
WS 2020/21

Efficient Algorithms
and Data Structures

Debarghya Ghoshdastidar

Fakultät für Informatik
TU München

Winter Term 2020/21

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 1/43

Part I

Organizational Matters

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 2/43

Part I

Organizational Matters

ñ Modul: IN2003
ñ Name: “Efficient Algorithms and Data Structures”

“Effiziente Algorithmen und Datenstrukturen”
ñ ECTS: 8 Credit points (4+2 SWS)

ñ Lectures:
ñ Recording on BigBlueButton

Link: https://bbb.in.tum.de/deb-av3-3u3
New videos on Monday and Friday morning

ñ All information on Moodle for lecture

https://bbb.in.tum.de/deb-av3-3u3

ñ Required knowledge:
ñ IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

ñ IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

ñ IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

ñ IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

ñ IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 4/43

The Lecturer

ñ Debarghya Ghoshdastidar

ñ Email: ghoshdas@in.tum.de

ñ Room: 03.11.043

ñ Q&A session: Mo 11:15–11:45, Fr 11:15–11:45

Q&A open for everyone (no appointment needed)

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 5/43

Assistants / Tutors

ñ PhD Assistants:
ñ Balasubramanian A. R.
ñ bala.ayikudi@tum.de
ñ Office hours (via BBB): Mo 12:15–13:45, Fr 12:15–13:45

ñ Pascal Mattia Esser
ñ esser@in.tum.de
ñ Office hours (via BBB): Mo 12:15–13:45, Fr 12:15–13:45

ñ Appointment via Moodle

ñ Contact via email only for administrative problems

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 6/43

Assistants / Tutors

ñ Student tutors:
ñ Mitja Daniel Krebs
ñ Office hours (via BBB): Mo 14:15–15:45, Tu 10:15–11:45

ñ Mahalakshmi Sabanayagam
ñ Office hours (via BBB): Tu 14:15–15:45, We 10:15–11:45

ñ Appointment via Moodle

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 7/43

Assessment

ñ In order to pass the module you need to pass a written exam
ñ Remote pen-and-paper exam with mandatory video

supervision
ñ OR On-site pen-and-paper exam

ñ Repeat exam (before next term begins)
ñ Only for absentees or failures in end term exam

ñ Oral exam
ñ No oral substitute for written exam
ñ May be conducted to validate grade if we suspect dishonesty

in written exam

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 8/43

Mode of interaction

ñ Lecture videos available on BBB:

BBB Link: https://bbb.in.tum.de/deb-av3-3u3

ñ Moodle:
ñ Important announcements
ñ Q&A forum: Ask questions, help others
ñ Weekly assignment submission
ñ Feedback: Send (anonymous) feedback about course

ñ Q&A session with lecturer on BBB

ñ Tutorial: Solution video/slides uploaded on Moodle

ñ Q&A for assignment grading: Via BBB (use appointment)

ñ Contact us if you cannot access Moodle

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 9/43

https://bbb.in.tum.de/deb-av3-3u3

Weekly assessment

Submit weekly assignment to improve your grade by 0,3 or 0,4

ñ Written exam 1,7 + bonus = Final grade 1,3

ñ Written exam 3,3 + bonus = Final grade 3,0

Requirements for Bonus

ñ Written exam grade between 1,3 to 4,0

ñ 50% of the points are achieved on submissions 2–8

ñ 50% of the points are achieved on submissions 9–14

ñ Each team member has written at least 4 solutions

ñ OR met requirements for bonus in WS-19/20

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 10/43

Weekly assessment

Assignment Sheets:

ñ Assignment available on Monday on Moodle / course website
ñ Assignment 1 – Due on 9.11; Not graded
ñ Assignment 2 – Graded; Available on 9.11; Due on 16.11

ñ Solutions to be submitted via Moodle

Deadline: 08:00 on following Monday

ñ You must submit solutions in teams of 2 people

Solutions have to be given in English

Can be hand written (scanned)

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 11/43

Weekly assessment (Group submission)

Important only if you submit assignments

Registration (groups on Moodle):

ñ Find team partner in first week (use Moodle forum)

ñ Register in one of 8 groups on Moodle (Fr 6.11 – Fr 13.11)
ñ Based on which time you can attend Q&A with tutors
ñ Both members must register in same group

ñ Cannot change group / partner during semester

Weekly submission:

ñ Mention name, student id number for every team member in

submission

ñ Mention who wrote the submission

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 12/43

1 Contents

ñ Foundations
ñ Machine models
ñ Efficiency measures
ñ Asymptotic notation
ñ Recursion

ñ Higher Data Structures
ñ Search trees
ñ Hashing
ñ Priority queues
ñ Union/Find data structures

ñ Cuts/Flows

ñ Matchings

1 Contents 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 13/43

2 Literatur

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:

The design and analysis of computer algorithms,

Addison-Wesley Publishing Company: Reading (MA), 1974

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest,

Clifford Stein:

Introduction to algorithms,

McGraw-Hill, 1990

Michael T. Goodrich, Roberto Tamassia:

Algorithm design: Foundations, analysis, and internet

examples,

John Wiley & Sons, 2002

2 Literatur 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 14/43

2 Literatur

Ronald L. Graham, Donald E. Knuth, Oren Patashnik:

Concrete Mathematics,

2. Auflage, Addison-Wesley, 1994

Volker Heun:

Grundlegende Algorithmen: Einführung in den Entwurf und

die Analyse effizienter Algorithmen,

2. Auflage, Vieweg, 2003

Jon Kleinberg, Eva Tardos:

Algorithm Design,

Addison-Wesley, 2005

Donald E. Knuth:

The art of computer programming. Vol. 1: Fundamental

Algorithms,

3. Auflage, Addison-Wesley, 1997

2 Literatur 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 15/43

2 Literatur

Donald E. Knuth:

The art of computer programming. Vol. 3: Sorting and

Searching,

3. Auflage, Addison-Wesley, 1997

Christos H. Papadimitriou, Kenneth Steiglitz:

Combinatorial Optimization: Algorithms and Complexity,

Prentice Hall, 1982

Uwe Schöning:

Algorithmik,

Spektrum Akademischer Verlag, 2001

Steven S. Skiena:

The Algorithm Design Manual,

Springer, 1998

2 Literatur 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 16/43

Part II

Foundations

3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 17/43

3 Goals

ñ Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems

efficiently.

ñ Learn how to analyze and judge the efficiency of algorithms.

ñ Learn how to design efficient algorithms.

3 Goals 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 18/43

4 Modelling Issues

What do you measure?

ñ Memory requirement

ñ Running time

ñ Number of comparisons

ñ Number of multiplications

ñ Number of hard-disc accesses

ñ Program size

ñ Power consumption

ñ . . .

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 19/43

4 Modelling Issues

How do you measure?

ñ Implementing and testing on representative inputs
ñ How do you choose your inputs?
ñ May be very time-consuming.
ñ Very reliable results if done correctly.
ñ Results only hold for a specific machine and for a specific set

of inputs.

ñ Theoretical analysis in a specific model of computation.
ñ Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
ñ Typically focuses on the worst case.
ñ Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the worst
case”.

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 20/43

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage space,

comparisons, multiplications, program size etc.).

The input length may e.g. be

ñ the size of the input (number of bits)

ñ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 21/43

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 22/43

Turing Machine

ñ Very simple model of computation.

ñ Only the “current” memory location can be altered.

ñ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

ñ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 23/43

Random Access Machine (RAM)

ñ Input tape and output tape (sequences of zeros and ones;

unbounded length).

ñ Memory unit: infinite but countable number of registers

R[0], R[1], R[2],
ñ Registers hold integers.

ñ Indirect addressing.

Note that in the picture on the right
the tapes are one-directional, and that
a READ- or WRITE-operation always ad-
vances its tape.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 24/43

Random Access Machine (RAM)

Operations

ñ input operations (input tape → R[i])
ñ READ i

ñ output operations (R[i]→ output tape)
ñ WRITE i

ñ register-register transfers
ñ R[j] := R[i]
ñ R[j] := 4

ñ indirect addressing
ñ R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th register
ñ R[R[i]] := R[j]

loads the content of the j-th into the R[i]-th register

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 25/43

Random Access Machine (RAM)

Operations

ñ branching (including loops) based on comparisons
ñ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

ñ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

ñ jumpi i
jump to R[i] (indirect jump);

ñ arithmetic instructions: +, −, ×, /
ñ R[i] := R[j] + R[k];
R[i] := -R[k]; The jump-directives are very close to the

jump-instructions contained in the as-
sembler language of real machines.

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 26/43

Model of Computation

ñ uniform cost model

Every operation takes time 1.

ñ logarithmic cost model
The cost depends on the content of memory cells:

ñ The time for a step is equal to the largest operand involved;
ñ The storage space of a register is equal to the length (in bits)

of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed 2w , where usually w = log2n.

The latter model is quite realistic as the word-size of
a standard computer that handles a problem of size n
must be at least log2 n as otherwise the computer could
either not store the problem instance or not address all
its memory.

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 27/43

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

ñ running time (for Line 3):
ñ uniform model: n steps
ñ logarithmic model:

2+ 3+ 5+ · · · + (1+ 2n) = 2n+1 − 1+n = Θ(2n)
ñ space requirement:

ñ uniform model: O(1)
ñ logarithmic model: O(2n)

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 28/43

C(x)
cost of instance
x

|x| input length of
instance x

In
set of instances
of length n

µ is a probability distribu-
tion over inputs of length n.

There are different types of complexity bounds:
ñ best-case complexity:

Cbc(n) :=min{C(x) | |x| = n}

Usually easy to analyze, but not very meaningful.
ñ worst-case complexity:

Cwc(n) :=max{C(x) | |x| = n}

Usually moderately easy to analyze; sometimes too

pessimistic.
ñ average case complexity:

Cavg(n) := 1
|In|

∑
|x|=n

C(x)

more general: probability measure µ

Cavg(n) :=
∑
x∈In

µ(x) · C(x)

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 29/43

C(x)
cost of instance
x

|x| input length of
instance x

In
set of instances
of length n

µ is a probability distribu-
tion over inputs of length n.

There are different types of complexity bounds:

ñ amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

ñ randomized complexity:

The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input x.

Then take the worst-case over all x with |x| = n.

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 29/43

4 Modelling Issues

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
McGraw-Hill, 2009

Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.

4 Modelling Issues 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 30/43

5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

ñ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

ñ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a

distance from reality.

ñ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

ñ Running time should be expressed by simple functions.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 30/43

Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

ñ O(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f)

ñ Ω(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f)

ñ Θ(f) = Ω(f)∩O(f)
(functions that asymptotically have the same growth as f)

ñ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f)

ñ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f)

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 31/43

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

ñ g ∈ O(f): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ Ω(f): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

ñ g ∈ Θ(f): 0 < lim
n→∞

g(n)
f(n)

<∞

ñ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

ñ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Lan-
dau notation defined here, we as-
sume that f and g are positive func-
tions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 32/43

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

3. This is particularly useful if you do not want
to ignore constant factors. For example the
median of n elements can be determined us-
ing 3

2n+ o(n) comparisons.

2. In this context f(n) does not mean the func-
tion f evaluated at n, but instead it is a
shorthand for the function itself (leaving out
domain and codomain and only giving the
rule of correspondence of the function).

Asymptotic Notation
Abuse of notation

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

3. This is particularly useful if you do not want
to ignore constant factors. For example the
median of n elements can be determined us-
ing 3

2n+ o(n) comparisons.

2. In this context f(n) does not mean the func-
tion f evaluated at n, but instead it is a
shorthand for the function itself (leaving out
domain and codomain and only giving the
rule of correspondence of the function).

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 34/43

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +O(n) = Θ(n2)

Regardless of how we choose the anonymous function

f(n) ∈ O(n) there is an anonymous function g(n) ∈ Θ(n2)
that makes the expression true.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 35/43

Asymptotic Notation in Equations

How do we interpret an expression like:

n∑
i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

The Θ(i)-symbol on the left rep-
resents one anonymous function
f : N → R+, and then

∑
i f(i) is

computed.

Θ(1)+Θ(2)+· · ·+Θ(n−1)+Θ(n) does
not really have a reasonable interpreta-
tion.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 36/43

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as

generating a set:

n2 · O(n)+O(logn)

represents

{
f : N→ R+ | f(n) = n2 · g(n)+ h(n)

with g(n) ∈ O(n) and h(n) ∈ O(logn)
}

Recall that according to the previous
slide e.g. the expressions

∑n
i=1O(i) and∑n/2

i=1 O(i)+
∑n
i=n/2+1O(i) generate dif-

ferent sets.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 37/43

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement

btw. two sets:

n2 · O(n)+O(logn) = Θ(n2)

represents

n2 · O(n)+O(logn) ⊆ Θ(n2)

Note that the equation does not hold.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 38/43

Asymptotic Notation

Lemma 3

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

ñ c · f(n) ∈ Θ(f (n)) for any constant c
ñ O(f (n))+O(g(n)) = O(f (n)+ g(n))
ñ O(f (n)) · O(g(n)) = O(f (n) · g(n))
ñ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 39/43

Asymptotic Notation

Comments

ñ Do not use asymptotic notation within induction proofs.

ñ For any constants a,b we have logan = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

ñ In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 40/43

Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

ñ If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely theoretical

worst-case bound), then the algorithm that has better

asymptotic running time will always outperform a weaker

algorithm for large enough values of n.

ñ However, suppose that I have two algorithms:
ñ Algorithm A. Running time f(n) = 1000 logn = O(logn).
ñ Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 41/43

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several

parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n→∞ and m →∞
we have to extend the definition to multiple variables.

Formal Definition

Let f , g denote functions from Nd to R+0 .

ñ O(f) = {g | ∃c > 0 ∃N ∈ N0 ∀~n with ni ≥ N for some i :

[g(~n) ≤ c · f(~n)]}
(set of functions that asymptotically grow not faster than f)

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 42/43

Multiple Variables in Asymptotic Notation

Example 4

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

ñ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n
then: f = O(g)

ñ f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n
then f = O(g) does not hold

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 43/43

5 Asymptotic Notation

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
McGraw-Hill, 2009

Mainly Chapter 3 of [CLRS90]. [MS08] covers this topic in chapter 2.1 but not very detailed.

5 Asymptotic Notation 3. Nov. 2020

Ernst Mayr, Harald Räcke, Debarghya Ghoshdastidar 44/43

	Organizational Matters
	Contents
	Literatur

	Foundations
	Goals
	Modelling Issues
	Asymptotic Notation

