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Introduction to GP

• Bayesian Linear Regression: Model y |X ,w ∼ N (Xw , σ2
nIn) and prior w ∼ N (0,Σp).

Here X ∈ Rp×n is the data matrix.

• Posterior becomes

p(w |y ,X ) ∝ p(y |X ,w)p(w) = N
(
σ−2
n A−1Xy ,A−1

)
where A = σ−2

n XXT +Σ−1
p ∈ Rp×p.

• Predictive distribution at new x ...

p(f (x)|x ,X , y) = N
(
σ−2
n xTA−1Xy , xTA−1x

)
• Can directly be kernelized with Φ replacing X .
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Introduction to GP
• A bit more mathematically sound: We define f ∼ GP(µ, k) as a Gaussian process on

Rd if for all datasets X = {x1, . . . , xn}, we get

f (X ) ∼ N (µ(xi ), k(xi , xj))

This specifies the distribution completely.

• The GP regression model is y = f (x) + ϵ with noise ϵ at level σ2
n and for

f ∼ GP(µ, k).
• Given data X with observations y , and a new x , we have

f (x)|X , y , x ∼ N
(
f̄ (x), σ2(f (x))

)
where

f̄ (x) = k(x ,X )
(
K + σ2

nIn
)−1

y

σ2(x) = k(x , x)− k(x ,X )
(
K + σ2

nIn
)−1

k(X , x)

• It’s kernel regression with uncertainty estimation.
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Generalization Error for GP

• Suppose f ∼ GP(0, k0) and y has noise level σ0. We estimate f using GP regression
with kernel k1 and noise σ1.

• Generalization error (averaging over new data x and the prior f ) is

E gen(X ) =

∫
k0(x , x)dp(x)− 2Trace

(
K−1
1,σ2

1

∫
k0(X , x)k1(x ,X )dp(x)

)
+

Trace

(
K−1
1,σ2

1
K0,σ2

0
K−1
1,σ2

1

∫
k1(X , x)k0(x ,X )dp(x)

)
• In the well-specified case

E gen(X ) =

∫
k0(x , x)dp(x)− Trace

(
K−1
0,σ2

0

∫
k0(X , x)k0(x ,X )dp(x)

)
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Generalization Error for GP

• Mercer’s Theorem: k(x , x ′) =
∑

i λiϕi (x)ϕi (x
′). This gives

E gen(X ) = Trace

((
Λ + σ−2ΦΦT

)−1
)

here ϕi are L2 orthonormal, i.e.
∫
ϕi (x)ϕj(x)dp(x) = δij for all i , j .

• Using E[ΦΦT ] = nI we get the simple approximation

E gen ≈ Trace
((

Λ + σ−2nI
)−1

)
=

∑
i

λiσ
2

σ2 + nλi

• This is a lower bound on E gen.
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Sollich’s 1st Approximation

• Let’s see how new data affects G (n) :=
(
Λ + σ−2ΦΦT

)−1
. We have

G (n + 1) :=
(
Λ + σ−2ΦΦT + σ−2ϕϕT

)−1
=

(
G−1(n) + σ−2ϕϕT

)−1

Woodbury’s formula for rank 1 updates of matrix inverses gives...

G (n + 1)− G (n) = −G (n)ϕϕTG (n)

σ2 + ϕTG (n)ϕ

• We now average over the new point ϕ (note E[ϕϕT ] = I ) and treat n as continuous.
We then average this informally over X by (i) taking expectations over numerator
and denominator separately and (ii) assuming E[G (n)2] = E[G (n)]2 =: Ḡ (n)2
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Sollich’s 1st Approximation

• We get a differential equation

Ḡ ′ = − Ḡ 2

σ2 + Trace(Ḡ )

that can be solved (see paper).

• Finally, with n′ satisfying n′ + logTrace(I + n′σ−2Λ) = n, we have

E gen ≈
∑
i

λiσ
2

σ2 + n′λi

• Note that n′ < n, so this is indeed a larger bound than the naive approximation from
before.
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Ḡ ′ = − Ḡ 2
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Ḡ ′ = − Ḡ 2
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