a
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possible edge in the given hypergraph. Then the Laplacian can be expressed as

L = I −
βM∑
j=1

1{ξj ∈ E}
|ξj|

D−1/2aξja
T
ξj
D−1/2, (5.9)

where the summation is over all possible edges of size at most M , but the missing edges do not

contribute to the sum. Similarly, one can express the degree matrix D as

Dii = deg(i) =
∑
e∈E

(ae)i =

βM∑
j=1

1{ξj ∈ E}(aξj)i. (5.10)

The above representation corresponds to an ‘extended’ version of the incidence matrix as

H ∈ {0, 1}n×βM , whose jth column is 1{ξj ∈ E}aξj , i.e, H contains the columns of H with

additional zero columns inserted to account for missing edges. This holds for any hypergraph

of range M defined on the set V. We use this representation to keep the number of columns as

a deterministic quantity. We now discuss how the described planted partition model for hyper-

graphs, with maximum edge size M , can be expressed in terms of the extended incidence matrix

H ∈ {0, 1}n×βM . Let hj, j = 1, 2, . . . , βM be independent Bernoulli random variables that indi-

cate the presence of the edge ξj ⊂ V. By description of the model, if ξj = {i1, i2, . . . , imj} for

some mj ∈ {2, . . . ,M}, then the random variable hj ∼ Bernoulli
(
αmjB

(mj)
ψi1ψi2 ...ψimj

)
. The jth

column of H is hjaξj , and hence, the Laplacian matrix for the random hypergraph is

L = I −
βM∑
j=1

hj
|ξj|

D−1/2aξja
T
ξj
D−1/2, where Dii =

βM∑
j=1

hj(aξj)i. (5.11)

At this stage, we note that the above matrices depend on the number of vertices n. For ease of

notation, we do not explicitly mention this dependence.

5.3.2 Consistency of NH-Cut algorithm

This section presents a bound on the error incurred by NH-Cut algorithm. As used in the

previous chapters, we let ψ′ : {1, . . . , n} → {1, . . . , k} denote the labels obtained from the

algorithm, and the clustering error is defined as in (2.20).

We show that if (i) the partition is identifiable, and (ii) the hypergraph is not too sparse,

then indeed ErrorNH-Cut(ψ, ψ
′) is bounded by a quantity that is at most sub-linear in n. Fur-

thermore, the bound holds with probability (1− o(1)). This immediately implies that NH-Cut
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algorithm is weakly consistent. However, we show later that for particular model parameters,

NH-Cut algorithm can even recover the partition exactly, i.e, ErrorNH-Cut(ψ, ψ
′) = o(1).

One typically analyzes the population version of a spectral algorithm, and then uses the

fact that the spectral properties of the Laplacian eventually concentrates around those of the

population Laplacian. From this point of view, we consider the population version of the

hypergraph Laplacian (5.11) defined as

L = I −
βM∑
j=1

E[hj]

|ξj|
D−1/2aξja

T
ξj
D−1/2 , (5.12)

where D is the expected degree matrix, i.e, Dii =
βM∑
j=1

E[hj](aξj)i. We also define the quantity

d = min
i∈{1,...,n}

Dii. Without loss of generality, we may also assume that for a given n, the

community sizes are n1 ≥ n2 ≥ . . . ≥ nk

Before stating the main result, it is useful to elaborate on the aforementioned conditions

under which the derived error bound holds. A lower bound on the sparsity of the hypergraph

is a standard requirement to ensure that the concentration of the spectral properties eventually

hold, and is often used in the graph literature (Lei and Rinaldo, 2015; Le et al., 2015), and was

also required in the consistency results of previous chapters. In our setting, this can be stated

in terms of the sparsity factors αm, or more simply, in terms of the minimum expected degree

d, that grows with n but at a rate controlled by the sparsity factors.

A more critical condition is the identifiability of the partition. This condition was implicit

in the discussions of previous chapters, but we discuss it in more detail here. Note that the

definition of the hypergraph Laplacian essentially implies that the hypergraph is reduced to a

graph with self loops. Hence, the performance of NH-Cut algorithm crucially depends on the

identifiability of the partition from L, or rather from the reduced graph with the population

adjacency matrix

A = E[A] =

βM∑
j=1

E[hj]

|ξj|
aξja

T
ξj
.

The following result provides a characterization of L and A, which in turn helps to quantify

the condition for identifiability of the vertex classes from L.

Lemma 5.5. Let Z ∈ {0, 1}n×k denote the assignment matrix corresponding to the partition

86



ψ. Then the population hypergraph Laplacian is given by

L = I −D−1/2AD−1/2 , (5.13)

where A can be expressed as

A = ZGZT − J . (5.14)

Here, J ∈ Rn×n is diagonal with Jii = Jjj whenever ψi = ψj, and G ∈ Rk×k.

Furthermore, L contains k eigenvalues for which the corresponding orthonormal eigenvectors

are the columns of the matrix X = Z(ZTZ)−1/2U , where U ∈ Rk×k is orthonormal.

The representation in (5.14) shows that A is essentially of rank k, except for the diagonal

entries. Owing to the first term in (5.14), one does expect L to have k eigenvectors whose

entries are constant in each community. As discussed later, a close inspection of X reveals that

indeed the columns of X satisfy this property. Thus, if the spectral stage of NH-Cut algorithm

can extract X, then zero error can be achieved from the k-means step.

In general, X need not correspond to leading eigenvectors L (as computed in NH-Cut algo-

rithm). This is true even for certain types of graphs, for instance k-colorable graphs (Alon and

Kahale, 1997). This effect is more pronounced in non-uniform hypergraphs due to the presence

of a large number of model parameters. To account for this factor, we define the following

quantity

δ =

(
λmin(G) min

1≤i≤n

nψi
Dii

)
− max

1≤i,j≤n

∣∣∣∣ JiiDii

− Jjj
Djj

∣∣∣∣ , (5.15)

where nψi is the size of the community in which vertex i belongs. We show that if δ > 0,

then the columns of X are the k leading eigenvectors of L. Here, λmin(G) refers to the smallest

eigenvalue of G. Thus, we can state the consistency result for NH-Cut algorithm as below.

Theorem 5.6. Consider a random hypergraph on n vertices generated according to the planted

partition model described in Section 5.1. Assume that n is sufficiently large, and the size of the

k classes are n1 ≥ n2 ≥ . . . ≥ nk. Let d be the minimum expected degree, and δ be the quantity

defined in (5.15).

There exists an absolute constant C > 0, such that, if δ > 0 and

d > C
kn1(lnn)2

δ2nk
(5.16)
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then with probability at least 1−O
(
(lnn)−1/4

)
,

ErrorNH-Cut(ψ, ψ
′) = O

(
kn1 lnn

δ2d

)
. (5.17)

Note here that the quantities δ, d and k can vary with n. On substituting the condition on

d into (5.17), one can see that ErrorNH-Cut(ψ, ψ
′) = o(n) with probability (1 − o(1)). Hence,

NH-Cut algorithm is weakly consistent if the conditions of the theorem are satisfied. However,

we show later that in certain dense hypergraphs, the bound in (5.17) may eventually decay to

zero. Thus, NH-Cut algorithm is guaranteed to exactly recover the communities in such cases.

In Section 5.4, we consider particular instances of the planted model, and illustrate the

dependance of the above result on the model parameters. For instance, (5.16) implies that

the result holds if the sparsity factor (αm) is above a certain threshold (see Corollaries 5.12

and 5.13). Even when (5.16) holds, higher error is incurred for a sparse hypergraph (small d)

or when the number of communities k is large.

One may note that δ > 0 is the condition for identifiability of the partition, and is essential

for success of the algorithm. Typically, one does find that δ ↓ 0 as n → ∞. To this end, the

condition (5.16) implies that δ cannot decay rapidly as δ2d needs to maintain a minimum growth

rate. We also note that δ quantifies identifiability of the partition and ErrorNH-Cut(ψ, ψ
′) varies

as 1
δ2

. Hence, if the model parameters are such that δ is small, for instance if the probability of

inter-community edges is very close to that of within community edges, then ErrorNH-Cut(ψ, ψ
′)

is larger.

Before presenting the proof of Theorem 5.6, we comment on the assumption of sufficiently

large n. Note that the sole purpose of this assumption is to ensure the success of the k-

means algorithm. If n is large enough, the condition (5.16) ensures that the approximate

k-means method of Ostrovsky et al. (2012) provides a near optimal solution, which is worse

by only a constant factor. Earlier works on spectral graph partitioning (Rohe et al., 2011;

Lei and Rinaldo, 2015) assumed the existence of such a near optimal solution with probability

1. To demonstrate the effect of such an assumption, we state the following result, which is a

modification of Theorem 5.6 under the above assumption.

Corollary 5.7. Consider a random hypergraph on n vertices generated according to the planted

partition model, and let the other quantities be as defined in Theorem 5.6. Assume that for a

constant γ > 1, there is a γ-approximate1 k-means algorithm that succeeds with probability 1.

1 Informally, a γ-approximate k-means methods returns a solution for which the objective of the k-means
problem is at most γ times the global minimum, where γ > 1. See (2.25) for a formal definition.
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There exists an absolute constant C > 0, such that, if δ > 0 and

d > C
lnn

δ2
(5.18)

then with probability at least 1− 4
n2 ,

ErrorNH-Cut(ψ, ψ
′) = O

(
kn1 lnn

δ2d

)
. (5.19)

The result reveals that if a good k-means algorithm is available, then the success probability

of NH-Cut algorithm increases, and the result is also applicable for more sparse hypergraph

since the condition (5.18) is weaker than (5.16). However, based on the existing results in the

k-means literature, one should consider the following remark.

Remark 5.8. If the data satisfies certain clusterability criterion1, then the efficient variants of

k-means (Kumar et al., 2004; Ostrovsky et al., 2012) provide a γ-approximate solution with a

constant probability ρ < 1. Both γ and ρ depend on various factors including k, clusterability

criterion etc.

In view of the above remark, Corollary 5.7 is too optimistic. Recently, Gao et al. (2015)

pointed that if one uses the method of Kumar et al. (2004), then γ grows with k. In addition,

one should also note that the success probability of this method is ρ = ck for an absolute

constant c ∈ (0, 1). Hence, a spectral partitioning algorithm using this method cannot succeed

with probability (1 − o(1)). Instead, we use the method of Ostrovsky et al. (2012) to achieve

a higher success rate as stated in Theorem 5.6. The only additional assumption is that of

sufficiently large n. We note that this requirement, along with condition (5.16), can be relaxed

if one only aims for a constant success probability. This is shown in the following modification

of Theorem 5.6, where we assume that the k-means algorithm of Ostrovsky et al. (2012) is used.

Corollary 5.9. Consider a random hypergraph on n vertices generated according to the planted

partition model, and let the other quantities be as defined in Theorem 5.6.

There exist absolute constants C > 0 and ε ∈ (0, 0.015), such that, if δ > 0 and

d >
C

ε2
kn1 lnn

δ2nk
(5.20)

1Various clusterability criteria have been studied in the literature. In this work, we consider the notion of
ε-separability proposed by Ostrovsky et al. (2012). See Section 2.5.3 for details.
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then with probability at least 1−O(
√
ε),

ErrorNH-Cut(ψ, ψ
′) = O

(
kn1 lnn

δ2d

)
. (5.21)

5.3.3 Proof of Theorem 5.6

We now present an outline of the proof of Theorem 5.6 using a series of lemmas. The proofs

for these lemmas are given in Appendix 5.A.2. The result is obtained by proving the following

facts:

1. If NH-Cut algorithm is performed on the population Laplacian L, then under the condition

of δ > 0, the obtained partition is correct.

2. The deviation of L from L is bounded above, and the bound holds with probability at

least (1− 4
n2 ).

3. As a consequence of above facts, the standard matrix perturbation bounds (Stewart and

Sun, 1990) imply that the eigenvalues and the corresponding eigenspaces of L concentrate

about those of L.

4. If (5.16) holds, then k-means stage of NH-Cut algorithm succeeds in obtaining a near

optimal solution with probability at least 1−O
(
(lnn)−1/4

)
.

5. The partitioning error can be expressed in terms of the above bounds, which leads

to (5.17).

Corollaries 5.7 and 5.9 can be proved in similar manner. This is discussed in Appendix 5.A.2.

We now prove the first two facts, and the subsequent ones follow similar to the arguments in

Chapter 3. The following result extends Lemma 5.5.

Lemma 5.10. If δ > 0, then the k leading orthonormal eigenvectors of L correspond to the

columns of the matrix X = Z(ZTZ)−1/2U .

In the above result, ZTZ is a diagonal matrix with entries being the sizes of the k vertex

classes. Hence, both ZTZ and U are of the rank k. Due to this, one can observe that the

matrix X contains exactly k distinct rows, each corresponding to a particular class, i.e, if Ai·

denotes ith row of a matrix A, then for any two vertices i, j ∈ V,

Xi· = Xj· ⇐⇒ Zi· = Zj· ⇐⇒ ψi = ψj .
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Moreover, since U is orthonormal, the distinct rows of X are orthogonal. Hence, after row

normalization, the distinct rows correspond to k orthonormal vectors in Rk, which can be

easily clustered by k-means algorithm to obtain the true communities. Technically, δ is a lower

bound on the eigen-gap between the kth and (k + 1)th smallest eigenvalues of L. Since, it is

difficult to obtain a simple characterization of the eigen gap, we resort to the use of δ as defined

in (5.15).

Next, we bound the deviation of a random instance of L from the population Laplacian

L. This bound relies on the use of matrix Bernstein inequality (Tropp, 2012), also stated

in Theorem 2.11. We note that for graphs, sharp deviation bounds have been used (Lei and

Rinaldo, 2015), but such techniques cannot be directly extended to the case of hypergraphs.

Lemma 5.11. If d > 9 lnn, then with probability at least (1− 4
n2 ),

‖L− L‖2 ≤ 12

√
lnn

d
. (5.22)

One can now follow the lines of Lemmas 3.10–3.12 to arrive at the conclusion of Theorem 5.6.

5.4 Consistency in special cases

We now study the implications of Theorem 5.6 for partitioning particular models of uniform

and non-uniform hypergraphs. We also discuss the conditions for identifiability in special cases.

5.4.1 Balanced partition in uniform hypergraph

Let the n vertices be divided into k groups such that each group contains n
k

vertices. We now

consider a random m-uniform hypergraph on the vertices generated as follows. Let p, q ∈ [0, 1]

be constants with (p+ q) ≤ 1, and αm ∈ (0, 1] be the sparsity factor dependent on n. For any

m vertices from the same group, there is an edge among them with probability αm(p + q). If

all the m vertices do not belong to same group, then there is an edge with probability αmq.

In terms of the model in Section 5.1, one can see that M = m, and for all r < m, αr = 0.

The mth order k-dimensional tensor B(m) is given by

B
(m)
j1j2...jm

=

{
p+ q if j1 = j2 = . . . = jm,

q otherwise.

One can see that for m = 2, this model corresponds to the sparse stochastic block model
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considered in (Lei and Rinaldo, 2015) with balanced community sizes, and if α2 = 1, one has

the standard four parameter stochastic block model (Rohe et al., 2011). The following corollary

to Theorem 5.6 shows the consistency of the NH-Cut algorithm.

Corollary 5.12. In the above model,

δ =
pαmn

mkd

(
n
k
− 2

m− 2

)
, (5.23)

and hence, the partition is identifiable for all p > 0. Moreover, if

αm ≥ C
k2m−1n(lnn)2(

n
m

) (5.24)

for some absolute constant C > 0, then the conditions in Theorem 5.6 are satisfied, and hence,

we have

ErrorNH-Cut(ψ, ψ
′) = O

(
k2m−2n2 lnn

p2αm
(
n
m

) )
= o(n) (5.25)

with probability (1− o(1)).

The lower bound on αm mentioned in Corollary 5.12 needs some discussion. One can verify

that in the above model, the expected number of edges lie in the range [qαm
(
n
m

)
, (p+ q)αm

(
n
m

)
],

i.e, it is about αm
(
n
m

)
up to a constant scaling. The lower bound on αm specifies that the

number of edges must be at least Ω (k2m−1n(lnn)2). This also indicates that for a larger m,

more edges are required to ensure the error bound of Corollary 5.12. Since, αm ≤ 1, one can

see that the result is applicable for k = O(n0.5−ε) for all ε > 1
2(2m−1)

. Even consistency results

for graph partitioning require similar condition (Rohe et al., 2011; Choi et al., 2012).

A closer look at the condition (5.24) shows if k is constant or increases slowly, k = O(lnn),

then a sufficient condition for weak consistency of Algorithm NH-Cut is αm ≥ C (lnn)2m+1

nm−1 , where

the constant C depends only on m. In case of graph partitioning, this level of sparsity is needed

when one relies on matrix Bernstein inequality. However, recent results (Lei and Rinaldo, 2015)

reduced the lower bound by using sharp concentration bounds for the binary adjacency matrix.

Corollary 5.12 also indicates that if k increases at a higher rate, for example k = na, then

consistency can be guaranteed only when hypergraph is more dense.

On the other extreme are dense uniform hypergraphs studied in Corollary 4.4, where αm = 1.

In this case, if k = O(lnn) then ErrorNH-Cut(ψ, ψ
′) = O

(
(lnn)2m−1

nm−2

)
. Thus, the error decreases

at a faster rate for m-uniform hypergraphs with larger m. In fact, for r ≥ 3, above bound
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indicates that ErrorNH-Cut(ψ, ψ
′) = o(1), i.e, Algorithm NH-Cut guarantees exact recovery of

the partition for large n. Moreover, one can observe that the above error rate is similar to

TTM, indicating that NH-Cut and TTM (and also TTM-ext) have similar performance, and

are provably better than HOSVD. This fact will be later validated emprically in Chapter 8.

We also note that though we have only discussed about the growth rate of k, and the

minimum density αn, the condition in (5.24) can also be restated in terms of the minimum

cluster sizes. Let n1 = n
k

be the size of each cluster, then (5.24) is equivalent to stating

n1 ≥ C
√
n
(√

n(lnn)2

αm

)1/(2m−1)

. So, while in the dense regime (αn = 1), the minimum growth

rate of clusters is Ω(n0.5+ε) for ε > 1
2(2m−1)

, a larger growth rate of clusters is required in the

sparse regime.

Lastly, we discuss the effect of δ and the parameters p, q in this setting. Note that the case

q = 0 is not interesting as there are no edges among different groups, and hence, the partition

can be identified by a simple breadth-first search. On the other hand, p = 0 generates a random

uniform hypergraph with all identical edges. Hence, the partition cannot be identified in this

case. This can also be seen from (5.23), where δ = 0. In general, p denotes the gap between the

probability of edge occurrence among vertices from same community and the probability with

which vertices from different communities form an edge. Since δ is linear in p, one can observe

from Theorem 5.6 that ErrorNH-Cut(ψ, ψ
′) varies as 1

p2
with p. However, note that the model

assumes that p does not vary with n, and may be treated as a constant in the asymptotic case.

5.4.2 Balanced partition in non-uniform hypergraph

We now consider the case of non-uniform hypergraph of range M , where M may vary with n.

As in Section 5.4.1, assume that n vertices are equally split into k groups. Also let p, q ∈ (0, 1)

such that (p+q) ≤ 1, and for m = 2, . . . ,M , let B(m) be the mth-order symmetric k-dimensional

tensor with

B
(m)
j1j2...jm

=

{
p+ q if j1 = j2 = . . . = jm,

q otherwise.

Setting αm ∈ (0, 1] as the sparsity factors, we obtain a model, where the edges appear indepen-

dently, and for each m, an edge on m vertices from the same group appears with probability

αm(p + q). For any set of m vertices from different groups, there is an edge among them with

probability αmq.

Since, the non-unifom hypergraph is a superposition of the m-uniform hypergraphs for

m = 2, . . . ,M , one can easily derive a consistency result in the non-uniform case by appling
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Corollary 5.12 for each of the uniform components. However, observe that the number of

edges of size m is Θ
(
αm
(
n
m

))
, and hence, the requirement αm

(
n
m

)
≥ Cmk

2m−1n(lnn)2 for each

m implies that the number of m-size edges should increase with m. This contradicts the

natural intuition in existing random models (Darling and Norris, 2005), where the hypergraph

contains less edges of higher cardinality. The same phenomenon is also observed in practice

(see Chapter 8). The following consistency result takes this fact into account.

Corollary 5.13. The partition in the above model is identifiable for all p > 0. In addition, let

(θm)∞m=2 be a non-negative sequence not dependent of n, and assume that for any n ∈ N and

m = 2, . . . ,M , the sparsity factor

αm =
θmn

a(lnn)b(
n
m

)
for some a ≥ 1 and b ≥ 2. There exists an absolute constant C, such that, if

M∑
m=r

mθm ≤ C

(
na−1(lnn)b−2

k2r−1

)
(5.26)

for r = min{m : θm > 0}, then ErrorNH-Cut(ψ, ψ
′) = o(n) with probability (1− o(1)).

In the above result, r denotes the smallest size of an edge in the hypergraph. In practice.

(θm)∞m=2 is a decreasing sequence, and hence, the number of m-size edges also decreases with m.

In particular, if θ2 > 0,
∞∑
m=2

mθm < ∞, and k = O
(
n(a−1)/3(lnn)(b−2)/3

)
, then Algorithm NH-

Cut is weakly consistent. Thus, if the hypergraph is sparse, i.e, a = 1, consistency is guaranteed

only for logarithmic growth in k, whereas more vertex classes can be consistently detected only

in dense hypergraphs. Observe that the problem gets harder if r > 2.

5.4.3 Identifiability of the partition

In the previous two sections, we considered problems where the partition is identifiable from

L. This need not hold for arbitrary model parameters. We now briefly discuss few cases, which

show that the partition is typically identifiable under reasonable choice of model parameters.

Example 1. Consider a 3-uniform hypergraph on n vertices. For simplicity assume there are

k ≥ 3 clusters of equal size. We define B(3) as follows

B
(3)
j1j2j3

=


p1 if j1 = j2 = j3,

p2 if exactly two of them are identical,

p3 if j1, j2, j3 are all different.
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for some constants p1, p2, p3 ∈ [0, 1]. Observe that the above situation is the most general case

provided that the clusters are statistically identical. In this setting, it is easy to see that the

following statement holds.

Lemma 5.14. Assume that n is a multiple of k. Then δ > 0 if and only if

(p2 − p3) +
1

k
(p1 − 3p2 + 2p3)− 2

n
(p1 − p2) > 0. (5.27)

In particular, δ > 0 when p1 > p2 > p3, or at most one inequality is replaced by equality.

Note that the setting of Section 5.4.1 follows when p1 > p2 = p3, while the case p1 = p2 = p3

corresponds to a random hypergraph with all edges following the same law. Obviously, the

partition is not identifiable in the latter case. More generally, the order of probabilities p1 >

p2 > p3 is intuitive as it implies that an edge has a larger probability of occurrence if it has more

vertices from the same community. One may compare this observation with the case of graphs,

where partitioning based on the leading eigenvectors of Laplacian works only when edges within

each community occur more frequently than edges across communities. The opposite scenario,

found in colorable graphs, requires one to consider eigenvectors corresponding to the other end

of the spectrum (Alon and Kahale, 1997). Moreover, if p2 > p3 and k grows with n, one can

observe that δ mostly depends on the gap (p2 − p3), and hence, the error ErrorNH-Cut(ψ, ψ
′) is

proportional to 1
(p2−p3)2

.

Example 2. We now modify the above model by allowing edges of size 2 to be present. In

particular, assume α2 = 1 and B(2) = I, which means all pairwise edges within each community

are present, and no two vertices from different communities form a pairwise edge. In addition,

let α3 ∈ [0, 1] be arbitrary. Then, one can observe the following.

Lemma 5.15. Assume that n is a multiple of k. Then δ > 0 if and only if

1

2
+
nα3

3

(
(p2 − p3) +

(p1 − 3p2 + 2p3)

k
− 2(p1 − p2)

n

)
> 0. (5.28)

It is easy to see that if α3 = 0, then the hypergraph is a graph with k disconnected com-

ponents, and hence, the partition is identifiable. However, even when α3 = o( 1
n
), the pairwise

edges eventually dominate and the partition can be identified for arbitrary values of p1, p2, p3.

On the other hand, if α3 grows faster than 1
n

(for instance α3 = 1), then the situation is eventu-

ally similar to that of Lemma 5.14. The critical case is α3 = Θ( 1
n
), where the expected number

of 2-way and 3-way edges are of similar order. In this case, (5.28) suggests that the partition

can be identified (δ > 0) even when p2 < p3 provided p3 is sufficiently small.
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Example 3. In the above cases, we restricted ourselves to communities of equal size. The

arguments also hold for n1

nk
= O(1). However, if nk � n1 or the probability of edges vary across

different communities, then the second term in (5.15) can lead to δ ≤ 0, or equivalently, may

affect the identifiability of the partition. To study this effect, we consider the following model

for m-uniform hypergraphs.

Let αm = 1, and there are k = 2 classes of size s and (n − s). We assume s = o(n), and

define B(m) ∈ R2×2×...×2 as

B
(m)
j1j2...jr

=

{
1 if j1 = j2 = . . . = jr = 1,
1
2

otherwise.

For m = 2, the model is same as that of a s clique planted in a Erdös-Rényi graph. This

model presents a high disparity in both community sizes and degree distributions. We make

the following comment on the identifiability of the partition under this model.

Lemma 5.16. For a given m ≥ 2, there exists a finite constant sm such that δ > 0 for the

above model for all s ≥ sm.

Thus, when s grows with n, the partition can be eventually identified from L. The proof

of the above result shows that both the terms in (5.15) decay with n, but the ratio of the first

term to the second grows as Ω(s). We believe that a similar observation can be made in more

general situations, where this growth rate depends on the size of the smallest community.

In view of the above lemma, it is interesting to know whether Algorithm NH-Cut is able to

detect small cliques in uniform hypergraphs. This is indeed true, but due to the generality of

the approach, as presented in this thesis, the minimal growth rate for s needed to accurately

find the clique from L is not optimal. More precisely, it is worse by a logarithmic factor in

the case of graphs. However, Lemma 5.16 shows that one can use spectral techniques similar

to (Alon et al., 1998) for finding planted cliques in hypergraphs.
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5.A Proofs for results in this chapter

5.A.1 Proofs for results in Section 5.2

Proof of Proposition 5.2

In the first claim, note that for r ≥ 3, βr = 0 and hence, Y
(r)

is a constant matrix of ones.

Thus,

Trace

(
A(m) ×1 Y

(1)T ×2 Y
(2)T ×3 . . .×m Y

(m)T
)

=
k∑
`=1

∑
i1,...,im

A
(m)
i1...im

Yi1`Yi2` ,

where Yi` =
1{i ∈ V`}√

Vol(V`)
. Hence, one can restate the objective function in (5.2) as

maximize
Y

k∑
`=1

n∑
i1,i2=1

Yi1`Yi2`

M∑
m=2

n∑
i3,...,im=1

A
(m)
i1...im

(m− 1)!
≡ maximize

Y
Trace(Y TAY ) ,

where A ∈ Rn×n with

Aij =
M∑
m=2

n∑
i3,...,im=1

A
(m)
iji3...im

(m− 1)!
. (5.29)

Owing to the available discussion on spectral relaxation in (4.6), it suffices to show that the

matrix A used in the algorithm is same as A (5.29). The diagonal entries Aii = 0 since the

tensors A(m) are zero at entries with repeated indices. Hence, A and A are same at the diagonal.

For off-diagonal entries, observe that every term A
(m)
iji3...im

corresponds to an edge e ∈ E with

|e| = m and i, j ∈ e. Also, the inner summation in (5.29) contains (m− 2)! copies of the same

edge. Thus,

Aij =
M∑
m=2

∑
e∈Em:e3i,j

we
m− 1

=
∑

e∈E:e3i,j

we
|e| − 1

=
(
H(∆− I)−1HT

)
ij

= Aij ,

which leads to the first claim.

For the second claim, we briefly describe the clique expansion of a hypergraph. Here, each

edge e ∈ E is replaced by a clique among all the vertices in e, for every i, j ∈ e, an edge is

added between them. Subsequently, the weighted graph formed is a super-position of all cliques.
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Hence, the weighted adjacency matrix A is of the form

Aij = |{e ∈ E : e 3 i, j}| = (HHT )ij .

for i 6= j. This construction also implies Aii = 0. Thus, the reduction used in TTM-ext

is similar to clique expansion ignoring the factor of (∆ − I)−1, which essentially means that

instead of counting all edges containing i, j, we take a weighted sum.

Proof of Proposition 5.4

Denoting the jth column of Ŷ by Ŷ·j, one can write

Trace
(
Ŷ T (D −H∆−1HT )Ŷ

)
=

k∑
`=1

Ŷ T
·` (D −H∆−1HT )Ŷ·`.

Noting that

Dii =
∑
e∈E

Hie =
∑
e∈E

∑
j∈e

1

|e|
Hie =

∑
e∈E

∑
j∈V

1

|e|
HjeHie =

∑
j∈V

(H∆−1HT )ij, (5.30)

one obtains

Ŷ T
·` (D −H∆−1HT )Ŷ·` =

1

2

∑
i,j∈V

(H∆−1HT )ij(Ŷi` − Ŷj`)2

=
1

2

∑
e∈E

1

|e|Vol(V`)

∑
i,j∈e

(1{i ∈ V`} − 1{j ∈ V`})2.

The claim follows by observing that a term in the inner summation contributes only when

i ∈ V`, j /∈ V` or vice-versa.

5.A.2 Proofs for results in Section 5.3

Proofs for Corollaries 5.7 and 5.9

The proofs are similar to that of Theorem 5.6. To prove Corollary 5.7, we proceed along the

lines of the lemmas in Section 5.3. Due to the assumption on k-means, Lemma 3.11 is not

required.

On the other hand, Corollary 5.9 follows when we use Lemma 3.11 with constant ε > 0.

The condition ε < 0.015 follows immediately from the requirement of Theorem 2.12.
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Proof of Lemma 5.5

We observe that for i 6= j,

Aij =

βM∑
`=1

E[h`]

|ξ`|
(aξ`)i(aξ`)j =

M∑
m=2

∑
`:|ξ`|=m,
i,j∈ξ`

E[h`]

m

=
M∑
m=2

∑
i3<i4<...<im,
i,j /∈{i3,...,im}

1

m
αmB

(m)
ψiψjψi3 ...ψim

. (5.31)

The last equality follows by noting that for every ξ` such that |ξ`| = m and ξ` 3 i, j, we can

write ξ` as ξ` = {i, j, i3, . . . , im}, where the vertices i, j, i3, ..., im are distinct. It is interesting to

note that the above sum remains same if i, j are replaced by some i′, j′ such that ψi = ψi′ and

ψj = ψj′ . This is true since the terms in (5.31) depend on ψi, ψj instead of i, j. This observation

motivates us to define the matrix G ∈ Rk×k such that for any i, j ∈ V, i 6= j,

Gψiψj =
M∑
m=2

∑
i3<i4<...<im,
i′,j′ /∈{i3,...,im}

1

m
αmB

(m)
ψi′ψj′ψi3 ...ψim

, (5.32)

where i′, j′ are arbitrary vertices satisfying ψi = ψi′ and ψj = ψj′ . Hence, one can write

Aij = (ZGZT )ij for all i 6= j, where Z is the assignment matrix. However,

Aii =
∑
`:i∈ξ`

E[h`]

|ξ`|
6= Gψiψi .

So, one can write the matrix A as A = ZGZT − J , where J ∈ Rn×n is a diagonal matrix

defined as Jii = Gψiψi − Aii. We also note that for i, i′ in the same group, i.e, ψi = ψi′ , we

have Dii = Di′i′ and Jii = Ji′i′ . So we can define matrices D̃, J̃ ∈ Rk×k diagonal such that

Dii = D̃ψiψi and Jii = J̃ψiψi for all i ∈ V. It is easy to see that DZ = ZD̃ and JZ = ZJ̃ .

Using above definitions, we now characterize the eigenpairs of the matrix D−1/2AD−1/2.

To this end, note that (λ, v) is an eigenpair of L if and only if ((1 − λ), v) is an eigenpair

of D−1/2AD−1/2. Hence, it suffices to consider the eigenvalues of D−1/2AD−1/2, and their

corresponding eigen spaces.

First, observe that since G ∈ Rk×k, A is composed of a matrix of rank at most k that

is perturbed by the diagonal matrix J . We show that the orthonormal basis for the range

space of ZGZT are the eigenvectors that are of interest to us. For this, consider the matrix
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G = (D̃−1ZTZ)1/2G(ZTZD̃−1)1/2− J̃D̃−1 ∈ Rk×k, and suppose its eigen-decomposition is given

by G = UΛ1U
T , where U ∈ Rk×k contains the orthonormal eigenvectors and Λ1 ∈ Rk×k is a

diagonal matrix of eigenvalues of G. Defining X = Z(ZTZ)−1/2U ∈ Rn×k, we can write that

D−1/2AD−1/2X = D−1/2(ZGZT − J)D−1/2Z(ZTZ)−1/2U

= D−1/2(ZG(ZTZ)1/2 − Z(ZTZ)−1/2J̃)D̃−1/2U

= Z(ZTZ)−1/2GU

= Z(ZTZ)−1/2UΛ1 = XΛ1,

which implies that the columns of X are the eigenvectors of D−1/2AD−1/2 corresponding to the

k eigenvalues in Λ1. Alternatively, the columns of X are the eigenvectors of L corresponding to

the k eigenvalues in (I −Λ1). Note that the above equalities are derived by repeated use of the

facts that diagonal matrices commute and DZ = ZD̃, JZ = ZJ̃ . Also, since U is orthonormal,

it is easy to verify that the columns of X are orthonormal.

Proof of Lemma 5.10

We continue from the proof of Lemma 5.5. Note that we need to derive conditions under which

X contain the leading eigenvectors of L. Equivalently, we need to show that the eigenvalues in

Λ1 are strictly larger than other eigenvalues of D−1/2AD−1/2.

Since, D−1/2AD−1/2 is symmetric and hence, diagonalizable, we can conclude that remaining

eigenvectors of the matrix are orthogonal to columns of X. Let the columns of Y ∈ Rn×(n−k)

be the matrix of the remaining orthonormal eigenvectors of D−1/2AD−1/2, with corresponding

eigenvalues given by the diagonal matrix Λ2 ∈ R(n−k)×(n−k). So Y TZ(ZTZ)−1/2U = 0. Due to

the non-singularity of ZTZ or U , it follows that ZTY = 0, and

Y Λ2 = D−1/2AD−1/2Y = −D−1JY,

that is, the columns of Y are eigenvectors of (−D−1J). Further, since D−1J is diagonal, the

eigenvalues in Λ2 are a subset of the entries of (−D−1J). Thus, to ensure that X are the leading

eigenvectors, one needs to ensure mini(Λ1)ii > maxi(Λ2)ii, and hence, one may define δ̃ as the

eigen-gap,

δ̃ = min
1≤i≤k

(Λ1)ii − max
1≤i≤(n−k)

(Λ2)ii. (5.33)

Hence, the condition δ̃ > 0 ensures that columns of X are leading eigenvectors of L. Though

the above definition of δ̃ suffices, it cannot be easily verified for a given model. Below, we show
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that δ̃ ≥ δ, where the latter is as defined in (5.15). Note that

max
1≤i≤(n−k)

(Λ2)ii ≤ max
1≤i≤n

(
− Jii
Dii

)
= min

1≤i≤n

Jii
Dii

On the other hand, using Weyl’s inequality, we have

min
1≤i≤k

(Λ1)ii = λmin(G) ≥ λmin((D̃−1ZTZ)1/2G(ZTZD̃−1)1/2)− ‖J̃D̃−1‖2 ,

where λmin(G) denotes the minimum eigenvalue of G. The inequality follows by viewing G as

the matrix (D̃−1ZTZ)1/2G(ZTZD̃−1)1/2 perturbed by −D̃−1J̃ . To simplify further, we note

‖J̃D̃−1‖2 = max
1≤i≤k

J̃ii

D̃ii

= max
1≤i≤n

Jii
Dii

,

and using Rayleigh’s principle, one can show that

λmin((D̃−1ZTZ)1/2G(ZTZD̃−1)1/2) ≥ λmin(G) min
1≤i≤k

(ZTZ)ii

D̃ii

.

Combining the above bounds, we conclude that δ̃ ≥ δ. Here, we use the observation that

(ZTZ)jj equals the size of the jth community. Thus, δ > 0 is a sufficient condition for the claim

of the lemma.

Proof of Lemma 5.11

Define L̂ = I −D−1/2AD−1/2. Note that

‖L− L‖2 ≤ ‖L− L̂‖2 + ‖L− L̂‖2. (5.34)

We deal with the two terms separately. First, we show that if d > 9 lnn, then

P

(
‖L− L̂‖2 ≥ 3

√
lnn

d

)
≤ 2

n2
. (5.35)
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To prove (5.35), we note that

L− L̂ = D−1/2(A−A)D−1/2

=
∑
`

(h` − E[h`])
1

|ξ`|
D−1/2aξ`a

T
ξ`
D−1/2 .

Denoting, each matrix in the sum as Y`, it is easy to see that {Y`}` are independent with

E[Y`] = 0. Hence, we can apply matrix Bernstein inequality (Theorem 2.11) to obtain

P

(
‖L− L̂‖2 ≥ 3

√
lnn

d

)
= P

(∥∥∥∥∑̀Y`

∥∥∥∥
2

≥ 3

√
lnn

d

)

≤ 2n exp

 −9 lnn

d

2

∥∥∥∥∑̀Var(Y`)

∥∥∥∥
2

+
2

3

√
9 lnn

d
max
`
‖Y`‖2

 , (5.36)

where

Var(Y`) = E[Y 2
` ] = Var(h`)

(aTξ`D
−1aξ`)

|ξ`|2
D−1/2aξ`a

T
ξ`
D−1/2 .

Thus,

∑
`

Var(Y`) = D−1/2

(∑
`

Var(h`)
(aTξ`D

−1aξ`)

|ξ`|2
aξ`a

T
ξ`

)
D−1/2 .

Note that for any matrix B, D−1/2BD−1/2 and D−1B have same eigenvalues, and hence, using

Gerschgorin’s theorem (Stewart and Sun, 1990), one has∥∥∥∥∥∑
`

Var(Y`)

∥∥∥∥∥
2

≤ max
1≤i≤n

1

Dii

n∑
j=1

(∑
`

Var(h`)
(aTξ`D

−1aξ`)

|ξ`|2
aξ`a

T
ξ`

)
ij

= max
1≤i≤n

1

Dii

∑
`

Var(h`)
(aTξ`D

−1aξ`)

|ξ`|2
(aξ`)i

n∑
j=1

(aξ`)j .

102



Observing that aTξ`D
−1aξ` ≤

aTξ`
aξ`
d

and |ξ`| =
∑

j(aξ`)j = aTξ`aξ` , we have∥∥∥∥∥∑
`

Var(Y`)

∥∥∥∥∥
2

≤ 1

d
max
1≤i≤n

1

Dii

∑
`

Var(h`)(aξ`)i ≤
1

d

since Var(h`) = E[h`](1− E[h`]) ≤ E[h`]. Similarly, one can also compute

‖Y`‖2 ≤ |h` − E[h`]|
1

|ξ`|
‖D−1/2aξ`a

T
ξ`
D−1/2‖2 ≤

|aTξ`D
−1aξ`|
|ξ`|

≤ 1

d
,

where second inequality holds since h` ∈ {0, 1} and D−1/2aξ`a
T
ξ`
D−1/2 is a rank-1 matrix. Sub-

stituting above bounds in (5.36) and noting that 9 lnn
d

< 1, we have

P

(
‖L− L̂‖2 ≥ 3

√
lnn

d

)
≤ 2n exp

(
−

9 lnn
d

2
d

+ 1
d

)
=

2

n2
,

which proves (5.35). To bound the other term in (5.34), we note that

‖L− L̂‖2 ≤ ‖D−1/2AD−1/2 −D−1/2AD−1/2‖2

≤ ‖(D−1/2 −D−1/2)AD−1/2 +D−1/2A(D−1/2 −D−1/2)‖2

≤ ‖(D−1D)1/2 − I‖2‖(DD−1)1/2‖2 + ‖(D−1D)1/2 − I‖2.

In above, we use the fact that Dii =
∑

j Aij to conclude that ‖D−1/2AD−1/2‖2 = 1. Note that

D−1D is a diagonal matrix with non-negative diagonal entries, and hence,

‖(D−1D)1/2 − I‖2 = max
1≤i≤n

∣∣∣∣∣
√
Dii

Dii

− 1

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣Dii

Dii

− 1

∣∣∣∣ ,
where the inequality follows from the fact that |

√
x− 1| ≤ |x− 1| for all x ≥ 0. We now claim

that for all i = 1, . . . , n,

P

(
|Dii −Dii| > 3Dii

√
lnn

d

)
≤ 2

n3
. (5.37)

Hence, with probability at least (1− 2
n2 ),

max
1≤i≤n

∣∣∣∣Dii

Dii

− 1

∣∣∣∣ ≤ 3

√
lnn

d
.
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From above and the relation ‖(DD−1)1/2‖2 ≤ 1 + ‖(DD−1)1/2 − I‖2, we have

‖L− L̂‖2 ≤
9 lnn

d
+ 6

√
lnn

d
≤ 9

√
lnn

d

where the last inequality holds since 3
√

lnn
d
< 1. The lemma follows by combining above bound

with (5.35).

Finally, we prove (5.37). Since, Dii =
∑
`

h`(aξ`)i =
∑
`:i∈ξ`

h`, we use Bernstein inequality to

write

P

(
|Dii −Dii| > 3Dii

√
lnn

d

)
= P

(∣∣∣∣∣∑
`:i∈ξ`

(h` − E[h`])

∣∣∣∣∣ > 3Dii

√
lnn

d

)

≤ 2 exp


−9D2

ii lnn

d

2
∑
`:i∈ξ`

Var(h`) + 2Dii

√
lnn

d


≤ 2 exp

(
−3Dii lnn

d

)
for d > 9 lnn. Since, Dii ≥ d, we obtain (5.37).

5.A.3 Proofs for results in Section 5.4

Proof of Corollary 5.12

We observe that for the specified model, the matrix G ∈ Rk×k, as defined in Lemma 5.5, is

given by

Gij =


pαm
m

(
n
k
− 2

m− 2

)
+
qαm
m

(
n− 2

m− 2

)
if i = j,

qαm
m

(
n− 2

m− 2

)
if i 6= j.

Thus, G is of the form G = aI+ b1, where 1 is constant matrix of ones. It is easy to verify that

for such a matrix, the minimum eigenvalue is a. Hence, we have λmin(G) = pαm
m

( n
k
−2

m−2

)
. Also,
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we can compute

d =

(
pαm

(
n
k
− 1

m− 1

)
+ qαm

(
n− 1

m− 1

))
> qαm

(
n− 1

m− 1

)
. (5.38)

Note that since the vertex classes are balanced and vertex degrees behave identically, the second

term in (5.15) is zero, and we can compute δ as

δ =
npαm
kdm

(
n
k
− 2

m− 2

)
≥ n

km

pαm
( n
k
−2

m−2

)
(p+ q)αm

(
n−1
m−1

) ≥ p(r − 1)

m(p+ q)

k
(
n/k
m

)(
n
m

) , (5.39)

where the first inequality follows by observing that d ≤ (p + q)αm
(
n−1
m−1

)
. Now, observe that

under the given condition on αm, we have

δ2d ≥ C ′
αm
n

(
n

m

)(
k
(
n/k
m

)(
n
m

) )2

≥ C ′′k2m−1(lnn)2

(
k(n

k
)m

nm

)2

≥ C ′′k(lnn)2,

where C ′′ is a constant depending only on C, p, q and m, that is obtained from (5.38) and

(5.39). The last inequality uses the relation ab

4(b!)
≤
(
a
b

)
≤ ab

b!
. Choosing C sufficiently large,

the condition of Theorem 5.6 is satisfied, and hence, we can conclude from Theorem 5.6 that

ErrorNH-Cut(ψ, ψ
′) = O

(
n lnn
δ2d

)
, which simplifies to the stated claim.

Proof of Corollary 5.13

The proof is quite similar to that of Corollary 5.12 since the matrices G and D are linear

combinations of the corresponding matrices for the m-uniform hypergraphs. We compute

λmin(G) =
M∑
m=2

pαm
m

(
n
k
− 2

m− 2

)
≥ pαr

r

(
n
k
− 2

r − 2

)
,

where θr > 0 and we ignore all terms for m > r. Substituting the relation for αm, we can write

λmin(G) ≥ C1
θrn

a−2(lnn)b

kr−2
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for some constant C1 depending on p, q and r. Also,

d =
M∑
m=2

(
pαm

(
n
k
− 1

m− 1

)
+ qαm

(
n− 1

m− 1

))

> q

M∑
m=2

m

n
αm

(
n

m

)
≥ na−1(lnn)bq

M∑
m=2

mθm .

Similarly, one can verify that d ≤ (p+ q)na−1(lnn)b
M∑
m=2

mθm. Thus,

δ2d ≥ n2(λmin(G))2

k2d
≥ C2

1θ
2
r

(p+ q)

na−1(lnn)b

k2r−2
M∑
m=2

mθm

, (5.40)

where the inequality follows from above bounds on λmin(G) and d. Under the condition (5.26)

with large enough C, the condition of Theorem 5.6 holds and the claim follows.

Proofs for Lemmas 5.14 and 5.15

As in the previous corollaries, we can say that, for both cases, the second term in (5.15) is zero.

Hence, δ > 0 if and only if λmin(G) > 0. For the setting of Lemma 5.14, one can compute

Gij =


α3

3

[
p1

(n
k
− 2
)

+ p2

(
n− n

k

)]
if i = j,

α3

3

[
p2

(
2n

k
− 2

)
+ p3

(
n− 2n

k

)]
if i 6= j.

Using an observation made in the proof of Corollary 5.12, we have λmin(G) = G11 − G12,

and (5.27) is equivalent to stating G11 > G12.

The same arguments are valid for Lemma 5.15, where G is of the form

Gij =


1

2
+
α3

3

[
p1

(n
k
− 2
)

+ p2

(
n− n

k

)]
if i = j,

α3

3

[
p2

(
2n

k
− 2

)
+ p3

(
n− 2n

k

)]
if i 6= j.
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Proof of Lemma 5.16

As mentioned in Lemma 5.5, one can write A as A = ZGZT −J . In the present case, G ∈ R2×2

is given by

Gij =


1

2m

(
s− 2

m− 2

)
+

1

2m

(
n− 2

m− 2

)
if i = j = 1,

1

2m

(
n− 2

m− 2

)
otherwise.

One can also verify that the diagonal matrices D and J are given by

Dii =


1

2

(
s− 1

m− 1

)
+

1

2

(
n− 1

m− 1

)
if i ∈ s-clique,

1

2

(
n− 1

m− 1

)
otherwise.

and

Jii =


− 1

2m

(
s− 2

m− 1

)
− 1

2m

(
n− 2

m− 1

)
if i ∈ s-clique,

− 1

2m

(
n− 2

m− 1

)
otherwise.

Hence, the claim follows by substituting above relations in (5.15). It is more convenient to

write (5.15) using the notations D̃ and J̃ defined in the proof of Lemma 5.10, and it can be

written as

δ =
sλmin(G)

D̃11

−

∣∣∣∣∣ J̃11

D̃11

− J̃22

D̃22

∣∣∣∣∣ , (5.41)

where we use the fact s < (n− s). Note that G has non-negative eigenvalues, and we can use

the following relation for 2× 2 matrices

λmin(G) ≥ det(G)

Trace(G)
=

1
2m

(
s−2
m−2

)(
n−2
m−2

)(
s−2
m−2

)
+ 2
(
n−2
m−2

) ≥ 1

6m

(
s− 2

m− 2

)
.

107



Combining this with the observation D̃11 ≤
(
n−1
m−1

)
, we can argue that the first term in (5.41) is

at least

s
(
s−2
m−2

)
6m
(
n−1
m−1

) ≥ C1

( s
n

)m−1

for some C1 > 0. On the hand, the second term in (5.41) can be computed as∣∣∣∣∣ J̃11

D̃11

− J̃22

D̃22

∣∣∣∣∣ =

∣∣∣∣∣
(
s−1
m−1

)(
n−2
m−1

)
−
(
n−1
m−1

)(
s−2
m−1

)(
n−1
m−1

) [(
n−1
m−1

)
+
(
s−1
m−1

)] ∣∣∣∣∣
≤
(
s−1
m−1

)(
n−1
m−1

) (n−m
n− 1

− s−m
s− 1

)
≤
(
s−1
m−1

)(
n−1
m−1

) (m− 1

s− 1

)
≤ C2

s

( s
n

)m−1

for some C2 > 0. From above, one can conclude that δ > 0 when C1 >
C2

s
, where both C1 and

C2 depend only on m. Hence, the claim.
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Efficiency is doing the thing right. Effectiveness is

doing the right thing.

Peter Drucker

Chapter 6

Edge Sampling for Hypergraphs

In this chapter, we focus on the complexity of hypergraph partitioning algorithms, and study

efficient modifications. We develop our studies based on Algorithm TTM, but similar discus-

sions also for the other approaches as well. Section 6.1 presents a consistency result for TTM,

when few edges are sampled. The result is proved in Appendix 6.A. The intuition gathered

from our analysis of sampled TTM is then used in Section 6.2 to present an efficient spectral

algorithm for the subspace clustering problem. Numerical results demonstrating the merits of

this method can be found in Chapter 8.

We begin this chapter with the computational complexity of Algorithm TTM. Note that

the k-means approach of (Ostrovsky et al., 2012) has a complexity of O(k2n + k4) since the

data is embedded in a k-dimensional space. Furthermore, Steps 2 to 4 involve only matrix

operations with the eigenvector computation being the most expensive operation. One may

compute the k dominant eigenvectors using power iterations, which can be done provably in

O(kn2 ln(kn)) runtime (Boutsidis et al., 2015). However, the computational bottleneck of the

algorithm is Step 1, which owing to the representation in (4.20) has complexity of O(m2|E|).
This is particularly challenging in computer vision applications, such as subspace clustering or

matching, where all edges have non-zero weights, no matter how small these weights may be.

Thus, in such applications, |E| =
(
n
m

)
= Θ(nm). This exponential dependence on m makes

exact hypergraph partitioning algorithms impractical, particularly when one considers higher

order relations, for instance m = 8 used in (Govindu, 2005; Jain and Govindu, 2013). The

natural alternative is to sample few edges of the hypergraph, or equivalently few entries of the

adjacency tensor A (Govindu, 2005; Chen and Lerman, 2009; Duchenne et al., 2011).

In the context of TTM, we may formally express this approach as sampling edges from E

according to some probability distribution (pe)e∈E, and computing a sample estimate Â instead

of A. A requirement of the estimator should be its unbiasedness, i.e, E[Â] = A, where the
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expectation is with respect to the sampling distribution given an instance of the hypergraph.

Based on (4.20), we propose to use an unbiased estimator of the form

Â =
(m− 2)!

|I|
∑
e∈I

we
pe
Re , (6.1)

where I is a sub-collection of edges from E sampled with replacement. Subsequently. one

can define D̂ as an unbiased estimate of D, i.e, D̂ii =
∑

j Âij. The remaining steps of Algo-

rithm TTM may be carried using the estimated normalized adjacency matrix D̂−1/2ÂD̂−1/2.

Such an approach has a runtime of O(m2N + kn2 ln(kn) + k2n+ k4), where N = |I|.

6.1 Consistency of hypergraph partitioning with edge

sampling

The key question addressed in this section is the minimum number (N) of edges required to

be sampled to achieve consistency of such a variant of Algorithm TTM. The following result

provides a precise answer to this question.

Theorem 6.1. Let (V,E, w) be a m-uniform hypergraph on |V| = n vertices generated from

a random model with k planted classes, where n is sufficiently large and the cluster sizes are

n1 ≥ n2 ≥ . . . ≥ nk. Assume that the approximate k-means method is used. Define d =

min
1≤i≤n

E[deg(i)], and let δ be as defined in (4.18).

Let N edges be sampled with replacement according to probability distribution (pe)e∈E, and

let β > 0 be such that max
e∈E

we
pe
≤ β with probability (1− o(1)). There exist absolute constants

C,C ′ > 0, such that, if δ > 0,

d > C
kn1(lnn)2

nkδ2
and N > C ′

(
1 +

2β

d

)
kn1(lnn)2

nkδ2
, (6.2)

then with probability (1− o(1)), the sampled variant of TTM algorithm achieves an error

ErrorTTM(ψ, ψ′) = O

(
kn1 lnn

δ2

(
1

d
+

1

N
+

2β

Nd

))
= o(n). (6.3)

The above result is similar to Theorem 4.3 except for an additional condition associated with

the number of edges to be sampled. However, we note that the proof of Theorem 6.1 shows

that the constant C in (6.2) need to be larger than the corresponding term in Theorem 4.3 by
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a certain factor.

The interesting observation in the above result is that if a particular sampling strategy

is used, one can note that relatively smaller number of samples N would be required if the

hypergraph is more dense (larger d). This fact suggests that there is a high correlation among

the information provided by different edges, and hence, using only a small subset of them

suffices. On the other hand, for a sparse hypergraph, most edges have zero or negligibly small

values, and one can hardly gather information about the true partition from few edges.

Obviously, the bound also depends on the sampling technique, and (6.2) suggests that a

better sampling distribution is one for which β is smaller. To clarify this observation, we state

the result for two particular sampling distributions: (i) uniform sampling, and (ii) sampling

each edge e with probability proportional to its weight, i.e,

pe =
we∑

e′∈E
we′

for all e ∈ E. (6.4)

For ease of exposition, we elaborate on the effect of these sampling techniques for the particular

model described in Section 4.3.2.

Corollary 6.2. Consider the setting described in Section 4.3.2. Define quantity s such that

ξ = 1 for uniform sampling, and ξ = αm for the weighted sampling of (6.4). If there exist

constants C,C ′ > 0 such that

αm > C
k2m−1(lnn)2

nm−1
and N > C ′

ξnk2m−1(lnn)2

αm
, (6.5)

then ErrorTTM(ψ, ψ′) = o(n) with probability (1− o(1)).

The above result shows that in the most dense regime (αm = 1), both sampling techniques

have a similar performance. For instance, if k = O
(
n1/4

lnn

)
, as considered in Corollary 4.4, one

needs to sampleN = Ω (n0.5m+0.75(lnn)3−2m) edges to achieve weak consistency. However, in the

case of sparse hypergraphs, Corollary 6.2 clearly indicates that the sampling distribution of (6.4)

achieves a runtime that is smaller than that of uniform sampling by a factor of αm. In fact, in the

setting of Corollary 4.5, the above result shows that using the weighted sampling strategy, one

needs to sample only N = Ω (n(lnn)2m+1) edges for consistent partitioning. On the other hand,

consistency is achieved with uniform sampling only if one uses N = Ω(nm) edges, i.e, at least a

constant fraction of all the edges1. On the whole, we can conclude that the weighted sampling

1 Note that this observation is only true for weighted hypergraphs, where a small αm implies that most
edges have very small, but positive, weights. On the other hand, unweighted hypergraphs with small αm implies
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described in (6.4) helps to reduce the complexity of Step 1 of Algorithm TTM by a factor of
k2m−1(lnn)2

nm−1 . A related weighted sampling has been suggested in the matrix literature (Drineas

et al., 2006) in the context of column sampling for matrix operations, where the authors show

that one should sample columns of a matrix with probability proportional to their norm.

It is obvious that specifying the distribution (pe) with pe ∝ we involves computing all

edge weights, and hence, it is an impractical solution for the problem at hand. However, this

result leads to an important conclusion – sample edges with larger weights more frequently.

This is essentially the idea commonly used in most tensor based algorithms. In the case of

matching algorithms, one uses an efficient k nearest neighbor search to sample the larger tensor

entries (Duchenne et al., 2011). On the other hand, the subspace clustering literature has

acknowledged the idea of iterative sampling (Chen and Lerman, 2009; Jain and Govindu, 2013),

where one uses an alternating strategy of finding clusters using a sampled set of edges, and then

re-sampling edges for which at least (m− 1) vertices belong to a cluster. It is clear that both

sampling techniques give higher preference to larger edge weights, and hence, as a consequence

of Corollary 6.2, both methods are expected to perform better than uniform sampling. Thus

Corollary 6.2 provides a theoretical justification for why such heuristics work, thereby answering

an open question posed by Chen and Lerman (2009).

6.2 Efficient uniform hypergraph partitioning algorithm

In Corollary 4.6, we observed that for dense hypergraphs, TTM achieves a smaller error bound

compared to a a spectral technique (Govindu, 2005; Chen and Lerman, 2009) that relies on

higher order singular value decomposition of tensors (HOSVD). Later, we also validate this con-

clusion in small synthetic problems. However, we empirically observed in (Ghoshdastidar and

Dukkipati, 2015a) that for larger problems, naively sampled TTM algorithm is outperformed

by the practical variant of HOSVD, which uses an iterative sampling technique. This practical

variant of HOSVD is commonly referred to as spectral curvature clustering or SCC (Chen and

Lerman, 2009). To address the paradoxical situation, we present an iterative version of Algo-

rithm TTM, for the purpose of subspace clustering. We henceforth refer to this algorithm as

spectral tensor trace maximization with iterative sampling (Tetris).

We present Algorithm Tetris for the subspace clustering problem described in Section 2.4.3.

Recall that in this problem, one is given n ra-dimensional vectors, each being a noisy perturba-

tion of a vector lying in an union of k subspaces, each of dimension at most r < ra. We fix the

that only few edges are present, and hence, sampling is not required in that case.
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order of the tensor as m = (r+ 2), and and the edge weights are computed using (2.21), where

fr(·) is as the polar curvature of m (see Equations 1-3 of Chen and Lerman, 2009). We also

incorporate the convergence criteria and the estimation procedure for σ used in SCC, which are

not explicitly stated below. Furthermore, to standardize the approach with SCC, Tetris uses a

one-sided degree normalization and computes left singular vectors of Laplacian.

Algorithm Tetris : TTM with iterative sampling for subspace clustering

Input: Data set Y = [Y1, . . . , Yn]; k = Number of subspaces;
r = Maximum subspace dimension; and
c = A hyperparameter controlling number of sampled edges (precisely, N = nc)

1: Set m = r + 2.
2: Uniformly sample c subsets of Y , each containing (m− 1) points.

3: Initialize Â ∈ Rn×n to a zero matrix.
4: for j = 1 to c do
5: Consider jth subset of Y with the points Yj1 , . . . , Yjm−1 .
6: for i = 1 to n do
7: Compute the weight we for the edge e = {Yi, Yj1 , . . . , Yjm−1} using (2.21).

8: Update Âijl = Âijl + we for all l = 1, . . . ,m− 1.
9: end for

10: end for

11: Let D̂ ∈ Rn×n be diagonal with D̂ii =
n∑
j=1

Âij.

12: Compute k dominant left singular vectors of D̂−1Â, denoted by X̂ ∈ Rn×k .
13: Normalize rows of X̂ to have unit norm.
14: Run k-means on the rows of the normalized matrix, and partition Y into k clusters.
15: From each obtained cluster, sample c/k subsets, each of size (m− 1).
16: Repeat from Step 3, and iterate until convergence.
Output: Clustering of Y into k disjoint clusters.

6.A Proofs for results in this chapter

The discussions in this chapter consider two sources of randomness – the random model for

hypergraph, and random sampling of edges (or tensor entries). Hence, we make a distinction

in the notation for expectation, variance and probability by specifying the underlying measure.

Remark 6.3. In this section, we use EH [·] and ES[·] to denote the expectation with respect to

distribution of the planted model, and the expectation with respect to sampling distribution,

respectively. We also use the conditional expectation, ES|H [·], over sampling distribution given
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a random hypergraph. Similar subscripted notations have been used for probability, P(·), and

variance, Var(·). Note that this notation is not used in the rest of the thesis.

Proof of Theorem 6.1

Following the arguments in the proof of Theorem 4.3, one can see that it suffices to modify the

statement of Lemma 4.8 only, where instead of ‖D−1/2AD−1/2 −D−1/2AD−1/2‖2, we now need

to compute a bound on ‖D̂−1/2ÂD̂−1/2 −D−1/2AD−1/2‖2. Observe that

‖D̂−1/2ÂD̂−1/2 −D−1/2AD−1/2‖2

≤ ‖D̂−1/2ÂD̂−1/2 −D−1/2AD−1/2‖2 + ‖D−1/2AD−1/2 −D−1/2AD−1/2‖2 ,

where the second term is bounded due to Lemma 4.8. Thus, the purpose of this proof is to

derive a bound on ‖D̂−1/2ÂD̂−1/2−D−1/2AD−1/2‖2 and the associated sufficient condition. To

this end, we claim the following: Let β be defined as in Theorem 6.1 and Dmin = min
1≤i≤n

Dii.

Assume that

Dmin > 36(m− 1)! lnn and N > 9

(
1 +

2β(m− 1)!

Dmin

)
lnn . (6.6)

Also let Γ denote the event

Γ =

{
Dmin >

Dmin

2

}⋂{
max
e∈E

we
pe
≤ β

}
.

Then, conditioned on a given random hypergraph and the event Γ, the following bounds hold

with probability (1− 2
n2 ),

max
1≤i≤n

∣∣∣∣∣D̂ii

Dii

− 1

∣∣∣∣∣ ≤ 3

√
lnn

N

(
1 +

2β(m− 1)!

Dmin

)
. (6.7)

and

‖D−1/2(Â− A)D−1/2‖2 ≤ 3

√
lnn

N

(
1 +

2β(m− 1)!

Dmin

)
. (6.8)

Assuming that the above hold, we now derive a bound on ‖D̂−1/2ÂD̂−1/2−L‖2 in the following

way. First, note that the bounds in (6.7) and (6.8) are with respect to a conditional probability

measure, and need to be converted into a bound with respect to the joint probability measure
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PS,H . This is not hard to derive as one can see in the case of (6.8), where one can write

PS,H

(
‖D−1/2(Â− A)D−1/2‖2 > 3

√
lnn

N

(
1 +

2β(m− 1)!

Dmin

))

= EH

[
PS|H

(
‖D−1/2(Â− A)D−1/2‖2 > 3

√
lnn

N

(
1 +

2β(m− 1)!

Dmin

))]

≤ EH|Γ

[
PS|H,Γ

(
‖D−1/2(Â− A)D−1/2‖2 > 3

√
lnn

N

(
1 +

2β(m− 1)!

Dmin

))]
PH (Γ) + PH (Γc)

= O

(
1

n2

)
+ PH (Γc) , (6.9)

where the inequalities follow by observing that all the quantities are smaller than one, and the

first term is bounded due to (6.8). From (4.24), it follows that with probability (1−O(n−2)),

Dii > Dii

1− 3

√
(m− 1)! lnn

Dmin


for all i = 1, . . . , n. Hence, if Dmin > 36(m− 1)! lnn, then

Dmin > Dmin

1− 3

√
(m− 1)! lnn

Dmin

 >
Dmin

2
.

This fact, along with the assumption on β, shows that PH(Γc) = o(1)), and so, the upper

bound on ‖D−1/2(Â − A)D−1/2‖2 holds with probability (1 − o(1)) even with respect to joint

probability measure. Similar result also holds for (6.7). Subsequently, we follow the arguments

leading to (4.26) to conclude that

‖D̂−1/2ÂD̂−1/2 −D−1/2AD−1/2‖2

≤ max
1≤i≤n

∣∣∣∣∣D̂ii

Dii

− 1

∣∣∣∣∣
(

2 + max
1≤i≤n

∣∣∣∣∣D̂ii

Dii

− 1

∣∣∣∣∣
)

+ ‖D−1/2(Â− A)D−1/2‖2

≤ 12

√
lnn

N

(
1 +

2β(m− 1)!

Dmin

)
, (6.10)
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where the last inequality holds with probability (1− o(1)) under the conditions stated in (6.6).

This bound combined with Lemma 4.8 implies

‖D̂−1/2ÂD̂−1/2 −D−1/2AD−1/2‖2 ≤ 12

√
(m− 1)! lnn

Dmin

+ 12

√
lnn

N

(
1 +

2β(m− 1)!

Dmin

)
. (6.11)

Subsequently, one can follow the analysis of TTM to arrive at the claim.

To complete the proof, we derive the bounds (6.7) and (6.8), which again relies on the use

of Bernstein inequality. For this, observe that

D̂ii =
(m− 2)!

N

n∑
j=1

∑
e∈I

we
pe

(Re)ij =
(m− 1)!

N

∑
e∈I

we
pe
1{i ∈ e} ,

where for each e ∈ I,

ES|H,Γ

[
we
pe
1{i ∈ e}

]
=

∑
e′∈E:e′3i

pe′
we′

pe′
=

Dii

(m− 1)!
,

VarS|H,Γ

[
we
pe
1{i ∈ e}

]
=

∑
e′∈E:e′3i

w2
e′

pe′
−
(

Dii

(m− 1)!

)2

≤
(
β − Dii

(m− 1)!

)
Dii

(m− 1)!
,

and almost surely with respect to PS|H,Γ,∣∣∣∣wepe 1{i ∈ e} − Dii

(m− 1)!

∣∣∣∣ ≤ (β +
Dii

(m− 1)!

)
.

Define t = 3

√
lnn
N

(
1 + 2β(m−1)!

Dmin

)
. Since the samples e ∈ I are independent and identically

distributed, we can use Bernstein inequality to write

PS|H,Γ

(
|D̂ii −Dii| > tDii

)
= PS|H,Γ

(∣∣∣∣∣∑
e∈I

we
pe
1{i ∈ e} − Dii

(m− 1)!

∣∣∣∣∣ > NtDii

(m− 1)!

)

≤ 2 exp

 −N2t2D2
ii

(m−1)!

2N
(
β − Dii

(m−1)!

)
Dii

(m−1)!
+ 2

3
NtDii
(m−1)!

(
β + Dii

(m−1)!

)


≤ 2 exp

 −NDiit
2

(m−1)!

2
3

(
4β − 2 Dii

(m−1)!

)
 ≤ 2

n3
.

The inequalities are derived using above relations, and the defintion of Γ. From above, (6.7)
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follows from union bound. To prove (6.8), observe from (6.1) that

D−1/2ÂD−1/2 =
1

N

∑
e∈I

(m− 2)!
we
pe
D−1/2ReD

−1/2

is a sum of independent random matrices with

ES|H,Γ

[
(m− 2)!

we
pe
D−1/2ReD

−1/2

]
= D−1/2AD−1/2

and

∥∥∥∥(m− 2)!
we
pe
D−1/2ReD

−1/2 −D−1/2AD−1/2

∥∥∥∥
2

≤ (m− 2)!β‖D−1/2ReD
−1/2‖2 + 1

≤
(

2β(m− 1)!

Dmin

+ 1

)
.

The first bound uses the fact ‖D−1/2AD−1/2‖2 = 1 and the secong follows since Dmin >
1
2
Dmin

and ‖Re‖2 ≤ (m− 1). We can also bound the norm of the variance term as∥∥∥∥∥ES|H,Γ
[(

(m− 2)!
we
pe
D−1/2ReD

−1/2 −D−1/2AD−1/2

)2
]∥∥∥∥∥

2

=

∥∥∥∥∥− (D−1/2AD−1/2
)2

+ ((m− 2)!)2
∑
e∈E

w2
e

pe
D−1/2ReD

−1ReD
−1/2

∥∥∥∥∥
2

≤ 1 +
((m− 2)!)2β

Dmin

∥∥∥∥∥∑
e∈E

weD
−1(Re)

2

∥∥∥∥∥
2

≤
(

1 +
2β(m− 1)!

Dmin

)
.

Using these relations and the matrix Bernstein inequality, the bound in (6.8) can be derived

quite similar to the derivation of (4.25).

Proof of Corollary 6.2

Note that β ≥ maxe
we
pe

. Since, |E| =
(
n
m

)
, it follows that for uniform sampling pe =

(
n
m

)−1

for all e, and hence, an appropriate choice of β =
(
n
m

)
. On the other hand, for the sampling

in (6.4), maxe
we
pe

=
∑

ewe. Using Bernstein inequality, one may easily bound this term from

above by 2
∑

e EH [we] ≤ 2αm
(
n
m

)
, where the bound holds with probability (1 − n−2). Thus,

ignoring constants factors, one may set β = ξnm, where ξ = 1 for uniform sampling and αm for

weighted sampling. The conditions in (6.5) follow directly from (6.2) and d, δ computed in the

proof of Corollary 4.4. Here, we set εn = (lnn)−1/2. The weak consistency is proved by simply

substituting the lower bounds of αm and N in the error bound of Theorem 6.1.
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Why do two colors, put one next to the other, sing?

Pablo Picasso

Chapter 7

Coloring Bipartite Hypergraphs

We briefly discussed the hypergraph weak coloring problem in Section 2.4.4. The present

chapter is dedicated to this problem for the case of two colors. We begin with a description of

the problem at hand, and a review the existing literature.

7.1 Weak 2-coloring of hypergraphs

A hypergraph (V,E) is said to be bipartite or weakly 2-colorable if the vertex set V can be

partitioned into two disjoint sets V1 and V2 such that every edge e ∈ E has non-empty inter-

sections with both sets. In the case of graphs, where each edge is of size two, one can easily

find the two sets by breadth first search. However, the problem turns out to be notoriously

hard if edges of size more than two are present. In fact, in the case of bipartite 3-uniform and

4-uniform hypergraphs, it is well known that the problem is NP-hard (Dinur et al., 2005; Khot

and Saket, 2014).

In general, finding a 2-coloring is relatively easy if a hypergraph consists of very few edges.

In an answer to a question asked by Erdös (1963) on 2-colorability of uniform hypergraphs, it is

now known that for large m, any m-uniform hypergraph on n vertices with at most 2m0.7

√
m

lnm
edges is 2-colorable (Radhakrishnan and Srinivasan, 1998). As pointed by Radhakrishnan

and Srinivasan (1998), the result can be extended to non-uniform hypergraphs with minimum

edge size m. However, it is much worse if the restriction on the minimum edge size and

the number of edges is not imposed. Even when a hypergraph is 2-colorable, the best known

algorithms (Alon et al., 1996; Chen and Frieze, 1996) require O
(
(n lnn)1−1/M

)
colors to properly

color the hypergraph in polynomial time, where M is the maximum edge size, also called

dimension, of the hypergraph. In recent years, 2-colorability of random hypergraphs has also
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received considerable attention. Through a series of works (Achlioptas and Coja-Oghlan, 2008;

Coja-Oghlan and Zdeborová, 2012; Panagiotou and Coja-Oghlan, 2012), it is now established

that random uniform hypergraphs are 2-colorable only when the number of edges are at most

Cn, for some constant C > 0. Thus, it is evident that coloring relatively dense hypergraphs is

difficult unless the hypergraph admits a “nice” structure.

In spite of the hardness of the problem, there are a number of applications that require hyper-

graph coloring algorithms. For instance, such algorithms have been used for approximate DNF

counting (Lu, 2004), as well as in various resource allocation and scheduling problems (Cap-

itanio et al., 1995; Ahuja and Srivastava, 2002). The connection between “Not-All-Equal”

(NAE) SAT and hypergraph 2-coloring also demonstrate its significance in context of satisfi-

ability problems. Among the various approaches studied in the literature, perhaps the only

known non-probabilistic instances of efficient 2-coloring are in the cases where the hypergraph

is α-dense, 3-uniform and bipartite (Chen and Frieze, 1996), or where the hypergraph is m-

uniform and its every edge has equal number of vertices of either colors (McDiarmid, 1993).

In this chapter, we consider the problem of coloring random non-uniform hypergraphs of

range M , that have an underlying planted bipartite structure. We address the following ques-

tion.

Question 4. Does there exist a polynomial time algorithm that can color a bipartite

random hypergraph with only two colors?

We answer the above question affirmatively by presenting a polynomial time spectral algo-

rithm in Section 7.2 that can properly 2-color instances of the random hypergraph with high

probability whenever the expected number of edges is at least Cn lnn for an absolute constant

C > 0. This result is formally stated in Section 7.3, and proved using certain lemmas. The

proofs of the lemmas can be found in Appendix 7.A.

To the best of our knowledge, a similar model has been only considered by Chen and Frieze

(1996), who extended a graph coloring approach of Alon and Kahale (1997) to present an algo-

rithm for 2-coloring of 3-uniform bipartite hypergraphs with Cn number of edges. To this end,

our work generalizes the results of (Chen and Frieze, 1996) to non-uniform hypergraphs, and

it is the first algorithm that is guaranteed to properly color non-uniform bipartite hypergraphs

using only two colors. However, the model can also be derived from the one recently studied

by Florescu and Perkins (2016).
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7.2 Spectral algorithm for hypergraph coloring

The coloring algorithm presented below is similar, in spirit, to the spectral methods of (Alon

and Kahale, 1997; Chen and Frieze, 1996), but certain key differences exist, which are essential

to deal with non-uniform hypergraphs. Given a hypergraph (V,E), an initial guess of the color

classes is formed by exploiting the spectral properties of a certain matrix A ∈ R|V|×|V| defined

as

Aij =


∑

e∈E:e3i,j

1

|e|
if i 6= j, and∑

e∈E:e3i

1

|e|
if i = j.

(7.1)

The above matrix was previously used in Algorithm NH-Cut described in Chapter 5, and is also

known to be related to the affinity matrix of the star expansion of hypergraph (Agarwal et al.,

2006). The use of matrix A is in contrast to the adjacency based graph construction of (Chen

and Frieze, 1996) that is likely to result in a complete graph if the hypergraph is dense.

Algorithm COLOR – Colors a non-uniform hypergraph H:

1: Define the matrix A as in (7.1).
2: Compute xA = arg min

‖x‖2=1

xTAx.

3: Let T = dlog2 ne, V
(0)
1 = {i ∈ V : xAi ≥ 0} and V

(0)
2 = {i ∈ V : xAi < 0}.

4: for t = 1, 2, . . . , T do

5: Let V
(t)
1 =

i ∈ V :
∑

j∈V(t−1)
1 \{i}

Aij <
∑

j∈V(t−1)
2 \{i}

Aij

,

and V
(t)
2 = V\V(t)

1 .
6: end for
7: if ∃e ∈ E such that e ⊂ V

(T )
1 or e ⊂ V

(T )
2 then

8: Algorithm FAILS.
9: else

10: 2-Color V according to the sets V
(T )
1 ,V

(T )
2 .

11: end if

The later stage of the algorithm considers an iterative procedure that is similar to (Alon

and Kahale, 1997; Chen and Frieze, 1996), but uses a weighted summation of neighbors. Such

weighting is crucial while dealing with edges of different sizes.
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7.3 Analysis of coloring algorithm

Before stating the main result of this chapter, we present the planted model under consideration,

which is based on the model described in Chapter 5. A random hypergraph (V,E) is generated

on 2n vertices. The set of vertices is V = {1, 2, . . . , 2n}, which is arbitrarily split into two sets,

each of size n, and the sets are colored with two different colors. Given an integer M , and

α2, . . . , αM ∈ [0, 1], the edges of the hypergraph are randomly added in the following way. All

the edges of size at most M are added independently, and for any e ⊂ V,

P(e ∈ E) =

{
αm if e is not monochromatic and |e| = m,

0 otherwise.

Note that M and αm are allowed to vary with n. With respect to the model in Chapter 5, one

may note here that we fix the tensor B(m) to be binary valued, and hence, the edge probabilities

are controlled by the sparsity factors αm, m = 2, . . . ,M . We prove the following result.

Theorem 7.1. Assume M = O(1), and let a bipartite hypergraph (V,E) of range M be gener-

ated from the above model. There is a constant C > 0 such that if

M∑
m=2

αm

(
2n

m

)
≥ Cn lnn, (7.2)

then Algorithm COLOR finds a proper 2-coloring of the hypergraph with probability (1− o(1)).

It is easy to see that the expected number of edges in the hypergraph grows as
∑M

m=2 αm
(

2n
m

)
,

and so the condition may be stated in terms of expected number of edges.

7.3.1 A note on the assumptions in Theorem 7.1

The key assumptions made in this chapter are the following:

1. M = O(1), and

2. α2, . . . , αM are such that the expected number of edges is larger than Cn lnn, where

C > 0 is a large constant.

The assumption M = O(1) is crucial, and helps to ensure that C can be chosen to be a constant.

This can be avoided if C is allowed to increase with n appropriately. We note that in Chapter 5,

we allow M to grow with n, but impose an additional restriction so that the number of edges

of larger size decay rapidly.
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The second assumption is stronger than the one in (Chen and Frieze, 1996), where it was

shown that a random bipartite 3-uniform hypergraph can be properly 2-colored with high

probability if the expected number of edges is Cn. This is due to the use of matrix Bernstein

inequality (Tropp, 2012) in our proof that does not provide useful bounds in the most sparse

case. On the other hand, Chen and Frieze (1996) use the techniques of Friedman et al. (1989)

that allows them to work in the most sparse regime. However, it is not clear how the same

techniques can be extended even to uniform hypergraphs of higher order. Thus, it remains

an open problem whether a similar result can be proved when the number of edges in the

hypergraph grows linearly with n.

7.3.2 Proof of Theorem 7.1

We now prove Theorem 7.1. Without loss of generality, assume that the true color classes in

V are {1, 2, . . . , n} and {n + 1, . . . , 2n}. Also, let V
(t)
err, t = 0, 1, . . . , T , denote the incorrectly

colored vertices after iteration t, with V
(0)
err being the incorrectly colored nodes after initial

spectral step. We prove Theorem 7.1 by showing with probability (1−o(1)), the size of V
(T )
err < 1,

which implies that all nodes are correctly colored, and hence, the hypergraph must be properly

colored. The lemmas stated below are proved in Appendix 7.A. The first lemma bounds the

size of V
(0)
err, i.e, the error incurred at the initial spectral step.

Lemma 7.2. If C in (7.2) is sufficiently large, then with probability (1− o(1)),

|V(0)
err| ≤

n

M222M+4
. (7.3)

Next, we analyze the iterative stage of the algorithm to characterize the vertices that are

correctly colored after iteration t.

Lemma 7.3. Define η =
1

2M+2

M∑
m=2

αm(n− 1)

m

(
n− 2

m− 2

)
. For any t ∈ {1, . . . , T}, if any vertex

i ∈ V satisfies
∑

j∈V(t−1)
err \{i}

Aij < η, then P (i ∈ V
(t)
err) ≤ n−Ω(C).

Note that there are only T = dlog2 ne iterations, and |V| = 2n. Combining the result

of Lemma 7.3 with union bound, we can conclude that if C is a large constant, then with

probability (1− o(1)), for all iterations t = 1, 2, . . . , T , there does not exist any i ∈ V such that∑
j∈V(t−1)

err \{i}

Aij < η. We also make the following observation, where η is defined in Lemma 7.3.
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Lemma 7.4. With probability (1 − o(1)), there does not exist S1, S2 ⊂ V such that |S1| ≤
n

M222M+4 , |S2| = 1
2
|S1| and for all i ∈ S2,

∑
j∈S1\{i}

Aij ≥ η.

We now use the above lemmas to proceed with the proof of Theorem 7.1. Lemma 7.2 shows

that |V(0)
err| ≤ n

M222M+4 with probability (1 − o(1)). Conditioned on this event, and due to the

conclusion of Lemma 7.3, one can argue that Lemma 7.4 is violated unless |V(t)
err| < 1

2
|V(t−1)

err |
for all iteration t with probability (1− o(1)). Thus, in each iteration, the number of incorrectly

colored vertices are reduced by at least half. Hence, after T = dlog2 ne iterations, |V(T )
err | < 1,

which implies that all vertices are correctly colored.

7.A Proofs for lemmas in this chapter

Proof of Lemma 7.2

We view the random matrix A ∈ R2n×2n, as a perturbation of the matrix A = E[A]. Let E0

denote the collection of all the non-monochromatic subsets of V of size at most M . One can

verify that for any i, j ∈ V, i 6= j

Aij =
∑

e∈E0:e3i,j

α|e|
|e|

and Aii =
∑

e∈E0:e3i

α|e|
|e|

.

Counting the number of possible edges of each size, one can see that

Aij =


β1 − β2 if i 6= j, and i, j belong to same color class,

β1 if i 6= j, and i, j belong to different color class,

β1 − β2 + β3 if i = j,

(7.4)

where

β1 =
M∑
m=2

αm
m

(
2n− 2

m− 2

)
, β2 =

M∑
m=2

αm
m

(
n− 2

m− 2

)
,

and β3 =
M∑
m=2

αm
m

((
2n− 2

m− 1

)
−
(
n− 2

m− 1

))
.

Hence, we can write A as

A = β112n×2n − β2

(
1n×n 0n×n

0n×n 1n×n

)
+ β3I2n, (7.5)
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where I2n is the 2n-dimensional identity matrix, and 1n×n is a n× n matrix of all 1’s. One can

verify that the smallest eigenvalue of A is (β3−nβ2), which has multiplicity 1, and is separated

from the other eigenvalues by an eigen-gap of nβ2. Moreover, the corresponding unit norm

eigenvector xA is such that xAi = 1√
2n

for all i ≤ n, and xAi = − 1√
2n

for all i > n, up to a

possible change of sign.

At this stage, we refer Theorem 2.8. By viewing A as a perturbation of A and noting that

the eigen-gap δ = nβ2, one can use the above result to conclude that if β2 >
2
n
‖A−A‖2, then

‖xA − xA‖2 ≤
2
√

2‖A−A‖2

nβ2

. (7.6)

One can write A as A =
∑
e∈E0

he
|e|aea

T
e , where, for each set e ∈ E0, he is a Bernoulli(α|e|) random

variable, and ae ∈ {0, 1}2n is such that (ae)i = 1 only when i ∈ e. Hence, one may view A as a

sum of independent random matrices. Matrix concentration bounds are quite useful to derive

a bound on the perturbation ‖A−A‖2. In particular, Theorem 2.11 directly implies that

P(‖A−A‖2 > 4
√
nβ1 lnn) ≤ 4n exp

(
− 16nβ1 lnn

2‖Var(A)‖2 + 8
3

√
nβ1 lnn

)
. (7.7)

We note that choosing C in (7.2) large enough, one can satisfy nβ1 > lnn. Also, observe that

‖Var(A)‖2 ≤ max
i

2n∑
j=1

(Var(A))ij ≤ max
i

2n∑
j=1

Aij ≤ 4nβ1.

Substituting these in (7.7), we have

P(‖A−A‖2 > 4
√
nβ1 lnn) ≤ 4n exp

(
− 16nβ1 lnn

8nβ1 + 8
3
nβ1

)
(7.8)

=
4√
n

= o(1).

Thus, with probability (1− o(1)) we have ‖A−A‖2 ≤ 4
√
nβ1 lnn. Due to this bound, one can

argue that if δ = nβ2 > 8
√
β1n lnn, i.e, β1

β2
2
< n

64 lnn
, then the perturbation bound (7.6) holds.
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We can compute that

β1

β2
2

=

M∑
m=2

αm
m

(
2n−2
m−2

)
(

M∑
m=2

αm
m

(
n−2
m−2

))2

≤ n222M+2

M∑
m=2

αm(m− 1)
(

2n
m

) ≤ n22M+2

C lnn
.

Hence, choosing C sufficiently large, the above bound in smaller than n
64 lnn

, and one can claim

from (7.6) that

‖xA − xA‖2 ≤
8
√

2nβ1 lnn

nβ2

≤ 2M+4.5

√
C

.

Now, we define the set V̂err ⊂ V as V̂err = {i ∈ V : |xAi − xAi | ≥ 1√
2n
}. From the definition

of the color classes V
(0)
1 ,V

(0)
2 , it directly follows that any vertex not in V̂err must be correctly

colored. Hence,

|V(0)
err| ≤ |V̂err| ≤

∑
i∈V̂err

2n|xAi − xAi |2

≤ 2n‖xA − xA‖2
2 = O

( n
C

)
,

where the bound holds with probability (1 − o(1)). Thus, choosing C sufficiently large, one

obtains that |V(0)
err| ≤ n

M222M+4 .

Proof of Lemma 7.3

Consider any i ≤ n. Note that i is correctly colored in iteration t if∑
j∈V(t−1)

1 \{i}

Aij <
∑

j∈V(t−1)
2 \{i}

Aij,

or equivalently,

∑
j∈V(t−1)

1 \{i}

Aij <
1

2

∑
j 6=i

Aij. (7.9)
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Hence, it suffices to show that (7.9) holds under the condition stated in the lemma. A similar

condition can be stated for i > n.

We note that
∑
j 6=i

Aij =
∑

e∈E0:e3i

he
(|e| − 1)

|e|
, and so, from Bernstein inequality, we have

P

(∑
j 6=i

Aij ≤
(

1− 1

2M+2

)∑
j 6=i

Aij

)

≤ exp

−
1

22M+4

(∑
j 6=i

Aij

)2

2
∑

e∈E0:e3i

(|e|−1)2

|e|2 Var(he) + 2
3.2M+2

∑
j 6=i

Aij


≤ exp

(
−Ω

(∑
j 6=i

Aij

))
≤ n−Ω(C).

The second inequality holds since for any e, (|e|−1)2

|e|2 Var(he) ≤ (|e|−1)
|e| Ehe, and the last inequality

is true under the condition of Theorem 7.1 since∑
j 6=i

Aij = (2n− 1)β1 + (n− 1)β2

=
M∑
m=2

αm(m− 1)

2n

[(
2n

m

)
− 2

(
n

m

)]
= Ω(C lnn).

Denoting [n− i] = {1, . . . , n}\i, i.e, the first color class excluding vertex i, we have
∑

j∈[n−i]
Aij =∑

e∈E0:e3i
he
|e∩[n−i]|
|e| , and one can bound

P

 ∑
j∈[n−i]

Aij ≥
(

1 +
1

2M+2

) ∑
j∈[n−i]

Aij



≤ exp

−
1

22M+4

( ∑
j∈[n−i]

Aij

)2

2
∑

e∈E0:e3i
Var(he)

|e∩U |2
|e|2 + 2

3.2M+2

∑
j∈[n−i]

Aij


≤ n−Ω(C).
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Thus, with probability (1− n−Ω(C)), we have

∑
j∈[n−i]

Aij <

(
1 +

1

2M+2

) ∑
j∈[n−i]

Aij

=
M∑
m=2

αm(n− 1)

m

(
1 +

1

2M+2

)((
2n− 2

m− 2

)
−
(
n− 2

m− 2

))
,

and ∑
j 6=i

Aij >

(
1− 1

2M+2

)∑
j 6=i

Aij

=
M∑
m=2

αm
m

(
1− 1

2M+2

)(
(2n− 1)

(
2n− 2

m− 2

)
− (n− 1)

(
n− 2

m− 2

))
.

Using above relation, we can derive (7.9) since∑
j∈V(t−1)

1 \{i}

Aij =
∑

j∈V(t−1)
err ∩V

(t−1)
1 \{i}

Aij +
∑

j∈V(t−1)
1 \(V(t−1)

err ∩{i})

Aij

≤
∑

j∈V(t−1)
err \{i}

Aij +
∑

j∈[n−i]

Aij

< η +

(
1 +

1

2M+2

) ∑
j∈[n−i]

Aij

The first inequality uses the fact V
(t−1)
1 \V(t−1)

err is the set of correctly colored nodes, with true

color same as i. Hence, V
(t−1)
1 \(V(t−1)

err ∩ {i}) ⊂ [n− i]. From definition of η, we have∑
j∈V(t−1)

1 \{i}

Aij

≤
M∑
m=2

αm(n− 1)

m

[
1

2M+2

(
n− 2

m− 2

)
+

(
1 +

1

2M+2

)((
2n− 2

m− 2

)
−
(
n− 2

m− 2

))]

=
M∑
m=2

αm(n− 1)

m

(
1− 1

2M+2

)[(
2n− 2

m− 2

)
− 1

2

(
n− 2

m− 2

)]

+
M∑
m=2

αm(n− 1)

2m

[
1

2M

(
2n− 2

m− 2

)
−
(
n− 2

m− 2

)]
−

M∑
m=2

αm(n− 1)

m2M+3

(
n− 2

m− 2

)
.
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One can see that the first term is at most 1
2

(
1− 1

2M+2

)∑
j 6=iAij <

1
2

∑
j 6=iAij. On the other

hand, we note that

(
2n−2
m−2

)(
n−2
m−2

) ≤ 1

4

(
2n
m

)(
n
m

) ≤ 1

4

(2n)m

m!
nm

4.m!

= 2m ≤ 2M .

So the second term is negative, which proves (7.9), and the claim follows.

Proof of Lemma 7.4

Let S1, S2 ⊂ V be arbitrary such that |S2| = b, and ES1S2 be the set of all non-monochromatic

subsets of V of size at most M that have non-empty intersection with both S1 and S2. Then

∑
e∈ES1S2

he ≥
1

M

∑
e∈ES1S2

he
|e ∩ S1||e ∩ S2|

|e|

≥ 1

M

∑
i∈S2

∑
j∈S1\{i}

Aij ≥
bη

M
,

where the last inequality holds under the condition stated in the lemma. Now we bound the

probability

P

∃S1, S2 ⊂ V, |S2| =
1

2
|S1| ≤

n

M222M+5
,
∑

j∈S1\{i}

Aij ≥ η ∀i ∈ S2

 (7.10)

≤

n

M222M+5∑
b=1

P

∃S1, S2 ⊂ V, |S2| =
1

2
|S1| = b, and

∑
e∈ES1S2

he ≥
bη

M


≤

n

M222M+5∑
b=1

∑
S2:|S2|=b

∑
S1:|S1|=2b

P

 ∑
e∈ES1S2

he ≥
bη

M


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We observe that

∑
e∈ES1S2

E[he] =
M∑
m=2

∑
e∈ES1S2 ,|e|=m

αm

≤ 2b2

M∑
m=2

αm

(
2n− 2

m− 2

)

≤ b22M+1

M∑
m=2

αm

(
n− 2

m− 2

)
≤ b2ηM22M+4

n
,

and the above bound is smaller than bη
2M

for b ≤ n
M222M+5 . Hence, we can write

P

 ∑
e∈ES1S2

he ≥
bη

M


≤ exp

 −
(
bη
M
−
∑

e∈ES1S2
E[he]

)2

2
∑

e∈ES1S2
Var(he) + 2

3

(
bη
M
−
∑

e∈ES1S2
E[he]

)


≤ exp

(
− 3bη

16M

)
.

Substituting in (7.10), we have the probability of the existence of S1, S2 with mentioned condi-

tions is at most

n

M222M+5∑
b=1

(
2n

b

)(
2n

2b

)
exp

(
− 3bη

16M

)
≤

∞∑
b=1

(
2n exp

(
1− η

16M

))3b

.

Under the assumption of Theorem 7.1, one can verify that η ≥ C lnn
22M+4 . So for large C, the above

geometric series converges, and is at most n−Ω(C) = o(1).
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It is a capital mistake to theorize before one has data.

Insensibly one begins to twist facts to suit theories,

instead of theories to suit facts.

Sir Arthur Conan Doyle, Scandal in Bohemia

Chapter 8

Numerical Studies

This chapter consists of numerical evidence that validate our analysis, and also demonstrate

the performance of the studied algorithms in practical problems1.

Before presenting the detailed numerical studies, we provide some illustrations in Figure 8.1

that demonstrate the use of spectral hypergraph partitioning in subspace clustering, motion

segmentation, geometric grouping and hypergraph matching.

Geometric grouping of Kanisza figure Depth map segmentation

(a) Kanisza figure contains 3 lines and 3 circular
arcs. These cannot be separated by (b) proximity
based clustering, but by (c) higher order methods.

In a depth map, the pixel intensities scale
proportional to the depth. Segmenting
such image is a plane clustering problem.

Motion segmentation Point set matching

Motion trajectories for each rigid body lie in a
low-dimensional subspace, leading to a subspace
clustering problem.

Finding correspondences between two
images can be posed as a problem of find-
ing clique in a uniform hypergraph.

Figure 8.1: Examples illustrating the applications of hypergraph partitioning. These results
have been obtained using the Algorithm HOSVD.

1 The implementations of the various studies in this chapter are available at: http://sml.iisc.ernet.in/
publications.html
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The numerical results in this chapter are organized in six sections. In Section 8.1, we

study the nature of hypergraphs that arise in practice, and comment on the applicability of

our assumptions and consistency results. Subsequently, we empirically validate our theoretical

findings about the spectral methods, HOSVD, TTM and NH-Cut, in Section 8.2. We then

compare these methods with popular hypergraph partitioning algorithms in Section 8.3. Specific

problems of categorical data clustering and subspace clustering are considered in Sections 8.4

and 8.5, respectively, where we also compare the above spectral methods with the state-of-

the-art algorithms for each problem. In addition, Section 8.5 also contains numerical studies

on large problems such as motion segmentation, where efficient partitioning algorithms such

as Tetris are essential. Finally, we expand the use of the presented spectral algorithms to

any clustering application by constructing similarity hypergraphs based on general multi-point

similarity measures. As an example, in Section 8.6, we present a class of similarities arising from

the notion of multi-distribution information theoretic divergences, and study the performance

of HOSVD when a weighted hypergraph is constructed using this similarity. We compare the

performance of this approach to data clustering with standard methods used in the literature.

8.1 Nature of real-world hypergraphs

Our theoretical studies were based on a statistical model for hypergraphs with a planted so-

lution. We now focus our attention on hypergraphs or networks that have been studied in

practical problems (Ghoshal et al., 2009; Alpert, 1998). Recall that the consistency results in

this thesis are applicable only under certain restrictions on the hypergraph to be partitioned.

To be precise, we have established that spectral methods are consistent when the sparsity pa-

rameter (αm) of the hypergraph is above a certain threshold. We study the practicability of

such conditions in the case of real-world hypergraphs. We consider two types of applications –

folksonomy, where the underlying model is a 3-uniform hypergraph, and circuit design, which

involves non-uniform hypergraph partitioning.

To study the nature of hypergraphs in folksonomy, we consider 11 networks from KONECT,

HetRec’2011 and MovieLens1. The networks under consideration contain folksonomy data

related to the sites – Bibsonomy, CiteULike, MovieLens, vi.sualize.us, Last.fm and Delicious.

Six different versions of the MovieLens dataset are available. Each network is a tri-partite

3-uniform hypergraph containing three types of vertices – user, resource and annotation. Each

1 The HetRec’2011 and MovieLens datasets are maintained by the GroupLens research group, and are
available at: http://grouplens.org/
KONECT refers to the Koblenz network collection: http://konect.uni-koblenz.de/
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edge is an entry in the database that occurs when an user describes a certain resource by a

particular tag or rating. The number of vertices vary between 2630 to 9.8 × 105. Assuming

that k = O(1), the sufficient condition in Corollary 5.12 requires that the number of edges in a

3-uniform hypergraph grows as Ω (n(lnn)2). In Figure 8.2, we compare the number of edges |E|
with n(lnn)2 for above networks. We observe that in few cases (last four in Figure 8.2), these

quantities are similar, whereas for the remaining networks, |E| is smaller by a nearly constant

factor.

|E
|a

n
d
n

(l
n
n

)2
in

lo
g

sc
al

e

Networks

Figure 8.2: Bar plot for |E| and n(lnn)2 in logarithmic scale for 11 folksonomy networks.

The next study is related to non-uniform hypergraphs that are encountered in circuit par-

titioning. We consider 18 circuits from the ISPD98 circuit benchmark suite (Alpert, 1998).

From a hypergraph view, the components of the circuit are the vertices of the hypergraph,

while the multi-way connections among them are the edges. These networks are also sparse

as the number of vertices vary from 1.27 × 104 to 2.1 × 105, while the number of edges range

between 1.4×104 to 2×105. Moreover, these networks contain relatively large number of edges

of sizes 2 or 3, and the number of edges of size m gradually decreases with m. We assume

a = 1, b = 2, and ignoring constant factors, we estimate θm as θm = |Em|
n(lnn)2

, where Em is the set

of edges of size m in the network. Figure 8.3 shows a plot of this quantity as a function of m

for different networks. We find that the estimate of θm is bounded by exponentially decaying

functions, and hence, one can argue that
∑

mmθm <∞.

132



E
st

im
at

e
of
θ m

Size of edge, m

Figure 8.3: Scatter plot for estimated θm = |Em|
n(lnn)2

versus m for the 18 circuits. Plot for
each circuit is shown in a different color. The bounding curves correspond to the functions
0.05 exp(−m0.5) from above and 0.002 exp(−m0.8) from below.

8.2 Validation of the consistency results

We support the consistency results stated in the previous chapters through numerical simula-

tions. For this, we demonstrate the performance of TTM, HOSVD and NH-Cut when random

uniform hypergraphs are generated from a planted model.

Consider the following setting for a m-uniform hypergraph on n vertices. We assume here

that αm = 1, k = 2, and the true clusters are of equal size. The edges occur with following

probabilities. If all vertices in an edge do not belong to the same cluster, then the edge

probability is q = 0.2, else it is (p+ q) for some p ∈ (0, 1− q).
Figure 8.4 shows results for three examples, where p is fixed at p = 0.1, m is varied over

m = 2, 3, 4, and the total number of vertices n grows. For each case, 50 planted hypergraphs

are generated, and subsequently partitioned by TTH, HOSVD and NH-Cut. The mean error,

Error(ψ, ψ′), is reported for each algorithm as a function of n. Figure 8.4 shows that the

performance of TTM and NH-Cut are similar, and the errors incurred by these methods are

significantly smaller than that of HOSVD. This observation validates our observations made in

Corollaries 4.6 and 5.12, and subsequent discussions. It can also be seen that all three methods

incur a sub-linear error rate for m = 2, i.e, they are weakly consistent, whereas, the error

reduces, Error(ψ, ψ′) = o(1), for m ≥ 3.

We consider another example on bi-partitioning 3-uniform hypergraphs, where we fix q = 0.2
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(a) m = 2 (b) m = 3 (c) m = 4

E
rr

or
(ψ
,ψ
′ )

Total number of vertices, n

Figure 8.4: Number of vertices mis-clustered by TTM, HOSVD and NH-Cut as n increases.
The figures from left to right correspond to cases with m = 2, 3 and 4, respectively.

but the density gap p is decreased as 0.1, 0.05 and 0.025. Figure 8.5 shows the errors, averaged

over 50 runs, incurred by the three methods as the hypergraph grows. Note that the problem

becomes harder as p reduces, and the performance of HOSVD is highly affected. But, the effect

is much less in case of TTM and NH-Cut. This follows from the consistency theorems, where

one can observe that, in the present context the clustering error varies as 1/p2. Same holds

for NH-Cut, but in the case of HOSVD, the error varies as 1/p4 making the algorithm more

sensitive to reduction in probability gap.

(a) p = 0.1 (b) p = 0.05 (c) p = 0.025

E
rr

or
(ψ
,ψ
′ )

Total number of vertices, n

Figure 8.5: Number of vertices mis-clustered by TTM, HOSVD and NH-Cut as n increases.
The figures from left to right correspond to cases with p = 0.1, 0.05 and 0.025, respectively.
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8.3 Finding communities in planted hypergraphs

While the above simulations validate the conclusions of our theoretical analysis of the spectral

algorithms, a similar study can be conducted to empirically compare the performance of spectral

methods with other hypergraph partitioning algorithms. In particular, we compare TTM,

HOSVD and NH-Cut with the following methods:

• hypergraph partitioning by symmetric non-negative tensor factorization (SNTF) of the

adjacency tensor (Shashua et al., 2006),

• higher order game theoretic clustering (HGT) (Rota Bulo and Pelillo, 2013), which for-

mulates the partitioning problem as an evolutionary game, and

• the hMETIS tool (Karypis and Kumar, 2000), a multi-level approach that is widely used

in VLSI community.

We compare the different algorithms under a planted model for 3-uniform hypergraphs with

k = 3 planted clusters of equal size. As before, we assume the hypergraph to be dense, α3 = 1,

and the inter-cluster edges occur with probability q = 0.2. We study the performance of the

methods as the the number of vertices n, and the probability gap p varies. The fractional

clustering error, 1
n
Error(ψ, ψ′), averaged over 50 runs, is reported in Figure 8.6. The color

bar (on the right) indicates the shade corresponding to different levels of error, with darker

shade representing larger error. The figure shows the previously observed trend about relatively

performance of TTM, NH-Cut and HOSVD. In addition, it is observed that SNTF and hMETIS

provide nearly similar, but marginally worse results than TTM. However, HGT uses a greedy

strategy for extracting individual clusters, and hence, often identifies a majority of the vertices

as outliers, thereby resulting in poor performance.
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Figure 8.6: Fractional error incurred by hypergraph partitioning algorithms under a planted
model. The cluster size, (n/k), and the probability gap p are varied.
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8.4 Categorical data clustering with non-uniform hyper-

graphs

We now shift our attention to the study of spectral methods in practical applications. Par-

titioning the networks discussed in Section 8.1 is an interesting problem. However, for such

networks, the underlying partition is not known, and hence, for these networks, the accuracy

of a solution cannot be measured in terms of the number of incorrectly assigned vertices.

Our first practical study is based on benchmark categorical data clustering problems, where

the true partition is known. Here, one needs to group instances of a database, each described by

a number of categorical attributes. Two such benchmark databases include the 1984 US Con-

gressional Voting Records and the Mushroom Database available at the UCI repository (Lich-

man, 2013). The first set contains votes of 435 Congress men on 16 issues. The task is to

group the Congress men into Democrats and Republicans based on whether they voted for or

against each of the issues, or abstained their votes. The mushroom database contains informa-

tion about 22 features of 8124 varieties of mushrooms. Based on the categorical features, one

needs to separate the edible varieties from the poisonous ones. Thus, both databases have two

well-defined classes.

A standard approach (Gibson et al., 2000) is to consider a m-uniform m-partite hypergraph,

where m is the number of attributes for each data instance. The vertices are the possible values

of all attributes, and each instance is an edge of size m. This representation is similar to

the folksonomy networks. One then partitions this hypergraph to group the possible attribute

values. An instance is then labeled as group-i if a majority of its attributes belong to group-

i (Han et al., 1997). In mushroom database, there are some missing entries. We consider such

instances as an edge of size < m. Also, in the final stage, we break ties randomly.

Alternatively, one may directly consider the instances of the database as the vertices of the

hypergraph. For each possible value of each attribute, an edge is considered among all instances

that take the particular value of the attribute. This generates a sparse non-uniform hypergraph

that can be partitioned to obtain the clusters.

Table 8.1 compares the performance of the non-uniform hypergraph methods, NH-Cut and

TTM-ext, with some popular categorical clustering algorithms.

• ROCK (Guha et al., 2000),

• COOLCAT (Barbara et al., 2002),

• LIMBO (Andritsos et al., 2004), and
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• hMETIS (Han et al., 1997; Karypis and Kumar, 2000).

For the spectral algorithms, we consider both the aforementioned approaches, which we denote

as “Direct” and “Indirect” to specify that the instances are directly partitioned (second method)

or instances are grouped using the partition of attribute values. The error is measured as
1
n
Error(ψ, ψ′). The results for ROCK, COOLCAT and LIMBO are taken from (Andritsos

et al., 2004). Table 8.1 shows that both TTM-ext and NH-Cut perform quite well compared to

other categorical data clustering methods. Spectral partitioning of clique expansion (Rodŕıguez,

2002) also performs similar to TTM-ext (see Ghoshdastidar and Dukkipati, 2016).

Table 8.1: Fraction of data mis-clustered by different algorithms in categorical data clustering.
COOL- TTM-ext NH-Cut

Database ROCK CAT LIMBO hMETIS Direct Indirect Direct Indirect

Voting 0.16 0.15 0.13 0.24 0.12 0.12 0.12 0.12
Mushroom 0.43 0.27 0.11 0.48 0.11 0.35 0.11 0.35

8.5 Subspace clustering with uniform hypergraphs

Our next application is in the problem of subspace clustering described in Section 2.4.3. We

compare the performance of the various hypergraph partitioning methods in the case of sub-

space clustering. In particular, we consider the line clustering problem in an ambient space of

dimension 3. We randomly generate three one-dimensional subspaces, and sampled n/k random

points from each subspace. As mentioned earlier, subspace clustering problems typically involve

noisy perturbations of the points. To simulate this behavior, we add a mean zero Gaussian noise

vector to each point. The covariance of the noise vectors is given as σaI, where we vary σa to

control the difficulty of the problem. We construct a weighted 3-uniform similarity hypergraph

based on polar curvature of triplet of points, which is partitioned by the different methods. The

fractional clustering errors are illustrated in Figure 8.7. As is expected, all the methods can

identify the exact subspace in the absence of noise, and the errors increase for larger σa. Apart

from HGT, good performance is observed from all the methods, and the spectral methods are

quite robust to the presence of noise.

One can observe that the above comparisons were based on very small problems, where the

hypergraph consists of at most 120 vertices. This restriction was imposed since specification of

the entire weighted adjacency tensor is computationally infeasible for large hypergraphs. We

now compare spectral partitioning methods against the state of the art subspace clustering
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Figure 8.7: Fractional error incurred by hypergraph partitioning algorithms in clustering noisy
points from three intersecting lines. The cluster size, (n/k), and the noise level σa are varied.

algorithms. Considering the computational complexity of large clustering problems, we use

sampled variants of the TTM algorithm, i.e, TTM with uniform sampling and TTM with

iterative sampling (Tetris). The subspace clustering algorithms under consideration include:

• k-means algorithm based on Euclidean distance,

• k-flats (Bradley and Mangasarian, 2000) which generalizes k-means to subspace clustering,

• sparse subspace clustering (SSC) (Elhamifar and Vidal, 2013), which finds clusters by

estimating the subspaces,

• subspace clustering using low-rank representation (LRR) (Liu et al., 2010),

• thresholding based subspace clustering (TSC) (Heckel and Bölcskei, 2013),

• faster variant of SSC using orthogonal matching pursuit (SSC-OMP) (Dyer et al., 2013),

• greedy subspace clustering using nearest subspace neighbor search and spectral clustering

(NSN+Spectral) (Park et al., 2014),

• spectral curvature clustering (SCC) (Chen and Lerman, 2009), which is an iterative vari-

ant of HOSVD,

• sparse Grassmann clustering (SGC) (Jain and Govindu, 2013)1, another iterative modifi-

cation of HOSVD where the eigenvectors are updated at each iteration,

• Algorithm Tetris, and

• Algorithm TTM with uniform sampling, which is derived by performing a single iteration

of Steps 1–14 of Algorithm Tetris2.

1 For this method, we have used our own implementation.
2Here, the edge sampling is not exactly uniform since we only select the c subsets of size (m− 1) uniformly.
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8.5.1 Comparison of subspace clustering algorithms on synthetic

data

We first focus on the problem of clustering randomly generated subspaces1. In an ambient space

of dimension ra = 5, we randomly generate k = 5 subspaces each of dimension r = 3. From

each subspace, we randomly sample n/k points and perturb every point with a 5-dimensional

Gaussian noise vector with mean zero and covariance σaI. In Figure 8.8, we report the fractional

error, 1
n
Error(ψ, ψ′), incurred by various subspace clustering algorithms when (n/k) and σa are

varied. The results are averaged over 50 independent trials. We note that for existing methods,

we fix the parameters as mentioned in (Park et al., 2014). For Tetris, the parameters are set

to the same values as SCC, where c = 100k and σ as in (2.21) is determined by the algorithm.

In case of uniformly sampled TTM, we fix σ to be same as the value determined by Tetris. To

demonstrate that sampling more edges lead to error reduction, we consider uniform sampling

for two values c = 100k and 200k.
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Figure 8.8: Fractional error incurred by subspace clustering algorithms for synthetic data. The
number of points in each subspace, (n/k), and the variance of the noise vector σa is varied.

Figure 8.8 shows that Tetris and SGC clearly outperform other methods over a wide range of

settings. In particular, it can be seen that greedy methods like NSN is accurate in the absence

of noise, but a drastic increase in error occurs when the data is noisy. The effect of noise is

much less in hypergraph based methods like SCC, SGC or Tetris. One can also observe that

these methods do not work well when there are very few points in each cluster (for example,

1The experimental setup has been adapted from (Park et al., 2014), and the codes are available at:
http://sml.csa.iisc.ernet.in/SML/code/Feb16_TensorTraceMax.zip
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6). This is expected since, by definition, these algorithms construct 5-uniform hypergraphs

(m = r + 2) in this case, and hence, there are very few edges (
(

6
5

)
= 6) with large weight for

each cluster. However, with increase in number of points, there is a rapid increase in accuracy

of the algorithm. This also shows the consistency of these methods empirically. To this end,

it seems that NSN or SSC should be recommended for small scale problems (smaller n/k),

whereas Tetris or SGC should be the algorithm of choice for larger n and possible presence of

noise. Finally, we also observe that TTM with uniform sampling, even with twice the number

of samples, performs quite poorly as compared to Tetris or SGC. However, with increase in the

number of sampled edges, some extent of error reduction is observed.

8.5.2 Comparison of subspace clustering algorithms on motion seg-

mentation benchmark

The Hopkins 155 database (Tron and Vidal, 2007) contains a number of videos capturing motion

of multiple objects or rigid bodies. In each video, few features are tracked along the frames,

each giving rise to a motion trajectory that resides in a space of dimension twice the number of

frames. One can show that under particular camera models, all trajectories corresponding to a

particular rigid body motion span a subspace of dimension at most four (Tomasi and Kanade,

1992). Thus, the problem of segmenting different motions in a video can be posed as a subspace

clustering problem.

The Hopkins database contains 120 sequences, each containing two motions, and 35 three

motion sequences. We run above mentioned subspace clustering algorithms for purpose of

motion segmentation. For existing approaches, the parameters specified in (Park et al., 2014)

have been used, and for Tetris and SGC, we fix l = 3, which is the value commonly used for

SCC. TTM with uniform sampling is not considered due to its higher error rate. Table 8.2

reports the mean and median of the percentage errors incurred by different algorithms, where

these statistics are computed over all 2-motion and 3-motion sequences. In order to remove the

effect of randomization due to sampling (for SCC, SGC, Tetris) or initialization (for k-means,

k-flats, NSN), we average the results over 20 independent trials. The mean computational time

(in seconds) of each algorithm is also reported1.

Table 8.2 shows that Tetris performs quite well in comparison with state of the art subspace

clustering algorithms. In particular, Tetris achieves least mean error for two cluster problem.

The computational time for Tetris is also much smaller than other accurate methods like SSC

1 The reported times are based on the fact that we have used Matlab implementations of the algorithms,
run on a Mac OS X operating system with 2.2 GHz Intel Core i7 processor and 16 GB memory.
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and LRR. The mean error achieved by Tetris is also smaller than SCC in either cases. We

note here that the best known results for Hopkins 155 database is achieved by the algorithm

in (Jung et al., 2014), which uses techniques based on epipolar geometry, and hence, it is

not a subspace clustering algorithm. Smaller errors have also been reported in the literature

when one construct larger tensors, m = 8 (Jain and Govindu, 2013), or uses manual tuning

of parameters (Ghoshdastidar and Dukkipati, 2015b). However, in either cases, computational

times increases considerably.

Table 8.2: Mean and median of clustering error and computational time for different subspace
clustering algorithms on Hopkins 155 database.

Algorithm 2 motion (120 sequences) 3 motion (35 sequences)
Mean (%) Median (%) Time (s) Mean (%) Median (%) Time (s)

k-means 19.58 17.92 0.03 26.13 20.48 0.05
k-flats 13.19 10.01 0.38 15.45 14.88 0.76
SSC 1.53 0.00 0.80 4.40 0.56 1.51
LRR 2.13 0.00 0.94 4.03 1.43 1.29

SSC-OMP 16.93 13.28 0.72 27.61 23.79 1.23
TSC 18.44 16.92 0.19 28.58 29.67 0.51

NSN+Spec 3.62 0.00 0.08 8.28 2.76 0.17
SCC 2.53 0.03 0.45 6.40 1.46 0.76
SGC 3.50 0.41 0.54 9.08 5.05 0.89
Tetris 1.31 0.02 0.50 5.71 1.19 0.90

8.6 Data clustering with similarity hypergraphs

The hypergraph partitioning approach to the subspace clustering problem shows that one can

possibly represent any multi-point similarity in terms of a tensor. Subsequently, data analysis

using multi-point similarities can be formulated as a hypergraph problem. This observation

lies at the heart of higher-order learning. However, till date, the use of such approaches have

been limited to problems such as subspace clustering, geometric grouping or point set match-

ing. The previous section was dedicated to subspace clustering and its application in motion

segmentation, while other illustrative examples can be found in Figure 8.1.

Here, we discuss an extension of higher order learning by using general similarity measure

defined over multiple data instances. A standard approach to quantify similarity is by means

of the Euclidean distance. However, it often turns out that standard Euclidean distance met-

rics do not suffice in a wide range of situations. For instance, when one restricts the space

to that of probability distributions, information theoretic divergences often prove to be useful
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distance measures in the context of learning (Garcia-Garcia and Williamson, 2012; Nielsen and

Nock, 2013). To this end, Csiszár’s f -divergences (Csiszár, 1967) and the Jensen-type diver-

gences (Sibson, 1969; Lin, 1991), are quite special. This is primarily because these divergences

are multi-distribution divergences, and hence, provide a measure of dissimilarity among more

than two probability distributions.

8.6.1 Jensen-Tsallis kernels and multi-point extensions

Similarities or kernel functions based on Jensen divergences have been often studied in the liter-

ature. This is primarily motivated by the fact that the square-root of the Jensen-Shannon (JS)

divergence is a Hilbertian metric (Endres and Schindelin, 2003). Subsequently, the works in (Cu-

turi et al., 2005) proposed new kernels on probability measures based on the JS-divergence.

Martins et al. (2009) further extend the idea to nonextensive extensions of the JS divergence,

that arise from applications in statistical physics (Tsallis, 1988). The so-called Jensen-Tsallis

(JT) kernel proposed by Martins et al. (2009) is defined as

kq(x, y) =



1

(q − 1)

d∑
j=1

((
x(j) + y(j)

)q − (x(j)
)q − (y(j)

)q)
for q 6= 1,

d∑
j=1

( (
x(j) + y(j)

)
ln
(
x(j) + y(j)

)
− x(j) ln

(
x(j)
)
− y(j) ln

(
y(j)
) )

for q = 1,

(8.1)

where x, y are d-dimensional probability vectors and x(j) denotes the jth coordinate of x. The

quantity q has interesting interpretations in the physics literature, but in the present context,

it acts as a parameter for the JT kernel, and the kernel is known to be positive definite for all

q ∈ [0, 2] with the case q = 1 corresponding to the JS kernel (Cuturi et al., 2005).

A related similarity measure is the exponential JT (expJT) kernel, defined as

k(e)
q (x, y) = exp (tkq(x, y)) , (8.2)

which is governed by parameters q ∈ [0, 2] and t > 0. The significance of the JT and expJT

kernels have been empirically established in the literature (Martins et al., 2009; Bicego et al.,

2010), and it is also known that theoretical properties of these kernels do not change if one

defines them on an Euclidean space, more precisely, the unit cube in Rd (see Ghoshdastidar

et al., 2014, 2016).
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Owing to the possibility of extending Jensen type divergence over multiple probability dis-

tributions (Sibson, 1969), one can also define multi-point extensions of the JT-kernel (8.1) and

the expJT kernel (8.2). For any integer m ≥ 2, we define the m-point JT kernel (JTm) as

kq,m (x1, . . . , xm) =



1

(q − 1)

d∑
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x
(j)
i

)q
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x
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i

)q ]
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x
(j)
i

)
ln

( m∑
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x
(j)
i

)
−

m∑
i=1

x
(j)
i lnx

(j)
i

]
for q = 1,

(8.3)

where the arguments x1, . . . , xm ∈ [0, 1]d. Similarly, one can also define the m-point expJT

kernel (expJTm) as

k(e)
q,m(x1, ..., xm) = exp (tkq,m(x1, ..., xm)) for t > 0. (8.4)

8.6.2 Similarity hypergraph and clustering

The similarity measures defined in (8.3) and (8.4) provides us the opportunity to formulate

a problem of clustering n data instances into a m-uniform hypergraph partitioning problem,

where each edge on m vertices has a weight given by the similarity functions in (8.3) or (8.4).

In the experiments, we consider m = 3 and use HOSVD to partition the similarity hypergraph.

We compare this approach with spectral clustering (Ng et al., 2002) based on a wide variety

of pairwise similarities or kernel functions, including the standard JT (8.1) and expJT (8.2)

kernels as well as Gaussian and polynomial kernels. We compare the performance of the different

similarity functions on UCI datasets (Lichman, 2013) and gene expressions (de Souto et al.,

2008). We also compare the results with the performance of some other clustering algorithms

such as standard k-means algorithm (KM), spectral clustering with k nearest neighbor based

adjacency (SCNN), mean shift algorithm (MS), variants of maximum margin clustering (MMC),

and minimal entropy encoding (MEE). The results for KM, SCNN, MS, MMC and MEE have

been taken from (Melacci and Gori, 2012), and are reported first.

The UCI datasets considered in our experiments are listed in 8.3. These datasets have

previously considered by Melacci and Gori (2012) for comparison of various clustering algo-

rithm. Following the lines of their study, we measure the performance of the different similarity
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functions in terms of adjusted Rand index (ARI) of the obtained clusters defined as

ARI =
2(N00N11 −N01N10)

(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11)

where N11 denotes the number of pairs which are in the same clusters according to both true

labels as well as obtained clusters, and N00 is the number of pairs which have different labels

and are also in different clusters. On the other hand, N01 and N10 are the number of pairs for

which there is disagreement in the true and obtained clusters, where the former denotes the

case of clustering pairs with different labels into the same cluster.

Table 8.3: List of UCI data sets considered for comparison of Jensen type multi-point similar-
ities with standard kernels.

Data set # instances # attributes # classes

Balance 625 4 3
Breast 569 30 2

Diabetes 768 8 2
German 1000 24 2
Heart 270 13 2

Ionosphere 351 34 2
Iris 150 4 2

Wine 178 13 3

In the experiments1, we tune the parameters of the proposed and existing kernels, and

report the best result (maximum ARI) in each case. This way of presenting the results have

been adapted from (Melacci and Gori, 2012). For the Jensen-type kernels q is tuned as q = 0.01

or in the range [0.25, 2] in steps of 0.25. Both t (for expJT) and parameter for Gaussian is varied

from 0.01 to 100 in multiplicative step with a factor of 10, and for Polynomial kernel, we vary

the degrees as 1, 2, . . . , 10. To account for the randomness in k-means initialization, we average

the results over 20 independent runs, as considered in (Melacci and Gori, 2012). Table 8.4 shows

that Jensen-type kernels, particularly the exponential variety, perform quite well compared to

other methods. Relative merits of the 2-point and 3-point kernels depend mostly on the data.

We also conduct experiments on clustering gene expressions. The cancer gene expression

database (de Souto et al., 2008) contains data sets related to two types of gene expressions:

cDNA type and Affymetrix data sets. There are 14 cDNA sets and 21 Affymetrix sets, and the

number of classes in each set vary between 2 to 14. Further details are available in (de Souto

et al., 2008).

1Matlab codes are available at: http://sml.csa.iisc.ernet.in/SML/code/TNNLS15_code.zip
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Table 8.4: ARI obtained from different methods for clustering UCI datasets.
Method Balance Breast Diabetes German Heart Ionosphere Iris Wine

KM 0.14 0.73 0.07 0.03 0.29 0.18 0.64 0.36
MS 0.16 0.74 0.02 0.01 0.34 0.00 0.71 0.39

MMC 0.18 0.74 0.10 0.02 0.31 0.30 0.73 0.37
MEE 0.20 0.74 0.08 0.06 0.31 0.58 0.90 0.42
SCNN 0.09 0.80 0.00 0.03 0.33 0.17 0.79 0.38

Gaussian 0.26 0.68 0.10 0.03 0.13 0.17 0.74 0.87
Polynomial 0.26 0.57 0.09 0.03 0.21 0.06 0.58 0.80

JT2 0.43 0.57 0.05 0.03 0.30 0.14 0.65 0.81
expJT2 0.49 0.79 0.10 0.04 0.25 0.19 0.60 0.95

JT3 0.54 0.52 0.05 0.03 0.26 0.16 0.61 0.87
expJT3 0.47 0.68 0.10 0.05 0.27 0.17 0.62 0.93

The performance of a number of clustering algorithms and proximity measures have been

compared in (de Souto et al., 2008). The study concluded that best performance is usually

obtained from k-means or mixture models, and spectral clustering works well in certain cases.

We restrict our comparisons only to spectral clustering, but with various proximity measures

or kernels. Standard proximity measures include Pearson’s correlation, cosine, Spearman cor-

relation coefficient and Euclidean distance1. Following de Souto et al. (2008), the best of 30

independent runs is considered for each dataset. The ARI averaged over all datasets of each

type is reported in Table 8.5. The results show that the expJT3 kernel surpasses other sim-

ilarity measures by some margin, thereby establishing the importance of general multi-point

similarities.

Table 8.5: ARI of spectral clustering and HOSVD for clustering gene expression datasets.
Method cDNA Affymetrix

Pearson 0.33 0.39
Cosine 0.32 0.42

Spearman 0.27 0.40
Euclidean 0.10 0.11
Gaussian 0.27 0.27

Polynomial 0.38 0.47
JT2 0.36 0.45

expJT2 0.44 0.54
JT3 0.40 0.47

expJT3 0.47 0.57

1 For Euclidean distance measure, we report only the result when data is normalized to the unit cube
(termed as Z2 in (de Souto et al., 2008)). We also use this normalization for Jensen type kernels.
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When I go from hence let this be my parting word,

that what I have seen is unsurpassable.

I have tasted of the hidden honey of this lotus that

expands on the ocean of light, and thus am I blessed

– let this be my parting word.

Rabindranath Tagore, Gitanjali

Chapter 9

Concluding Remarks

The primary focus of this thesis has been to provide a theoretical treatment of hypergraph

partitioning algorithms that have been used in several applications over the past two decades.

This thesis contributes towards the formalization of the hypergraph partitioning problem by

extending the related graph terminology, and, for the first time, expands the stochastic block

model literature to analyze the performance of hypergraph partitioning algorithms. In this

concluding chapter, we review the tools and techniques that are used to derive the consistency

results. We also point out several directions in which the studies in this thesis can be extended in

future, and mention some of the open questions that naturally arise in the context of hypergraph

partitioning.

We first spend few words on the rationale behind focusing on spectral approaches. Apart

from the historical reasons such as spectral methods being the first and the most heavily

studied approach in the block model literature, our choice is also influenced by the fact that

spectral techniques, particularly spectral clustering, have been the popular choice in practice.

This has naturally led to an elevated interest in extending spectral techniques to partition

hypergraphs. Discussions in Chapters 3 and 4 make it quite evident that most of the algorithms

for uniform hypergraph partitioning or higher order learning that have been proposed in the

machine learning literature are closely related to some spectral approach. Even theorists often

suggest that different properties of a hypergraph may be gathered from the spectrum of the

incidence matrix or the adjacency tensor of a hypergraph (see Chapter 1).

Another important factor that makes spectral hypergraph partitioning more interesting is

the wide variety in the spectral algorithms. This is clearly witnessed in the preceding chapters

of this thesis. For example, variants of spectral clustering arise from different graph partitioning

objectives, but have a similar flavor. On the other hand, direct extensions of these methods to

hypergraphs turn out to be quite dissimilar. While HOSVD relies on tensor decompositions and
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TTM is based on a trace maximization principle, NH-Cut takes a different route of hypergraph

reduction. Yet, an underlying framework binds these approaches, which we have exploited in our

analysis of the algorithms. To be precise, the consistency results proved in this thesis depend on

the block structure of the adjacency matrix of a reduced graph. While this reduction is explicit

in the description of TTM-ext and NH-Cut, the proofs for other methods implicitly exploit

this structure. To this end, this thesis reaffirms the observation of Agarwal et al. (2006) that

any spectral partitioning method is closely related to a hypergraph reduction based strategy.

Subsequently, our consistency results may be easily extended to other spectral methods as well.

While the discussions in this thesis are dedicated to the analysis of spectral methods, it

is easy to observe the framework can be used to study the theoretical guarantees of other

partitioning approaches. Our extension of the stochastic block model is quite natural, where

the essential idea is to generate a set of independent edges with edge probability (or edge

weight) governed by the class labels of the participating vertices. Specifically, we extend the

sparse stochastic block model presented in (Lei and Rinaldo, 2015), where the edge probability

is decomposed as a product of a label dependent Θ(1) term, and a label independent sparsity

factor that is allowed to vary with n. This factorization is particularly useful in our context as

we specify the sparsity factor in terms of both the number of nodes n, and the edge size m. This

allows one to control the density of edges of different sizes leading to interesting consequences

discussed in Chapter 5.

In the case of graphs, the stochastic block model is often extended to account for factors such

as degree heterogeneity or overlapping communities (Lei and Rinaldo, 2015; Zhang et al., 2014).

Similar extensions of the model for planted hypergraphs are certainly conceivable. However,

it also seems possible that some information, such as community overlap, may be lost due to

hypergraph reduction. To this end, the following question seems interesting.

Question 5 (Alternative methods). Are smaller error rates achievable by algorithms

that do not use reduction, and directly exploit the spectrum of the incidence matrix

H or the adjacency tensor A?

An affirmative answer seems possible in certain cases since a tensor power iteration based

approach is typically known to have exceptional performance in hypergraph matching prob-

lems (Nguyen et al., 2015). However, in the problem of detecting a balanced bipartition, it has

been recently shown that reduction based approaches are optimal (Florescu and Perkins, 2016).

Another issue we have eluded throughout the thesis is the determination of the number of

clusters k. Following the lines of standard spectral clustering, we have made a strong assumption

about prior knowledge of k. However, recent results in the block model literature show that a
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variety of techniques based on cross validation (Chen and Lei, 2014), likelihood ratio test (Wang

and Bickel, 2015) etc. can be used to estimate the number of clusters. It would be interesting

to extend such methods to the case of planted hypergraphs, and we feel that positive results

can be obtained.

A more crucial question about our consistency results arises at this juncture.

Question 6 (Optimality). Consider the planted hypergraph model and the spectral

methods presented in this thesis. Are the consistency theorems stated here optimal?

We clarify the meaning of optimality in the present context. This takes us to the block model

literature, where sharp error bounds are known for various partitioning approaches. For general

approaches such as spectral clustering, weak consistency results are known to hold under an

assumption of the sparsity factor as α2 = Ω( lnn
n

) (Lei and Rinaldo, 2015). On the other hand,

for proper 2-coloring of bipartite 3-uniform hypergraphs, one needs to assume α2 = Ω( 1
n
) (Chen

and Frieze, 1996). From Corollaries 4.5 and 5.12 as well as Theorem 7.1, it appears that our

results are not optimal since the sparsity requirements are larger by logarithmic factors. This

sub-optimality can be attributed to two factors: analysis of the k-means step, and the matrix

concentration bounds used in our results.

Unlike the results in (Rohe et al., 2011; Lei and Rinaldo, 2015), we do not make any as-

sumption on the correctness of the k-means step. This is replaced by a weaker assumption in

terms of the minimum sparsity of the hypergraph, which is larger than the standard require-

ments. Such an assumption is needed to ensure that the rows of the computed eigenvector

matrix are ε-separable, which is a necessary condition for guaranteeing the correctness of the

approximate k-means algorithm (Ostrovsky et al., 2012). This additional analysis addresses

a long standing issue in the block model literature, where distance based clustering of eigen-

vectors using k-means is always assumed to provide near-optimal solutions. We note that the

approach taken here is not the only way to tackle the issue. One may also use other methods

such as k-balls (Gao et al., 2015) to perform distance based clustering. In such a case, one

can rely on alternative versions of our consistency result, for instance Corollary 5.7. The sole

reason behind the use and analysis of the k-means step is the widespread use of this technique

in practice.

Observe that the analysis of k-means is not required in the case of hypergraph 2-coloring.

Yet, the sparsity requirement in this setting (Theorem 7.1) is worse than the condition in (Chen

and Frieze, 1996) by a single factor of log n. This factor is also present in the preceding

consistency results on hypergraph partitioning, and arises from the use of the matrix Bernstein

inequality (Tropp, 2012). Chung and Radcliffe (2011) correctly pointed out that this inequality
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is quite useful for graphs with sparsity α2 = Ω( logn
n

), but fails to provide useful conclusion for

sparser graphs. To deal with sparse graphs, Lei and Rinaldo (2015) as well as other authors often

rely on sharp concentration bounds for binary adjacency matrices (Friedman et al., 1989). Such

a result is not directly applicable in the present context since the adjacency matrices obtained

after hypergraph reduction are usually non-binary or weighted (see Chapter 5). Furthermore,

the use of matrix Bernstein inequality also allows us extend our results to weighted hypergraphs.

It is doubtful whether the tools used by Friedman et al. (1989) can be even extended to deal with

weighted graphs. However, if one restricts the discussions to unweighted uniform hypergraphs,

the following question seems quite interesting.

Question 7 (Tensor concentration). Does a generalization of (Friedman et al., 1989)

hold for sparse binary tensors? If so, then what is its implication on the allowable

sparsity for community detection in hypergraphs?

In (Ghoshdastidar and Dukkipati, 2015a), we derived a concentration bound for the operator

norm or the largest `2 eigenvalue of dense tensors that is quite similar to the matrix case, but

the sparse case has not been studied yet.

Exact recovery of the partition in the sparse regime, α2 = Θ( 1
n
), has received considerable

attention in recent years. To this end, it suffices to discuss only weak consistency of algorithms

since it is now known that one can iteratively refine the solution of a weakly consistent algorithm

to exactly recover the partition (Vu, 2014; Lei and Zhu, 2014). We have used this technique

in Algorithm COLOR, and believe that the same trick can be extended to more general cases.

Typically, achieving consistent spectral methods in the sparse regime is quite challenging, par-

ticularly due the disparity of vertex degrees. Typically one uses spectral properties of other

alternatives to the adjacency or Laplacian matrices, such as:

• trimmed adjacency matrix (Vu, 2014), where rows of the adjacency matrix with large

norms are zeroed out (this is equivalent to removing vertices with large degrees),

• non-backtracking operator defined on the set of edges (Krzakala et al., 2013), which is

known to be less sensitive to high degree vertices, or

• regularized adjacency matrix (Le et al., 2015), where a constant factor to the entries to

reduce the degree disparity.

It would be quite interesting to study extensions of these quantities to the case of hypergraphs.

In this context, we mention that the vertex deletion trick is useful in coloring sparse uniform

hypergraphs (Chen and Frieze, 1996).
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The question still remains that how sparse a hypergraph can be so that partitioning is pos-

sible. Recent works in the block model literature (Decelle et al., 2011; Mossel et al., 2013a;

Chen and Xu, 2014) derive this threshold (to exact constants) in the case of graphs. Thus, it is

now established below a certain sparsity level, no algorithm can identify the underlying parti-

tion, whereas above this threshold, belief propagation (Mossel et al., 2013a) can exactly recover

the partition. On the hand, spectral methods (Krzakala et al., 2013; Le et al., 2015) achieve

this threshold up to constant factors. One can immediately deduce that this phenomenon is

related to a phase transition of planted graphs. Sharp results in more general stochastic block

models have also been proved recently (Abbe and Sandon, 2016). In the context of hypergraph

partitioning, a question immediately arises.

Question 8 (Phase transition). What is the algorithmic barrier for community

detection in hypergraphs?

Phase transitions in uniform hypergraphs have been studied in the literature (Achlioptas and

Coja-Oghlan, 2008; Panagiotou and Coja-Oghlan, 2012), and thresholds for 2-colorability and

boolean satisfiability are known up to constant factors. Recently, Florescu and Perkins (2016)

considered the special case of planted bisection and derived the boundary of community detec-

tion in this setting. However, the general case of partitioning uniform or non-uniform hyper-

graphs still remains unexplored.

We now switch gears from the theoretical questions about planted models to practical aspects

of hypergraph partitioning. The computational complexity of algorithms has been the primary

concern in the modern era of big data and high performance computing. While Chapter 8

shows that practical variants of spectral partitioning algorithms such as Tetris or SCC (Chen

and Lerman, 2009) are quite efficient, Chapter 6 reaches to the heart of this problem and

inquires into the efficiency of sampling schemes.

Sampling is a well known strategy in both matrix theory and graph theory, particularly in

the context of reducing time complexity. A variety of sampling techniques have been developed

in the matrix literature, and have been translated to the domain of graph partitioning. Sur-

prisingly, sampling schemes have never surfaced in the stochastic block model literature. As

we pointed in Chapter 6, the problem becomes more significant in the case of weighted hyper-

graphs, where one has arbitrarily large number of edges. Theorem 6.1 resolves this issue by

showing that an appropriate sampling strategy helps to drastically reduce the computational

complexity of hypergraph partitioning without compromising theoretical merits.

It is needless to say here that while this result provides the perfect starting point, it does

not provide a complete solution for tackling large hypergraphs. Indeed, Tetris has a complexity
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of O(n2), which prohibits its use in partitioning hypergraphs with millions of vertices. In such

a scenario, it becomes important to study vertex sampling or down-sampling of hypergraphs.

While Nyström method has been a popular choice in the case of graphs (Fowlkes et al., 2004),

a multi-level paradigm is more common for hypergraph partitioning (Karypis and Kumar,

2000). In (Ghoshdastidar and Dukkipati, 2015b), we empirically observed that a Nyström

approximation for tensors may not be the appropriate tool for edge sampling, but its merits

in vertex sampling has not been studied yet. Thus, it still remains to be seen whether vertex

sampling graphs or hypergraphs can be as efficient and effective as edge sampling.

Perhaps, it would not be an exaggeration to claim that this thesis lays the foundations for

a statistical study of hypergraph partitioning. We feel that further studies in this direction will

come to light, and will make the literature of planted hypergraphs as rich as that of graphs.

At the same time, it will be encouraging to see alternative methods for analyzing hypergraph

partitioning algorithms. In particular, the graph literature is enriched with studies on minimax

error rates for planted model (Gao et al., 2015), and approximation guarantees on well-clustered

graphs (Peng et al., 2015) among others. Extensions of such analysis to hypergraphs will be an

useful contribution in the hypergraph partitioning literature.

151



References

Abbe, E. and C. Sandon (2016). Achieving the ks threshold in the general stochastic block model with linearized

acyclic belief propagation. In Advances in Neural Information Processing Systems. 150

Achlioptas, D. and A. Coja-Oghlan (2008). Algorithmic barriers from phase transitions. In Proceedings of 49th

Annual Symposium on Foundations of Computer Science. 6, 11, 35, 119, 150

Agarwal, S., K. Branson, and S. Belongie (2006). Higher order learning with graphs. In Proceedings of the

International Conference on Machine Learning (ICML), pp. 17–24. 12, 31, 32, 33, 66, 69, 83, 120, 147

Agarwal, S., J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, and S. Belongie (2005). Beyond pairwise

clustering. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 838–845. 2, 3,

32, 34, 66

Ahuja, N. and A. Srivastava (2002). On constrained hypergraph coloring and scheduling. In Approximation

Algorithms for Combinatorial Optimization, pp. 14–25. Springer Berlin Heidelberg. 36, 119

Aizenman, M. and D. J. Barsky (1987). Sharpness of the phase transition in percolation models. Communications

in Mathematical Physics 108 (3), 489–526. 6

Alon, N. and N. Kahale (1997). A spectral technique for coloring random 3-colorable graphs. SIAM Journal of

Computing 26, 1733–1748. 30, 87, 95, 119, 120

Alon, N., P. Kelsen, S. Mahajan, and R. Hariharan (1996). Coloring 2-colorable hypergraphs with a sublinear

number of colors. Nordic Journal of Computing 3, 425–439. 36, 118

Alon, N., M. Krivelevich, and B. Sudakov (1998). Finding a large hidden clique in a random graph. Random

Structures & Algorithms 13 (3-4), 457–466. 30

Alon, N., M. Krivelvich, and B. Sudakov (1998). Finding a large hidden clique in a random graph. In Proceedings

of the ACM-SIAM Symposium on Discrete Algorithms, pp. 594–598. 96

Alpert, C. J. (1998). The ISPD98 circuit benchmark suite. In ISPD ’98 Proceedings of the 1998 International

Symposium on Physical Design, pp. 80–85. 131, 132

Alpert, C. J. and A. B. Kahng (1995). Recent directions in netlist partitioning. Integration, the VLSI Jour-

nal 19 (1–2), 1–81. 31, 33

152



REFERENCES

Amini, A. A. and E. Levina (2014). On semi-definite relaxations for the block model. arXiv

preprint arXiv:1406.5647. 7, 31

Anandkumar, A., R. Ge, D. Hsu, and S. M. Kakade (2014). A tensor approach to learning mixed membership

community models. Journal of Machine Learning Research 15, 2239–2312. 20

Anandkumar, A., R. Ge, and M. Janzamin (2014). Guaranteed non-orthogonal tensor decomposition via alter-

nating rank-1 updates. arXiv Preprint arXiv:1402.5180v3. 20

Andritsos, P., P. Tsaparas, R. J. Miller, and K. C. Sevcik (2004). LIMBO: scalable clustering of categorical

data. In International Confenrence on Extending Database Technology, pp. 123–146. 136, 137

Arias-Castro, E., G. Chen, and G. Lerman (2011). Spectral clustering based on local linear approximations.

Electronic Journal of Statistics 5, 1537–1587. 3, 7, 35, 46, 66

Arora, S., S. Rao, and U. V. Vazirani (2004). Expander flows, geometric embeddings and graph partitioning.

In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 222–231. 2, 22, 24

Barbara, D., J. Couto, and Y. Li (2002). Coolcat: An entropy-based algorithm for categorical clustering. In

International Conference on Information Knowledge Management, pp. 582–589. 136

Berge, C. (1984). Hypergraphs: combinatorics of finite sets, Volume 45. Elsevier. 2

Berners-Lee, T. and M. Fischett (2000). Weaving the Web: The original design and ultimate destiny of the

World Wide Web by its inventor. HarperInformation. 1

Bernstein, F. (1908). Zur theorie der trigonometrischen Reihen. Leipz. Bet. 60, 325–338. 2

Bicego, M., A. F. T. Martins, V. Murino, P. M. Q. Aguiar, and M. A. T. Figueiredo (2010, August). 2D shape

recognition using information theoretic kernels. In IEEE International Conference on Pattern Recognition

(ICPR), Istanbul, Turkey, pp. 25–28. 142

Bickel, P. J. and A. Chen (2009). A nonparametric view of network models and newman-girvan and other

modularities. Proceedings of the National Academy of Sciences 106, 21068–21073. 2, 7

Boley, H. (1977). Directed recursive labelnode hypergraphs: A new representation-language. Artificial Intelli-

gence 9 (1), 49–85. 2, 3

Bolla, M. (1993). Spectra, euclidean representations and clusterings of hypergraphs. Discrete Mathemat-

ics 117 (1), 19–39. 5, 63, 69, 82

Boutsidis, C., A. Gittens, and P. Kambadur (2015). Spectral clustering via the power method - provably. In

Proceedings of the 24th International Conference on Machine Learning (ICML). 109

Bradley, P. S. and O. L. Mangasarian (2000). k-plane clustering. Journal of Global Optimization 16, 23–32. 138

Bühler, T. and M. Hein (2009). Spectral clustering based on the graph p-Laplacian. In Proceedings of the 26th

Annual International Conference on Machine Learning, pp. 81–88. 5

153



REFERENCES

Capitanio, A., A. Nicolau, and N. Dutt (1995). A hypergraph-based model for port allocation on multiple-

register-file vliw architectures. International Journal of Parallel Programming 23 (6), 499–513. 3, 36, 119

Carroll, J. D. and J. Chang (1970). Analysis of individual differences in multidimensional scaling via an n-way

generalization of Eckart?Young decomposition. Psychometrika 35, 283–319. 20

Catalyurek, U. V. and C. Aykanat (1999). Hypergraph-partitioning-based decomposition for parallel sparse-

matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems 10 (7), 673–693. 3

Chaitin, G. J. (1982). Register allocation & spilling via graph coloring. ACM SIGPLAN Notices - Proceedings

of the 1982 SIGPLAN symposium on Compiler construction 17 (6), 98–101. 2

Chen, G. and G. Lerman (2009). Foundations of a multi-way spectral clustering framework for hybrid linear

modeling. Foundations of Computational Mathematics 9, 517–558. 3, 7, 35, 43, 44, 45, 46

Chen, G. and G. Lerman (2009). Spectral curvature clustering. International Journal of Computer Vision 81 (3),

317–330. 13, 34, 43, 109, 112, 113, 138, 150

Chen, H. and A. Frieze (1996). Coloring bipartite hypergraphs. In Integer Programming and Combinatorial

Optimization, pp. 345–358. 4, 7, 8, 36, 118, 119, 120, 122, 148, 149

Chen, K. and J. Lei (2014). Network cross-validation for determining the number of communities in network

data. arXiv preprint arXiv:1411.1715. 148

Chen, Y., S. Sanghavi, and H. Xu (2014). Improved graph clustering. IEEE Transactions on Information

Theory 60 (10), 6440–6455. 2, 7

Chen, Y. and J. Xu (2014). Statistical-computational tradeoffs in planted problems and submatrix localization

with a growing number of clusters and submatrices. arXiv preprint arXiv:1402.1267. 30, 31, 150

Chertok, M. and Y. Keller (2010). Efficient high order matching. IEEE Trans. on Pattern Analysis and Machine

Intelligence 32 (12), 2205–2215. 37

Choi, D. S., P. J. Wolfe, and E. M. Airoldi (2012). Stochastic blockmodels with a growing number of classes.

Biometrika 99 (2), 273–284. 7, 28, 92

Chung, F. (1992). The laplacian of a hypergraph. In Expanding Graphs: Proceedings of a DIMACS Workshop,

pp. 21–36. 69

Chung, F. and M. Radcliffe (2011). On the spectra of general random graphs. Electronic Journal of Combina-

torics 18 (1), 215–229. 39, 148

Chung, F. R. K. (1997). Spectral graph theory, Volume 92. American Mathematical Society. 5, 10, 23, 25
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