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Part |
Organizational Matters

» Modul: IN2003
» Name: “Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”
» ECTS: 8 Credit points (4+2 SWS)
> Lectures:

» Recording on BigBlueButton
Link: https://bbb.in.tum.de/deb-av3-3u3
New videos on Monday and Friday morning

» All information on Moodle for lecture


https://bbb.in.tum.de/deb-av3-3u3

» Required knowledge:

» INOOOT1, INO0O3
“Introduction to Informatics 1/2”
“Einfihrung in die Informatik 1/2”
» INO0O07
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)
> INOO11
“Basic Theoretic Informatics”
“Einflhrung in die Theoretische Informatik” (THEO)
» INOO15
“Discrete Structures”
“Diskrete Strukturen” (DS)
INOO18
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

v
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The Lecturer

v

Debarghya Ghoshdastidar

v

Email: ghoshdas@in.tum.de
Room: 03.11.043
» Q&A session: Mo 11:15-11:45, Fr 11:15-11:45

Q&A open for everyone (no appointment needed)

v
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Assistants / Tutors

» PhD Assistants:

>

>

Balasubramanian A. R.
bala.ayikudi@tum.de
Office hours (via BBB): Mo 12:15-13:45, Fr 12:15-13:45

Pascal Mattia Esser
esser@in.tum.de
Office hours (via BBB): Mo 12:15-13:45, Fr 12:15-13:45

» Appointment via Moodle

» Contact via email only for administrative problems
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Assistants / Tutors

» Student tutors:

» Mitja Daniel Krebs
» Office hours (via BBB): Mo 14:15-15:45, Tu 10:15-11:45

» Mahalakshmi Sabanayagam
» Office hours (via BBB): Tu 14:15-15:45, We 10:15-11:45

» Appointment via Moodle
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Assessment

> In order to pass the module you need to pass a written exam
» Remote pen-and-paper exam with mandatory video
supervision
> OR On-site pen-and-paper exam
> Repeat exam (before next term begins)
» Only for absentees or failures in end term exam
» Oral exam

» No oral substitute for written exam
» May be conducted to validate grade if we suspect dishonesty
in written exam
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Mode of interaction

» Lecture videos available on BBB:

BBB Link: https://bbb.in.tum.de/deb-av3-3u3
» Moodle:

» Important announcements

» Q&A forum: Ask questions, help others

» Weekly assignment submission

» Feedback: Send (anonymous) feedback about course

» Q&A session with lecturer on BBB
» Tutorial: Solution video/slides uploaded on Moodle
» Q&A for assignment grading: Via BBB (use appointment)

» Contact us if you cannot access Moodle
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https://bbb.in.tum.de/deb-av3-3u3

Weekly assessment

Submit weekly assignment to improve your grade by 0,3 or 0,4
» Written exam 1,7 + bonus = Final grade 1,3

» Written exam 3,3 + bonus = Final grade 3,0

Requirements for Bonus

» Written exam grade between 1,3 to 4,0

v

50% of the points are achieved on submissions 2-8

v

50% of the points are achieved on submissions 9-14

v

Each team member has written at least 4 solutions

v

OR met requirements for bonus in WS-19/20
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Weekly assessment

Assignment Sheets:
» Assignment available on Monday on Moodle / course website

» Assignment 1 - Due on 9.11; Not graded
» Assignment 2 - Graded; Available on 9.11; Due on 16.11

» Solutions to be submitted via Moodle
Deadline: 08:00 on following Monday

» You must submit solutions in teams of 2 people
Solutions have to be given in English
Can be hand written (scanned)
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Weekly assessment (Group submission)
Important only if you submit assignments

Registration (groups on Moodle):
» Find team partner in first week (use Moodle forum)

» Register in one of 8 groups on Moodle (Fr 6.11 - Fr 13.11)

» Based on which time you can attend Q&A with tutors
» Both members must register in same group

» Cannot change group / partner during semester

Weekly submission:

» Mention name, student id number for every team member in
submission

» Mention who wrote the submission

TI-ITI Ernst Mayr, Harald Racke, Debarghya Ghoshdastidar 12/43



1 Contents

v

Foundations
» Machine models
» Efficiency measures
» Asymptotic notation
> Recursion

\4

Higher Data Structures
» Search trees
» Hashing
> Priority queues
» Union/Find data structures

» Cuts/Flows

v

Matchings
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Part I

Foundations
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3 Goals

» Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems
efficiently.

» Learn how to analyze and judge the efficiency of algorithms.

» Learn how to design efficient algorithms.

Tm
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4 Modelling Issues

What do you measure?

>

>

Memory requirement
Running time

Number of comparisons
Number of multiplications
Number of hard-disc accesses
Program size

Power consumption

4 Modelling Issues
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4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs
» How do you choose your inputs?
» May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific set
of inputs.

» Theoretical analysis in a specific model of computation.
» Gives asymptotic bounds like “this algorithm always runs in
time O(n?)”.
» Typically focuses on the worst case.
» Can give lower bounds like “any comparison-based sorting
algorithm needs at least Q(nlogn) comparisons in the worst
case”.
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4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage space,
comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (number of bits)

> the number of arguments

Example 1

Suppose n numbers from the interval {1,...,N} have to be
sorted. In this case we usually say that the input length is n
instead of e.g. nlog N, which would be the number of bits
required to encode the input.
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Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation
makes it more difficult to obtain meaningful results.
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Turing Machine

» Very simple model of computation.

» Only the “current” memory location can be altered.

» Very good model for discussing computabiliy, or polynomial
vs. exponential time.

» Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower
bound.

= Not a good model for developing efficient algorithms.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

F state holds program and can
act as constant size memory
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Random Access Machine (RAM)

» Input tape and output tape (sequences of zeros and ones;
unbounded length).

» Memory unit: infinite but countable number of registers
R[O],R[1],R[2],....

» Registers hold integers.  input tape —
~)[1]0 110(0]1

—
)
S

> Indirect addressing.

control
unit

A<
h

=

w

R et N ~ R[5]
i Note that in the picture on the right ) | 01 | 1 | | |

'the tapes are one-directional, and thatl - —L
output tape

|a READ- or WRITE-operation always ad-| puttap

| vances its tape. '
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Random Access Machine (RAM)

Operations

» input operations (input tape — R[1])
» READ i

» output operations (R[i] — output tape)
» WRITE i

> register-register transfers
» R[j] := R[i]
» R[j] := 4

> indirect addressing
» R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register
» R[R[i]]:=RI[j]
loads the content of the j-th into the R[i]-th register
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Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);
» arithmetic instructions: +, —, X, /
» R[i] = RI[j] + R[k];
R[i] := -R[k]; T L I e

| TheJump -directives are very close to the I
| jump-instructions contained in the as- .
i sembler language of real machines. :
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Model of Computation

» uniform cost model
Every operation takes time 1.

» logarithmic cost model
The cost depends on the content of memory cells:

» The time for a step is equal to the largest operand involved;
» The storage space of a register is equal to the length (in bits)
of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value
stored in a register may not exceed 2%, where usually w = log, n.

:The latter model is quite realistic as the word-size of:
1 a standard computer that handles a problem of size n
| must be at least log, n as otherwise the computer could |
! either not store the problem instance or not address all :
ts memory. i

Ll
=
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4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1 v < 2;

2. fori=1-ndo

3: v — 712

4: return v

» running time (for Line 3):
» uniform model: n steps
» logarithmic model:
24345+ -+ (1 +2M =21 —1+n=0(02"
> space requirement:
» uniform model: O(1)
» logarithmic model: O (2")
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There are different types of complexity bounds:
» best-case complexity:

Che(n) :=min{C(x) | |x| =n}
Usually easy to analyze, but not very meaningful.
» worst-case complexity:
Cwe(m) :=max{C(x) | |x|] =n}
Usually moderately easy to analyze; sometimes too

pessimistic.
» average case complexity:

Cavg(n) = ul' S CO0) o

xl=n ' C(x) |

more general: probability measure u g s s °f'
__________________ i instance x |
e is a probability distribu- . Cavg(n) = Z [.l(X) - C(x) : I set of mstances:
1 tion over inputs of length n. x€ly i " oflength n !
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There are different types of complexity bounds:

» amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

» randomized complexity:

The algorithm may use random bits. Expected running time
(over all possible choices of random bits) for a fixed input x.
Then take the worst-case over all x with |x| = n.

L is a probability distribu- .
a tion over inputs of length n.]

1
cost of instance
Clx) :

input length ofl
instance x

set of instances
of length n

TUTI
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4 Modelling Issues

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
McGraw-Hill, 2009

Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.
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5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

» We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

» An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to more
precise results as the computational model is already quite a
distance from reality.

» A linear speed-up (i.e., by a constant factor) is always
possible by e.g. implementing the algorithm on a faster
machine.

» Running time should be expressed by simple functions.
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Asymptotic Notation

Formal Definition

Let f, g denote functions from N to R*.
» O(f) ={g13c>0InpeNgVn=np: [gn) <c- f(n)]}
(set of functions that asymptotically grow not faster than f)
» Q(f) ={g13c>0InpeNgVn=np: [gln) =c- f(n)]}
(set of functions that asymptotically grow not slower than f)
» 0(f) =Q(f) NnO(f)

(functions that asymptotically have the same growth as f)
»o(f) ={gIVc>0anpeNyVnz=ng: [gn) <c-f(n)l}
(set of functions that asymptotically grow slower than f)

» w(f)={gIVec>0anpeNgVnz=ng: [gn) =c- f(n)]}

(set of functions that asymptotically grow faster than f)
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Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from N

functions, and for the case that the |
limes is not infinity. y

Tm 5 Asymptotic Notation
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. _ g
g e o) Osyllll’l;lof(n)<oo
_ . gn)
» g e Q(f): O<%1lqgo—f(n)3w
» geo(f): O<1}Lilro10?2n;<
g | « Note that for the version of the Lan-i
» geol(f): %111;10 fi(n) = | dau notation defined here, we as-|
g(n) | sume that f and g are positive func-:
» gew(f): lim < — =  EEm !
g s n-« f(n) !« There also exist versions for arbitrary 1




Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

2. People write f(n) = O(g(n)), when they mean f € O(g),
with f:N—-R*,n~ f(n),and g:N - R*,n~ g(n).

3. People write e.g. h(n) = f(n) + 0(g(n)) when they mean
that there exists a function z: N - R*,n — z(n),z € o(g)
such that h(n) = f(n) + z(n).

] I

1 2. In this context f(n) does not mean the func- | 1 3. This is particularly useful if you do not want |
: tion f evaluated at m, but instead it is a , : to ignore constant factors. For example the | ]
i shorthand for the function itself (leaving out : | median of n elements can be determined us-:
1 1
1 1
1 1

domain and codomain and only giving the : ing %n+ o(n) comparisons. |
rule of correspondence of the function). '



Asymptotic Notation
Abuse of notation

4. People write O(f(n)) = O(g(n)), when they mean
O(f(n)) € O(g(n)). Again this is not an equality.

] I

1 2. In this context f(n) does not mean the func- | 1 3. This is particularly useful if you do not want |
: tion f evaluated at m, but instead it is a , : to ignore constant factors. For example the | ]
i shorthand for the function itself (leaving out : | median of n elements can be determined us-:
1 1
1 1
1 1

domain and codomain and only giving the : ing %n+ o(n) comparisons. |
1 1

rule of correspondence of the function). 1



Asymptotic Notation in Equations

How do we interpret an expression like:

2n° +3n+1=2n°+0(n)
Here, ©(n) stands for an anonymous function in the set ®(n)
that makes the expression true.

Note that ®(n) is on the right hand side, otw. this interpretation
is wrong.

Tu" 5 Asymptotic Notation
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Asymptotic Notation in Equations

How do we interpret an expression like:
2n® +0(n) = 0(n?)

Regardless of how we choose the anonymous function
f(n) € O(n) there is an anonymous function g(n) € ©(n?)
that makes the expression true.
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: o :  The @(i)-symbol on the left rep-i
AsymptOtIC Notation in Eq uations | resents one anonymous function |

\f N = R*, and then 3; f(i) is |

How do we interpret an expression like: | computed. !

> 03) =0(n?)

i=1
Careful!

“It is understood” that every occurence of an @-symbol (or
0,Q, 0, w) on the left represents one anonymous function.

Hence, the left side is not equal to

O(l)+0R2)+---+0(n-1)+0B(n)

.®(1)+®(2)+ -+0(n-1)+0(n) does'
not really have a reasonable interpreta- |
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Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as
generating a set:
n’-0(n) + O(logn)

represents

{fiN=R"| f(n) =n? - g(n) +h(n)

| Recall that according to the previous |
' slide e.g. the expressions ZZL 1 0(i) and l
I Z”/Z O(i) + X1 241 O(i) generate dif- |
.ferent sets. 1
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Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement
btw. two sets:

n®-0m) +0logn) = O(n?)

represents

n%-0m) +0logn) < O(n?)
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Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

» ¢ f(n) € O(f(n)) for any constant c

» O(f(n)) +O0(g(n)) = O(f(n) +g(n))

» O(f(n)) - O0(g(n)) =0(f(n) - gn))

» O(f(n)) + 0(g(n)) = O(max{f(n),gn)})

The expressions also hold for Q). Note that this means that
f(n) + gn) € O(max{f(n),gn)}).
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Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.

» For any constants a, b we have log, n = 0(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.

> In general logn =log, n, i.e., we use 2 as the default base
for the logarithm.
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Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:

> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).
» Algorithm B. Running time g(n) = log” n.
Clearly f = 0(g). However, as long as logn < 1000
Algorithm B will be more efficient.
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Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several
parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n — o« and m — o
we have to extend the definition to multiple variables.

Formal Definition

Let f, g denote functions from N4 to Ry -

» O(f) ={g | dc > 03N € Ng V#i with n; > N for some i:
[g(n) <c- fO)]}
(set of functions that asymptotically grow not faster than f)
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Multiple Variables in Asymptotic Notation

Example 4
» fiN=-Ry, f(n,m)=1lundg:N—-R{,gn,m =n-1
then f = O(g) does not hold
» fiN-Rj, f(n,m)=1undg:N—-Rj, gn,m) =n
then: f = 0O(g)
» fiNo— R, f(n,m)=1lund g:Ng - Rj,gn,m) =n
then f = O(g) does not hold
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5 Asymptotic Notation

Bibliography
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