Seminar: Theoretical Advances in Deep Learning

Debarghya Ghoshdastidar, Pascal Esser

TU Munich, Department of Informatics Summer Semester 2021

1/18

イロト イポト イヨト イヨト

Course information

- Master seminar (IN2107, IN4409)
 - 5 ECTS, 2 SWS

Course information

- Master seminar (IN2107, IN4409)
 - 5 ECTS, 2 SWS
- Organisers:
 - Pascal Esser (main coordinator of course)

esser@in.tum.de

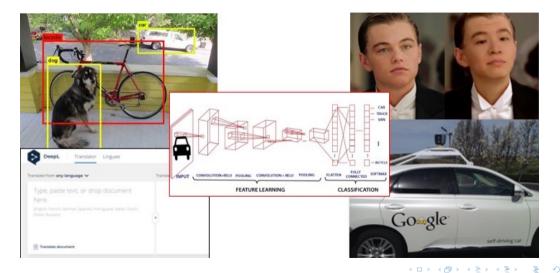
• Prof. Debarghya Ghoshdastidar

Head, Theoretical Foundations of Artificial Intelligence

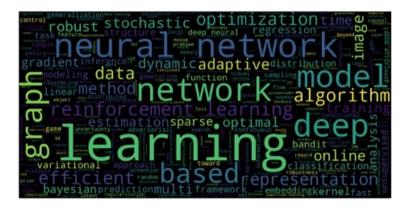
ghoshdas@in.tum.de

- 34

Deep learning in practice



Research in machine learning and deep learning



- Most papers on new algorithms / architectures and their applications
- Important venues: ICML, Neurips, AAAI, CVPR, ICLR, ICCY, .

Theory - Deep Learning

TUM Informatik (Summer 2021)

• New algorithms with partial theoretical analysis

- 3

- New algorithms with partial theoretical analysis
 - Provides some understanding (less common in DL than ML)

- 32

- New algorithms with partial theoretical analysis
 - Provides some understanding (less common in DL than ML)
- Empirical analysis of algorithmic properties

- New algorithms with partial theoretical analysis
 - Provides some understanding (less common in DL than ML)
- Empirical analysis of algorithmic properties
 - Important when algorithms are hard to analyse theoretically
 - Common in deep learning, non-convex optimisation

- New algorithms with partial theoretical analysis
 - Provides some understanding (less common in DL than ML)
- Empirical analysis of algorithmic properties
 - Important when algorithms are hard to analyse theoretically
 - Common in deep learning, non-convex optimisation
- Dedicated theory papers
 - Mathematically explain why DL / ML methods work (rare in DL)

5/18

- New algorithms with partial theoretical analysis
 - Provides some understanding (less common in DL than ML)
- Empirical analysis of algorithmic properties
 - Important when algorithms are hard to analyse theoretically
 - Common in deep learning, non-convex optimisation
- Dedicated theory papers

 $\longleftarrow {\rm Focus \ of \ this \ seminar}$

• Mathematically explain why DL / ML methods work (rare in DL)

5/18

Why do we need mathematical analysis of DL?

• Deep learning contradicts conventional wisdom

Complex models generalise well

6/18

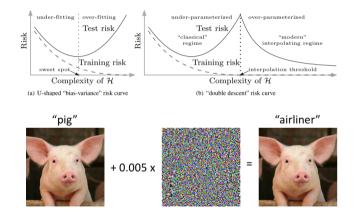
Why do we need mathematical analysis of DL?

• Deep learning contradicts conventional wisdom

Complex models generalise well

• Neural networks not robust

Can be fooled to make error



э

6/18

Why do we need mathematical analysis of DL?

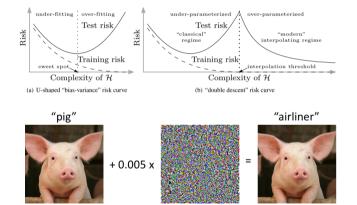
• Deep learning contradicts conventional wisdom

Complex models generalise well

• Neural networks not robust

Can be fooled to make error

• The output of deep networks lack explainability



э

6/18

• Theory in deep learning emerging

3

- Theory in deep learning emerging
 - What do we know so far?

3

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?

3

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical foundations of learning (complements lecture IN2378)

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical foundations of learning (complements lecture IN2378)
- Familiarise with mathematical proof techniques
 - Considerable focus on math in this seminar

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical foundations of learning (complements lecture IN2378)
- Familiarise with mathematical proof techniques
 - Considerable focus on math in this seminar
- Familiarise with publication and review process in ML

7/18

A B A A B A A B A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Focus of this seminar

3

• Theory in deep learning emerging

- 31

- Theory in deep learning emerging
 - What do we know so far?

- 32

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?

3

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical learning theory

(complements lecture IN2378)

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical learning theory

(complements lecture IN2378)

- Familiarise with mathematical proof techniques
 - Considerable focus on math in this seminar

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical learning theory

(complements lecture IN2378)

- Familiarise with mathematical proof techniques
 - Considerable focus on math in this seminar
- Familiarise with publication and review process in ML

9/18

- Generalisation in neural networks
 - VC-dimension, sample complexity, ...

э

- Generalisation in neural networks
 - VC-dimension, sample complexity, ...
- Optimisation of neural networks

э

- Generalisation in neural networks
 - VC-dimension, sample complexity, ...
- Optimisation of neural networks
 - Convergence properties of trained networks

3

- Generalisation in neural networks
 - VC-dimension, sample complexity, ...
- Optimisation of neural networks
 - Convergence properties of trained networks
 - Asymptotic behaviour of wide neural networks (neural kernel)

3

10/18

- Generalisation in neural networks
 - VC-dimension, sample complexity, ...
- Optimisation of neural networks
 - Convergence properties of trained networks
 - Asymptotic behaviour of wide neural networks (neural kernel)
 - Analysis of stochastic gradient descent

- Generalisation in neural networks
 - VC-dimension, sample complexity, ...
- Optimisation of neural networks
 - Convergence properties of trained networks
 - Asymptotic behaviour of wide neural networks (neural kernel)
 - Analysis of stochastic gradient descent
- Robustness to adversarial attacks

- Generalisation in neural networks
 - VC-dimension, sample complexity, ...
- Optimisation of neural networks
 - Convergence properties of trained networks
 - Asymptotic behaviour of wide neural networks (neural kernel)
 - Analysis of stochastic gradient descent
- Robustness to adversarial attacks
- Effect of over-parametrisation in learning

10/18

Optimisation

Which features are relevant for learning?

• Gradient Starvation: A Learning Proclivity in Neural Networks, Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup, Guillaume Lajoie

Biases introduced by the optimization algorithm

• The Implicit Bias of Gradient Descent on Separable Data, Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, Nathan Srebro

Graph Neural Networks

Generalization properties

• Generalization and Representational Limits of Graph Neural Networks, Vikas K. Garg, Stefanie Jegelka, Tommi Jaakkola

Stability

• Convergence and Stability of Graph Convolutional Networks on Large Random Graphs, Nicolas Keriven, Alberto Bietti, Samuel Vaiter

12/18

イロト イポト イヨト イヨト

Robustness

- Rademacher Complexity for Adversarially Robust Generalization, Dong Yin, Kannan Ramchandran, and Peter Bartlett
- VC Classes are Adversarially Robustly Learnable, but Only Improperly, Omar Montasser Steve Hanneke Nathan Srebro
- Does Learning Require Memorization? A Short Tale about a Long Tail, Vitaly Feldman

Kernel Behaviour of Neural Netowrks

- A Generalized Neural Tangent Kernel Analysis for Two-layer Neural Networks Zixiang Chen, Yuan Cao, Quanquan Gu, Tong Zhang
- On the linearity of large non-linear models: when and why the tangent kernel is constant, Chaoyue Liu, Libin Zhu, Mikhail Belkin
- On Exact Computation with an Infinitely Wide Neural Net, Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang

14 / 18

- Link to seminar webpage
 - Go to www.in.tum.de/tfai \rightarrow Teaching \rightarrow Link to seminar (SS2021)
 - All information / papers will be added here
 - We will use Moodle for coordination

- 32

- Link to seminar webpage
 - Go to www.in.tum.de/tfai \rightarrow Teaching \rightarrow Link to seminar (SS2021)
 - All information / papers will be added here
 - We will use Moodle for coordination
- Desired number of participants = 12

- 31

- Link to seminar webpage
 - Go to www.in.tum.de/tfai \rightarrow Teaching \rightarrow Link to seminar (SS2021)
 - All information / papers will be added here
 - We will use Moodle for coordination
- Desired number of participants = 12
- Pre-requisites: Machine Learning (IN2064), Deep learning (IN2346)

- 3

- Link to seminar webpage
 - Go to www.in.tum.de/tfai \rightarrow Teaching \rightarrow Link to seminar (SS2021)
 - All information / papers will be added here
 - We will use Moodle for coordination
- Desired number of participants = 12
- Pre-requisites: Machine Learning (IN2064), Deep learning (IN2346)
- Must be comfortable with mathematical techniques / proving results
 - Taking Statistical foundations of learning (IN2378) in parallel would help

Theory - Deep Learning

• Everyone assigned one paper

16 / 18

- Everyone assigned one paper
- Submit a report (\sim 5 pages). Details will be provided in the introduction lecture.
 - summary of paper, explaining main results and their implications
 - review (we will discuss how to write reviews)
 - summary of proofs (main techniques, key lemmas and ideas)

イロト イヨト イヨト ヨー シック

- Everyone assigned one paper
- Submit a report (\sim 5 pages). Details will be provided in the introduction lecture.
 - summary of paper, explaining main results and their implications
 - review (we will discuss how to write reviews)
 - summary of proofs (main techniques, key lemmas and ideas)
- Present paper and your report
 - Block seminar; everyone needs to attend all talks

イロト 不同 トイヨト イヨト ヨー うらつ

- Everyone assigned one paper
- Submit a report (\sim 5 pages). Details will be provided in the introduction lecture.
 - summary of paper, explaining main results and their implications
 - review (we will discuss how to write reviews)
 - summary of proofs (main techniques, key lemmas and ideas)
- Present paper and your report
 - Block seminar; everyone needs to attend all talks
- Grading: Report (40%) + Presentation (60%)

• Bonus for asking interesting questions to other speakers Theory - Deep Learning TUM Informatik (Summer 2021)

D. Ghoshdastidar, P. Esser

16 / 18

Report + Presentation of papers

- Mostly publications from recent ML conferences (ICML, Neurips, COLT)
 - Conference papers are short (8 page, no proofs)
- Report has to follow longer version on arXiv (link will be provided)
 - Considerable focus on understanding mathematical results

Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation <u>Neurips version</u> (12 pages)		Lipschitz Augmentati Colin Wei [*] and Tengyu Ma May 31, 2019		6
Colin Wei Computer Science Department Co Stanford University	Tengyu Ma omputer Science Department Stanford University tengyuma@stanford.edu	Abstract Existing Rademacher complexity houses for neural networks rely only on norm control of the weight matrices and dependence on depth is unaveidable when no additional properties of the training data are considered. We support that this coundrum cosess from the fact that these bounds depend on the training data only through the matrix. In practice, many data data dependent these bounds depend on the training data only through the matrix. In practice, many data dependent the second		N 0

Timeline

- February 25 March 10: Provide preference for papers (forms will be sent; select 3+ papers)
- March 10: Assignment of papers
- April 19, 14:00-16:00: First meeting (assignments, reports and organisation)
- May 3: Deadline for de-registration
- July 1: Submit report and first version of slides (both as PDF)
- End of July: Final presentation (block seminar, date to be finalised)
- Office hours: Monday 14:00-15:00 and Friday 14:00-15:00

- 3