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Machine learning and deep learning research

e Empirical studies, providing benchmark and demonstrating pitfalls.
e Rigorously explain why ML /DL works by analysing theoretical models

or algorithms.

Focus:

e [nsights for new algorithmic development (example: boosting,

methods for regularisation).
e Brings concepts from mathematics to ML (example: Random graphs,

GCeometry).
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Machine learning and deep learning research

This Practical:

e Understand recent advances
e Reproduce existing results
e [Extend research (empirically)
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Topics




Adversarial ML / Robustness

e Performance of NNs significantly affected if data is slightly perturbed.
e Why? How can we robust ML models/ guarantee robustness?

Original x ) Adversarial Input x + §

_|_

Prediction: speed limit 70 |6]|, = 0.67 Prediction: speed limit 30
99% confidence 99% confidence
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Ceneralisation in neural networks

Classical learning theory cannot explain generalisation in deep
Nnetworks,

e Data-dependent generalisation error bounds more meaningful and
oractical.

under-fitting : over-fitting
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Double-descent In bias-variance curve

e Over-parameterised NNs deviate from bias-variance trade-off - NNs

may perform best in zero training loss / interpolating regime.
e Currently, this behaviour has been analytically derived in simpler

settings.

under-fitting : over-fitting

Test risk
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Over-parameterised NN (infinite widtn)

Analyse Over-parametrised NNs asymptotically as width goes to infinity

e Undersmalllearning rate, (S)GD training = Neural Tangent Kernel
(NTK), a dot product kernel in gradient space of the NN parameters
e F[inite width networks can deviate from the kernel regime.
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Let's ook at an example

On Exact Computation with an Infinitely Wide

*
Neural Net
Sanjeev Arora’ Simon S. Dut Wei Hu® Zhiyuan Li¥
Ruslan Salakhutdinov! Ruosong Wang™*

Practical - Analysis of new phenomena in machine/deep learning 10



Abstract

How well does a classic deep net architecture like AlexNet or VGG19 classify
on a standard dataset such as CIFAR-10 when its “width”— namely, number of
channels in convolutional layers, and number of nodes in fully-connected internal
layers — is allowed to increase to infinity? Such questions have come to the fore-
front in the quest to theoretically understand deep learning and its mysteries about
optimization and generalization. They also connect deep learning to notions such General Setu P
as Gaussian processes and kernels. A recent paper [Jacot et al., 2018] introduced
the Neural Tangent Kernel (NTK) which captures the behavior of fully-connected
deep nets in the infinite width limit trained by gradient descent; this object was
implicit in some other recent papers. An attraction of such ideas is that a pure
kernel-based method is used to capture the power of a fully-trained deep net of

algorithm for computing
tension of NTK to convolutional neural nets, which we call Convolutional NTK

(CNTK), as well as an efficient GPU implementation of this algorithm. This results

in a significant new benchmark for performance of a pure kernel-based method on

CIFAR-10, being 10% higher than the methods reported in [Novak et al., 2019], i

and only 6% lower than the performance of the corresponding finite deep net ar- This Paper shows
chitecture (once batch normalization etc. are turned off). Theoretically, we also

give the first non-asymptotic proof showing that a fully-trained sufficiently wide

net is indeed equivalent to the kernel regression predictor using NTK.
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We give an exact andjefficientdyiamic programming algorithimto compute
CNTKs for ReLU activation (namely, to compute ker (z, z’) given  and «’). Using this algorithm
— as well as implementation tricks for GPUs — we can settle the question of the performance of
fully-trained infinitely wide nets with a variety of architectures. For instance, we find that their per-
formance on CIFAR-10 is within 5% of the performance of the same architectures in the finite case
(note that the proper comparison in the finite case involves turning off batch norm, data augmenta-
tion, etc., in the optimization). In particular, the CNTK corresponding to a 11-layer convolutional net
with global average pooling achieves 77% classification accuracy. This is 10% higher than the best
reported performance of a Gaussian process with fixed kernel on CIFAR-10 [Novak et al., 2019].%

Furthermore, we give a morc Fig0oUS) HORaSyprotie proof tat the NTK captifes the behavior o7 a
¢ also experimentally

show that the random feature methods for approximating CNTK in earlier work do not compute
good approximations, which is clear from their much worse performance on CIFAR.

1.1 Notation

We use bold-faced letters for vectors, matrices and tensors. For a vector a, let [a]; be its i-th entry;
for a matrix A, let [A], ; beits (i, j)-th entry; for a 4th-order tensor T, let [A], ., beits (4, 7,4, j')-
th entry. Let I be the identity matrix, and [n] = {1,2,...,n}. Let e; be an indicator vector with
i-th entry being 1 and other entries being 0, and let 1 denote the all-one vector. We use ® to denote
the entry-wise product and ® to denote the tensor product. We use (-, -) to denote the standard inner
product. We use diag(-) to transform a vector to a diagonal matrix. We use o (-) to denote the
activation function, such as the rectified linear unit (ReLU) function: o (2) = max{z,0}, and ¢ (-)
to denote the derivative of o (-). Denote by N (u, X) the Gaussian distribution with mean g and
covariance X.

2 Related Work What is new in this paper?

From a Gaussian process (GP) viewpoint, the correspondence between infinite neural networks
and kernel machines was first noted by Neal [1996]. Follow-up work extended this corre-
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3 Neural Tangent Kernel

In this section we describe fully-connected deep neural net architecture and its infinite width limit,
and how training it with respect to the £, loss gives rise to a kernel regression problem involving
the neural tangent kernel (NTK). We denote by f(6,x) € R the output of a neural network where General

{(z, y,-)}:;l C R? x R, consider training the neural network by minimizing the squared loss over | Sl P
training data: £(6) = 3 Y1, (f(6,z:) — y:)? . The proof of the following lemma uses simple
differentiation and appears in Section C.

0 € RV is all the parameters in the network and € R? is the input.” Given a training dataset
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convenience. We define an L-hidden-layer fully-connected neural network recursively:

V(@) = Whgt V(@) eR*, gW(2)=,/Zo(fP@) eR™, h=12..,L | Exact
h . e
) | definition of
where W (") ¢ R%*dr-1 is the weight matrix in the h-th layer (k € [L]), o : R — R is a coordinate- e model
=1 .
wise activation function, and ¢, = (IEZN N(0,1) [o (z)2]) . The last layer of the neural network
is

£(8,z) = FED(z) = WEHD . g(D) () Important for

reproducing
—wty, [Co @, | Lo (L) oo |52 (6]
LS VdLo<W V dL_lo(W le"(W ””))) results

where W(E+1) € R1%z js the weights in the final layer, and 6 = (W), ..., W(L+D) represents
all the parameters in the network.

We initialize all the weights to be i.i.d. A/(0,1) random variables, and consider the limit of large
hidden widths: dy,ds,...,dr — oo. The scaling factor \/c,/d}, in Equation (6) ensures that the
norm of g(*) (z) for each h € [L] is approximately preserved at initialization (see [Du et al., 2018b]).

In particular, for ReLU activation, we have E [||g(h)(m)||2] = ||lz||* (vh € [L)).

Recall from [Lee et al., 2018] that in the infinite width limit, the pre-activations f (h) (z) at every hid-
den layer h € [L] has all its coordinates tending to i.i.d. centered Gaussian processes of covariance
B*h=1) : R x RY — R defined recursively as: for h € [L],

2Oz, z') =z 2
(h—1) (h—1) ’
h wiz X (Z, :E) ) (:E, x ) 2x2
AW = (Funios) Sov ) E @
2™ (z,2') = c, E [0 (u)o (v)]. Corresponding
(u,v)~N(0,A(")) NTK
To give the formula of NTK, we also need to define a derivative covariance:
M (x,z') = ¢, E [o(u)e(v)]. ®)
(u,v)~N(0,A("))
The final NTK expression for the fully-connected neural network is
L+1 L+1
0 (z,2') =) (z“‘-”(m,z')- [1=" >(z,z')), ©
h=1 h'=h
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this formula. Rigoroﬁsfy, for ReLU activation, we have the

Theorem 3.1 (Convergence to the NTK at initializatoin). Fix ¢ > 0 and 6 € (0,1). Suppose
o (2) = max(0, z) and min, ¢z dp, > Q(%f— log(L/$)). Then for any inputs x,x’' € R% such that
l|lz|| <1,||z'|| < 1, with probability at least 1 — § we have:

<af(9,a=), 3f(0,w’)> 0Dz, z")| < (L +1)e.

00 00
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Built on Theorem 3.1,
we can further incorporate the training process and show the equivalence between a fully-trained
sufficiently wide neural net and the kernel regression solution using the NTK, as described in
Lemma 3.1 and the discussion after it.

Recall that the training data are {(z;,v:)}._;, C R? x R, and H* € R™*" is the NTK evaluated
on these training data, i.e., [H*];; = ©X)(z;,x;). Denote Ag = Amin (H*). For a testing point
xte € RY, we let kernk(zie, X) € R™ be the kernel evaluated between the testing point and n
training points, i.e., [ker,x (T, X)];, = G(L)(a:te, x;). The prediction of kernel regression using
NTK on this testing point is fnek (€re) = (kertn (Tee, X)) (H*) ' y.

Since the above solution corresponds to the linear dynamics in Equation (4) with zero initializa-
tion, in order to establish equivalence between neural network and kernel regression, we would
like the initial output of the neural network to be small. Therefore, we apply a small multi-

plier k > 0, and let the final output of the neural network be f,,(0,z) = &f (0,x). We let
fran(@re) = limy o0 frn(€(t), z¢e) be the prediction of the neural network at the end of training.

The following theorem establishes the

. gquivalence between trained .
max(0,z), 1/k = poly(1/e,log(n/d)) and di = doy = -+ = dp = m with m

poly(1/k, L,1/Xo,n,log(1/6)). Then for any ;. € R? with ||x.|| = 1, with probability at least
1 — § over the random initialization, we have

|fnn(mte) = fntk(mte)| i€

Practical - Analysis of new phenomena in machine/deep learning

Theoretical

Result 2

16



Note that ¥(z, ) and 3(z, =) share similar structures as their NTK counterparts in Equations (7)
and (8). The only difference is that we have one more step, taking the trace over patches. This step
represents the convolution operation in the corresponding CNN. Next, we can use

1. First, we define ©(0) (z,z') = 2O (z, z’).
2. Forh=1,...,L—1and (3,4,7,5) € [P] x [@Q] X [P] X [Q], we define

Main Algorithm to
compute CNTK

[e(h)(a:,a:')] =t ([K(h)(w,:l:') ® @(h‘l)(a:,:z:') e K(h)(:z:,x’)]D ) s
ij,i’ 3’ e

3. For h = L, we define @ X (z,z') = KL (z,2') © @ L~V (z,z') + KL (z, ).
4. The final CNTK value is defined as tr (©L)(z, z')) .
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Summery of Empirical Results

CNN-V | CNTK-V | CNTK-V-2K | CNN-GAP | CNTK-GAP | CNTK-GAP-2K
59.97% | 64.47% 40.94% 63.81% 70.47% 49.71%
60.20% | 65.52% 42.54% 80.93% 75.93% 51.06%
64.11% | 66.03% 43.43% 83.75% 76.73% 51.73%

69.48% | 65.90% 43.42% 82.92% 77.43 % 51.92%
75.57% | 64.09% 42.53% 83.30% 77.08% 52.22%

: ti es of CNN. 7 AR-10 dataset. CNN-V repre-
sents vamlla CNN and CNTK—V represents the kemel correspondmg to CNN V CNN GAP repre-
sents CNN with GAP and CNTK-GAP represents the kernel correspondong to CNN-GAP. CNTK-
V-2K and CNTK-GAP-2K represent training CNTKs with only 2,000 training data.

Practical - Analysis of new phenomena in machine/deep learning
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S Experiments

The 1mplementat10n detalls are in Secnon A We also compare the perfonnances between CNTKs
and their corresponding random feat Due to space limit, we defer these results on random features
to Section B.

Results. We test two types of architectures, vanilla CNN and CNN with global average pooling
(GAP), as described in Sections 4 and H. We also test CNTKs with only 2,000 training data to

see whether their performances are consistent with CNTKs and CNNs using the full training set.

The results are summanzed in Table 1. Notice that in Table 1, depth is the total number of layers

Several comments are in sequel. First, CNTKSs are very powerful kernels. The best kernel, 11-layer

CNTK with GAP, achieves 77.43 % classification accuracy on CIFAR-10. This results in a significant
e IBEREAAkAoT peHorHANGE O & pure KemeEbased Wetodon CIFAR-10, being 10% higher

than methods reported in [Novak et al., 2019].

Second, we find that for both CNN and CNTK, depth can affect the classification accuracy. This
observation demonstrates that depth not only matters in deep neural networks but can also affect the
performance of CNTKs.

Third, the glob , ) | ssificati
8% - 10% for both CNN and CNTK Based on thls ﬁndmg, we expect that many techmques that
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Possible Extensions / Further Experiments

e How does data pre-processing influence the performance of CNN and

CNTK?

e Analyze the influence of depth for CNN and CNTK

e CNTKwith vector output and global average pooling: What helps
oerformance improve with depth?

Practical - Analysis of new phenomena in machine/deep learning
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Practical Structure

in machine/deep learning
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Structure

Groups of 3 students - 2 research papers per group

1. understand the main theoretical ideas of the paper and reproduce the
empirical findings.
2. extend on the empirical observations with further experiments.

Practical - Analysis of new phenomena in machine/deep learning
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Timeline

e First or second week of semester: Introduction Meeting
e Mid June: Reproducibility report submission
e [End of semester: Empirical extensions + functional code submission
e [£ndof semester: Final presentations
Weekly:

e ~15min update presentation from every group
e Office Hours for further guestions

Practical - Analysis of new phenomena in machine/deep learning
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Crading

e Report on reproducibility (40%)
e Report on extensions (20%)
e F[inal group presentation (40%).




Prerequisite

e Machine learning (IN2064)
e Introduction to deep learning (IN2340)
e Statistical foundations of learning (IN2378) - optional

Survey: https/forms.ale/7zAmM67CP5gtDUINSY

(Link also on website of

Theoretical Foundations of Artificial Intelligence)

THIS DOES NOT REPLACE THE MATCHING SYSTEM
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https://forms.gle/7zAm67GP5qtDUfNS7
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