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Introduction to GP

® Bayesian Linear Regression: Model y|X,w ~ N(Xw, c2l,) and prior w ~ N(0,X,).
Here X € RP*" is the data matrix.
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® Posterior becomes
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where A = o, 2XXT + Z;l € RPXP,

® Predictive distribution at new x...

p(f(x)|x, X,y) =N (a;QXTA_le, XTA_lx)
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Introduction to GP

Bayesian Linear Regression: Model y|X,w ~ N (Xw, o21,) and prior w ~ N (0, Z,).
Here X € RP*" is the data matrix.

Posterior becomes
p(wly, X) o p(y|X, w)p(w) =N (0,2A ' Xy, A1)

where A = o, 2XXT + Z;l € RPXP,

Predictive distribution at new x...

p(f(x)|x, X,y) =N (a;QXTA_le, XTA_lx)

Can directly be kernelized with ¢ replacing X.
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Introduction to GP

® A bit more mathematically sound: We define f ~ GP(pu, k) as a Gaussian process on
R? if for all datasets X = {xi,...,x,}, we get

F(X) ~ N (u(xi), k(xi, %))
This specifies the distribution completely.
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Introduction to GP

® A bit more mathematically sound: We define f ~ GP(pu, k) as a Gaussian process on
R? if for all datasets X = {xi,...,x,}, we get

F(X) ~ N(u(x), k(xi, %))

This specifies the distribution completely.

® The GP regression model is y = f(x) + € with noise € at level o2 and for
f ~ GP(u, k).

® Given data X with observations y, and a new x, we have

FOOIX, y,x ~ N (F(x), 2(f(x)))
where
F(x) = k(x. X) (K +021,) 'y
02(x) = k(x,x) — k(x, X) (K + 021,) " k(X, x)
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Introduction to GP

® A bit more mathematically sound: We define f ~ GP(pu, k) as a Gaussian process on
R? if for all datasets X = {xi,...,x,}, we get

F(X) ~ N(u(x), k(xi, %))

This specifies the distribution completely.
® The GP regression model is y = f(x) + € with noise € at level o2 and for

f ~ GP(u, k).
® Given data X with observations y, and a new x, we have
f(x)|X,y,x ~N (F(X),O’Z(f(x)))
where
F(x) = k(x. X) (K +021,) 'y
o2(x) = k(x, x) — k(x, X) (K + 021,) " k(X, x)

® |t's kernel regression with uncertainty estimation.

9/20



Generalization Error for GP

® Suppose f ~ GP(0, kp) and y has noise level og. We estimate f using GP regression
with kernel k1 and noise o7.
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Generalization Error for GP

® Suppose f ~ GP(0, kp) and y has noise level og. We estimate f using GP regression
with kernel k1 and noise o7.

® Generalization error (averaging over new data x and the prior f) is
E&"(X) :/ko(x,x)dp(x) — 2Trace <K112 / ko(X,X)kl(X,X)dp(X)) +
501

Trace <K1_;5 Ko,02 Kl_;% / k1(X,X)k0(X,X)dp(X)>
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Generalization Error for GP

® Suppose f ~ GP(0, kp) and y has noise level og. We estimate f using GP regression
with kernel k1 and noise o7.

® Generalization error (averaging over new data x and the prior f) is
E&"(X) :/ko(x,x)dp(x) — 2Trace <K112 / ko(X,X)kl(X,X)dp(X)) +
501

Trace <K1_;5 Ko,02 Kl_;% / k1(X,X)k0(X,X)dp(X)>

® |n the well-specified case

E&"(X) = /ko(x7x)dp(x) — Trace <K0_;g/ko(X,x)ko(x,X)dp(X)>
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Generalization Error for GP

® Mercer's Theorem: k(x,x") = >"; X\i¢i(x)¢i(x). This gives
-1
E€N(X) = Trace <(/\ n 0_2¢¢T> )

here ¢; are L2 orthonormal, i.e. [ ¢;(x)d;(x)dp(x) = d;; for all i, .
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Generalization Error for GP

® Mercer's Theorem: k(x,x") = >"; X\i¢i(x)¢i(x). This gives
-1
E€N(X) = Trace <(/\ n 0_2¢¢T> )

here ¢; are L2 orthonormal, i.e. [ ¢;(x)d;(x)dp(x) = d;; for all i, .
e Using E[®® 7] = nl we get the simple approximation

o2
02 + n)\,-

E&" ~ Trace ((/\ + a_2nl)71> — Z

1
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Generalization Error for GP

® Mercer's Theorem: k(x,x") = >"; X\i¢i(x)¢i(x). This gives
-1
E€N(X) = Trace <(/\ n 0_2¢¢T> )

here ¢; are L2 orthonormal, i.e. [ ¢;(x)d;(x)dp(x) = d;; for all i, .
e Using E[®® 7] = nl we get the simple approximation

o2

gen -2 *1> —
E#" ~ Trace ((A+ o 2nl) > i

1

® This is a lower bound on E&°".
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Sollich’s 1st Approximation

® Let's see how new data affects G(n) := (A + J_2¢<DT)_1. We have

-1 -1
G(n+1):= (/\+a*2¢¢T +a*2¢>¢>T) - (G*l(n) +a*2¢¢T)
Woodbury's formula for rank 1 updates of matrix inverses gives...

G(n)¢g" G(n)

G(n+1)—G(n) = T2 TG0
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Sollich’s 1st Approximation

® Let's see how new data affects G(n) := (A + cr‘zCDCDT)_l. We have

-1 -1
G(n+1):= (/\+a*2¢¢7+0*2¢¢7) - (G*l(n)+a*2¢¢T)
Woodbury's formula for rank 1 updates of matrix inverses gives...

G(n)¢g" G(n)

G(n+1)—G(n)= —m

® We now average over the new point ¢ (note E[¢p$ '] = /) and treat n as continuous.
We then average this informally over X by (i) taking expectations over numerator
and denominator separately and (ii) assuming E[G(n)?] = E[G(n)]? =: G(n)?
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Sollich’s 1st Approximation

® \We get a differential equation

& G2

" 02 + Trace(G)

that can be solved (see paper).
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& G2
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that can be solved (see paper).

e Finally, with n’ satisfying n’ + log Trace(/ + n'o=2A) = n, we have

o2
Egen ~ Z 702 n n/)\i

i
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Sollich’s 1st Approximation

® \We get a differential equation

& G2

" 02 + Trace(G)

that can be solved (see paper).

e Finally, with n’ satisfying n’ + log Trace(/ + n'o=2A) = n, we have

o2
Egen ~ Z 702 n n/)\i

i

e Note that n’ < n, so this is indeed a larger bound than the naive approximation from
before.
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