Learning Curves in Gaussian Process Regression

April 17, 2024

Introduction to GP

- Bayesian Linear Regression: Model $y \mid X, w \sim \mathcal{N}\left(X w, \sigma_{n}^{2} I_{n}\right)$ and prior $w \sim \mathcal{N}\left(0, \Sigma_{p}\right)$. Here $X \in \mathbb{R}^{p \times n}$ is the data matrix.

Introduction to GP

- Bayesian Linear Regression: Model $y \mid X, w \sim \mathcal{N}\left(X w, \sigma_{n}^{2} I_{n}\right)$ and prior $w \sim \mathcal{N}\left(0, \Sigma_{p}\right)$. Here $X \in \mathbb{R}^{p \times n}$ is the data matrix.
- Posterior becomes

$$
p(w \mid y, X) \propto p(y \mid X, w) p(w)=\mathcal{N}\left(\sigma_{n}^{-2} A^{-1} X y, A^{-1}\right)
$$

where $A=\sigma_{n}^{-2} X X^{T}+\Sigma_{p}^{-1} \in \mathbb{R}^{p \times p}$.

Introduction to GP

- Bayesian Linear Regression: Model $y \mid X, w \sim \mathcal{N}\left(X w, \sigma_{n}^{2} I_{n}\right)$ and prior $w \sim \mathcal{N}\left(0, \Sigma_{p}\right)$. Here $X \in \mathbb{R}^{p \times n}$ is the data matrix.
- Posterior becomes

$$
p(w \mid y, X) \propto p(y \mid X, w) p(w)=\mathcal{N}\left(\sigma_{n}^{-2} A^{-1} X y, A^{-1}\right)
$$

where $A=\sigma_{n}^{-2} X X^{T}+\Sigma_{p}^{-1} \in \mathbb{R}^{p \times p}$.

- Predictive distribution at new x...

$$
p(f(x) \mid x, X, y)=\mathcal{N}\left(\sigma_{n}^{-2} x^{T} A^{-1} X y, x^{T} A^{-1} x\right)
$$

Introduction to GP

- Bayesian Linear Regression: Model $y \mid X, w \sim \mathcal{N}\left(X w, \sigma_{n}^{2} I_{n}\right)$ and prior $w \sim \mathcal{N}\left(0, \Sigma_{p}\right)$. Here $X \in \mathbb{R}^{p \times n}$ is the data matrix.
- Posterior becomes

$$
p(w \mid y, X) \propto p(y \mid X, w) p(w)=\mathcal{N}\left(\sigma_{n}^{-2} A^{-1} X y, A^{-1}\right)
$$

where $A=\sigma_{n}^{-2} X X^{T}+\Sigma_{p}^{-1} \in \mathbb{R}^{p \times p}$.

- Predictive distribution at new x...

$$
p(f(x) \mid x, X, y)=\mathcal{N}\left(\sigma_{n}^{-2} x^{T} A^{-1} X y, x^{T} A^{-1} x\right)
$$

- Can directly be kernelized with Φ replacing X.

Introduction to GP

- A bit more mathematically sound: We define $f \sim G P(\mu, k)$ as a Gaussian process on \mathbb{R}^{d} if for all datasets $X=\left\{x_{1}, \ldots, x_{n}\right\}$, we get

$$
f(X) \sim \mathcal{N}\left(\mu\left(x_{i}\right), k\left(x_{i}, x_{j}\right)\right)
$$

This specifies the distribution completely.

Introduction to GP

- A bit more mathematically sound: We define $f \sim G P(\mu, k)$ as a Gaussian process on \mathbb{R}^{d} if for all datasets $X=\left\{x_{1}, \ldots, x_{n}\right\}$, we get

$$
f(X) \sim \mathcal{N}\left(\mu\left(x_{i}\right), k\left(x_{i}, x_{j}\right)\right)
$$

This specifies the distribution completely.

- The GP regression model is $y=f(x)+\epsilon$ with noise ϵ at level σ_{n}^{2} and for $f \sim G P(\mu, k)$.

Introduction to GP

- A bit more mathematically sound: We define $f \sim G P(\mu, k)$ as a Gaussian process on \mathbb{R}^{d} if for all datasets $X=\left\{x_{1}, \ldots, x_{n}\right\}$, we get

$$
f(X) \sim \mathcal{N}\left(\mu\left(x_{i}\right), k\left(x_{i}, x_{j}\right)\right)
$$

This specifies the distribution completely.

- The GP regression model is $y=f(x)+\epsilon$ with noise ϵ at level σ_{n}^{2} and for $f \sim G P(\mu, k)$.
- Given data X with observations y, and a new x, we have

$$
f(x) \mid X, y, x \sim \mathcal{N}\left(\bar{f}(x), \sigma^{2}(f(x))\right)
$$

where

$$
\begin{aligned}
& \bar{f}(x)=k(x, X)\left(K+\sigma_{n}^{2} I_{n}\right)^{-1} y \\
& \sigma^{2}(x)=k(x, x)-k(x, X)\left(K+\sigma_{n}^{2} I_{n}\right)^{-1} k(X, x)
\end{aligned}
$$

Introduction to GP

- A bit more mathematically sound: We define $f \sim G P(\mu, k)$ as a Gaussian process on \mathbb{R}^{d} if for all datasets $X=\left\{x_{1}, \ldots, x_{n}\right\}$, we get

$$
f(X) \sim \mathcal{N}\left(\mu\left(x_{i}\right), k\left(x_{i}, x_{j}\right)\right)
$$

This specifies the distribution completely.

- The GP regression model is $y=f(x)+\epsilon$ with noise ϵ at level σ_{n}^{2} and for $f \sim G P(\mu, k)$.
- Given data X with observations y, and a new x, we have

$$
f(x) \mid X, y, x \sim \mathcal{N}\left(\bar{f}(x), \sigma^{2}(f(x))\right)
$$

where

$$
\begin{aligned}
& \bar{f}(x)=k(x, X)\left(K+\sigma_{n}^{2} I_{n}\right)^{-1} y \\
& \sigma^{2}(x)=k(x, x)-k(x, X)\left(K+\sigma_{n}^{2} I_{n}\right)^{-1} k(X, x)
\end{aligned}
$$

- It's kernel regression with uncertainty estimation.

Generalization Error for GP

- Suppose $f \sim G P\left(0, k_{0}\right)$ and y has noise level σ_{0}. We estimate f using GP regression with kernel k_{1} and noise σ_{1}.

Generalization Error for GP

- Suppose $f \sim G P\left(0, k_{0}\right)$ and y has noise level σ_{0}. We estimate f using GP regression with kernel k_{1} and noise σ_{1}.
- Generalization error (averaging over new data x and the prior f) is

$$
\begin{aligned}
E^{g e n}(X)= & \int k_{0}(x, x) d p(x)-2 \operatorname{Trace}\left(K_{1, \sigma_{1}^{2}}^{-1} \int k_{0}(X, x) k_{1}(x, X) d p(x)\right)+ \\
& \operatorname{Trace}\left(K_{1, \sigma_{1}^{2}}^{-1} K_{0, \sigma_{0}^{2}} K_{1, \sigma_{1}^{2}}^{-1} \int k_{1}(X, x) k_{0}(x, X) d p(x)\right)
\end{aligned}
$$

Generalization Error for GP

- Suppose $f \sim G P\left(0, k_{0}\right)$ and y has noise level σ_{0}. We estimate f using GP regression with kernel k_{1} and noise σ_{1}.
- Generalization error (averaging over new data x and the prior f) is

$$
\begin{aligned}
E^{g e n}(X)= & \int k_{0}(x, x) d p(x)-2 \operatorname{Trace}\left(K_{1, \sigma_{1}^{2}}^{-1} \int k_{0}(X, x) k_{1}(x, X) d p(x)\right)+ \\
& \operatorname{Trace}\left(K_{1, \sigma_{1}^{2}}^{-1} K_{0, \sigma_{0}^{2}} K_{1, \sigma_{1}^{2}}^{-1} \int k_{1}(X, x) k_{0}(x, X) d p(x)\right)
\end{aligned}
$$

- In the well-specified case

$$
E^{g e n}(X)=\int k_{0}(x, x) d p(x)-\operatorname{Trace}\left(K_{0, \sigma_{0}^{2}}^{-1} \int k_{0}(X, x) k_{0}(x, X) d p(x)\right)
$$

Generalization Error for GP

- Mercer's Theorem: $k\left(x, x^{\prime}\right)=\sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)$. This gives

$$
E^{g e n}(X)=\operatorname{Trace}\left(\left(\Lambda+\sigma^{-2} \Phi \Phi^{T}\right)^{-1}\right)
$$

here ϕ_{i} are L^{2} orthonormal, i.e. $\int \phi_{i}(x) \phi_{j}(x) d p(x)=\delta_{i j}$ for all i, j.

Generalization Error for GP

- Mercer's Theorem: $k\left(x, x^{\prime}\right)=\sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)$. This gives

$$
E^{g e n}(X)=\operatorname{Trace}\left(\left(\Lambda+\sigma^{-2} \Phi \Phi^{T}\right)^{-1}\right)
$$

here ϕ_{i} are L^{2} orthonormal, i.e. $\int \phi_{i}(x) \phi_{j}(x) d p(x)=\delta_{i j}$ for all i, j.

- Using $\mathbb{E}\left[\Phi \Phi^{T}\right]=n l$ we get the simple approximation

$$
E^{g e n} \approx \operatorname{Trace}\left(\left(\Lambda+\sigma^{-2} n I\right)^{-1}\right)=\sum_{i} \frac{\lambda_{i} \sigma^{2}}{\sigma^{2}+n \lambda_{i}}
$$

Generalization Error for GP

- Mercer's Theorem: $k\left(x, x^{\prime}\right)=\sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)$. This gives

$$
E^{g e n}(X)=\operatorname{Trace}\left(\left(\Lambda+\sigma^{-2} \Phi \Phi^{T}\right)^{-1}\right)
$$

here ϕ_{i} are L^{2} orthonormal, i.e. $\int \phi_{i}(x) \phi_{j}(x) d p(x)=\delta_{i j}$ for all i, j.

- Using $\mathbb{E}\left[\Phi \Phi^{T}\right]=n l$ we get the simple approximation

$$
E^{g e n} \approx \operatorname{Trace}\left(\left(\Lambda+\sigma^{-2} n I\right)^{-1}\right)=\sum_{i} \frac{\lambda_{i} \sigma^{2}}{\sigma^{2}+n \lambda_{i}}
$$

- This is a lower bound on $E^{g e n}$.

Sollich's 1st Approximation

- Let's see how new data affects $G(n):=\left(\Lambda+\sigma^{-2} \Phi \Phi^{T}\right)^{-1}$. We have

$$
G(n+1):=\left(\Lambda+\sigma^{-2} \Phi \Phi^{T}+\sigma^{-2} \phi \phi^{T}\right)^{-1}=\left(G^{-1}(n)+\sigma^{-2} \phi \phi^{T}\right)^{-1}
$$

Woodbury's formula for rank 1 updates of matrix inverses gives...

$$
G(n+1)-G(n)=-\frac{G(n) \phi \phi^{T} G(n)}{\sigma^{2}+\phi^{T} G(n) \phi}
$$

Sollich's 1st Approximation

- Let's see how new data affects $G(n):=\left(\Lambda+\sigma^{-2} \Phi \Phi^{T}\right)^{-1}$. We have

$$
G(n+1):=\left(\Lambda+\sigma^{-2} \Phi \Phi^{T}+\sigma^{-2} \phi \phi^{T}\right)^{-1}=\left(G^{-1}(n)+\sigma^{-2} \phi \phi^{T}\right)^{-1}
$$

Woodbury's formula for rank 1 updates of matrix inverses gives...

$$
G(n+1)-G(n)=-\frac{G(n) \phi \phi^{T} G(n)}{\sigma^{2}+\phi^{T} G(n) \phi}
$$

- We now average over the new point ϕ (note $\mathbb{E}\left[\phi \phi^{T}\right]=I$) and treat n as continuous. We then average this informally over X by (i) taking expectations over numerator and denominator separately and (ii) assuming $\mathbb{E}\left[G(n)^{2}\right]=\mathbb{E}[G(n)]^{2}=: \bar{G}(n)^{2}$

Sollich's 1st Approximation

- We get a differential equation

$$
\bar{G}^{\prime}=-\frac{\bar{G}^{2}}{\sigma^{2}+\operatorname{Trace}(\bar{G})}
$$

that can be solved (see paper).

Sollich's 1st Approximation

- We get a differential equation

$$
\bar{G}^{\prime}=-\frac{\bar{G}^{2}}{\sigma^{2}+\operatorname{Trace}(\bar{G})}
$$

that can be solved (see paper).

- Finally, with n^{\prime} satisfying $n^{\prime}+\log \operatorname{Trace}\left(I+n^{\prime} \sigma^{-2} \Lambda\right)=n$, we have

$$
E^{g e n} \approx \sum_{i} \frac{\lambda_{i} \sigma^{2}}{\sigma^{2}+n^{\prime} \lambda_{i}}
$$

Sollich's 1st Approximation

- We get a differential equation

$$
\bar{G}^{\prime}=-\frac{\bar{G}^{2}}{\sigma^{2}+\operatorname{Trace}(\bar{G})}
$$

that can be solved (see paper).

- Finally, with n^{\prime} satisfying $n^{\prime}+\log \operatorname{Trace}\left(I+n^{\prime} \sigma^{-2} \Lambda\right)=n$, we have

$$
E^{g e n} \approx \sum_{i} \frac{\lambda_{i} \sigma^{2}}{\sigma^{2}+n^{\prime} \lambda_{i}}
$$

- Note that $n^{\prime}<n$, so this is indeed a larger bound than the naive approximation from before.

