Seminar: Theoretical Advances in Deep Learning

Debarghya Ghoshdastidar, Satyaki Mukherjee, Maximillian Fleissner, Mahalakshmi Sabanayagam

TU Munich, Department of Informatics Winter Semester 2023

Course information

- Master seminar (IN2107, IN4409)
 - 5 ECTS, 2 SWS

- 32

イロト イヨト イヨト イヨト

Course information

- Master seminar (IN2107, IN4409)
 - 5 ECTS, 2 SWS
- Organisers:
 - Mahalakshmi Sabanayagam sabanaya@cit.tum.de (main coordinator of course)
 - Maximilian Fleissner fleissnm@cit.tum.de
 - Satyaki Mukherjee satyaki.mukherjee@cit.tum.de
 - Prof. Debarghya Ghoshdastidar ghoshdas@cit.tum.de

• New algorithms with some experiments showing their properties

3

イロト イヨト イヨト イヨト

- New algorithms with some experiments showing their properties
 - Provides some understanding (less common in ML than DL)

э

・ロト ・回 ト ・ヨト ・ヨト

- New algorithms with some experiments showing their properties
 - Provides some understanding (less common in ML than DL)
- Empirical analysis of algorithmic properties

・ロト ・回 ト ・ヨト ・ヨト

- New algorithms with some experiments showing their properties
 - Provides some understanding (less common in ML than DL)
- Empirical analysis of algorithmic properties
 - Important when algorithms are hard to analyse theoretically
 - Common in deep learning, non-convex optimisation

- New algorithms with some experiments showing their properties
 - Provides some understanding (less common in ML than DL)
- Empirical analysis of algorithmic properties
 - Important when algorithms are hard to analyse theoretically
 - Common in deep learning, non-convex optimisation
- Dedicated theory papers
 - Mathematically explain why DL / ML methods work (rare in DL)

- New algorithms with some experiments showing their properties
 - Provides some understanding (less common in ML than DL)
- Empirical analysis of algorithmic properties
 - Important when algorithms are hard to analyse theoretically
 - Common in deep learning, non-convex optimisation
- Dedicated theory papers

 $\longleftarrow \text{Focus of this seminar}$

(日) (四) (王) (王) (王)

• Mathematically explain why DL / ML methods work (rare in DL)

Why do we need mathematical analysis of DL?

• Deep learning contradicts conventional wisdom

Complex models generalise well

イロト イボト イヨト イヨト

Why do we need mathematical analysis of DL?

• Deep learning contradicts conventional wisdom

Complex models generalise well

• Neural networks not robust

Can be fooled to make error

Why do we need mathematical analysis of DL?

• Deep learning contradicts conventional wisdom

Complex models generalise well

• Neural networks not robust

Can be fooled to make error

• The output of deep networks lack explainability

イロト イボト イヨト イヨト

• Theory in deep learning emerging

э

・ロト ・回 ト ・ヨト ・ヨト

- Theory in deep learning emerging
 - What do we know so far?

э

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical foundations of learning (complements lecture IN2378)

A D A A B A A B A A B

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical foundations of learning (complements lecture IN2378)
- Familiarise with mathematical proof techniques
 - Considerable focus on math in this seminar

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical foundations of learning (complements lecture IN2378)
- Familiarise with mathematical proof techniques
 - Considerable focus on math in this seminar
- Familiarise with publication and review process in ML

イロト イボト イヨト イヨト

Focus of this seminar Possible Topics

э

イロト イヨト イヨト イヨ

Adversarial ML / Robustness

- Performance of NNs significantly affected if data is slightly perturbed.
- Why? How can we build robust ML models / guarantee robustness?

イロト イポト イヨト イヨ

Generalisation in neural networks

- Classical learning theory cannot explain generalisation in deep networks.
- Data-dependent generalisation error bounds more meaningful and practical.

イロト イヨト イヨト イヨ

Double-descent in bias-variance curve

- Over-parameterised NNs deviate from bias-variance trade-off NNs may perform best in zero training loss / interpolating regime.
- Currently, this behaviour has been analytically derived in simpler settings.

イロト 不得下 イヨト イヨ

Over-parameterised NN (infinite width)

Analyse Over-parametrised NNs asymptotically as width goes to infinity

- Under small learning rate, (S)GD training \equiv Neural Tangent Kernel (NTK), a dot product kernel in gradient space of the NN parameters
- Finite width networks can deviate from the kernel regime.

イロト イボト イヨト イヨト

Unsupervised Deep learning

Most of the current theoretical results in deep learning are in the supervised setting. What guarantees can we give in an unsupervised (e.g. clustering) setting.

- Autoencoder
- Representation learning

Interpretability of DNN

Explain/interpret the prediction of the data using global or local schemes.

- LIME (Locally Interpretable Model-Agnostic Explanations) provides explanations for a datapoint by sampling data around it.
- SHAP (SHapley Additive exPlanations) can provide explanations on the model level by measuring the importance of every data feature.

Domain adaptation / Transfer learning

- What happens if the distribution at test time is not the same as during training?
- Can we still give generalization error bounds?

For a more in-depth look...

join the recent advances in ML / DL lecture as part of the statistical foundations of deep learning course

on 21.07.2023 (Friday) 16:00 - 18:00 (seminar room 00.13.009A)

Administration

э.

・ロト ・四ト ・ヨト ・ヨト

• We will use Moodle for coordination

æ

イロト イヨト イヨト イヨト

- We will use Moodle for coordination
- Desired number of participants = 15

э.

A D F A D F A D F A D F

- We will use Moodle for coordination
- Desired number of participants = 15
- Pre-requisites: Machine Learning (IN2064), Deep learning (IN2346)

э

- We will use Moodle for coordination
- Desired number of participants = 15
- Pre-requisites: Machine Learning (IN2064), Deep learning (IN2346)
- Must be comfortable with mathematical techniques / proving results
 - Taking Statistical foundations of learning (IN2378) would help

イロト イボト イヨト イヨト

• Everyone assigned one paper

3

イロト イヨト イヨト イヨト

- Everyone assigned one paper
- Submit a report. Details will be provided in the introduction lecture.
 - summary of paper, explaining main results and their implications
 - review (we will discuss how to write reviews)
 - summary of proofs (main techniques, key lemmas and ideas)

- Everyone assigned one paper
- Submit a report. Details will be provided in the introduction lecture.
 - summary of paper, explaining main results and their implications
 - review (we will discuss how to write reviews)
 - summary of proofs (main techniques, key lemmas and ideas)
- Present paper and your report
 - Block seminar; everyone needs to attend all talks

- Everyone assigned one paper
- Submit a report. Details will be provided in the introduction lecture.
 - summary of paper, explaining main results and their implications
 - review (we will discuss how to write reviews)
 - summary of proofs (main techniques, key lemmas and ideas)
- Present paper and your report
 - Block seminar; everyone needs to attend all talks
- Grading: Report (40%) + Presentation (60%)

• Bonus for asking interesting questions to other speakers Theory - Deep Learning TUM Informatik (Winter 2023) ・ロト ・同ト ・ヨト ・ヨト

Report + Presentation of papers

- Mostly publications from recent ML conferences (ICML, ICLR, Neurips, COLT)
 - Conference papers are short (8 page, no proofs)
- Report has to follow longer version on arXiv (link will be provided)
 - Considerable focus on understanding mathematical results

	Data-dependent Sample Complexity of Deep Neural Networks v Lipschitz Augmentation Colin Wei [*] and Tengyu Ma [†] May 31, 2019 (36 pages)	
(12 pages) Colin Wei Tengyu Ma Computer Science Department Stanford University Stanford University colinvei@stanford.edu tengyusa@stanford.edu this exponen are consistent tengyusa@stanford.edu	Abstract Reference complexity bunds for neural networks rely only on depend exponentially on depth via a peodect of the matrix neuro- ial dependence on depth is unaveidable when no additional pro- to We support that this commutum conset from the fact that the only through the marries. In practice, mars data-descendent test is a superscript of the superscript of the superscript of the superscript of the superscript of the superscript of the superscript of the superscript of the superscript of the superscript of the superscript of the superscript of the superscript of the supers	sorm control of the weight as. Lower bounds show that pertise of the training data heres bounds depend on the finitumes such at Batchnorm

Timeline (tentative)

- First week of August: Get full paper list
- Last week of August: Provide preference for papers
- First week of lecture: First meeting (assignments, reports and organisation)
- November 01: Deadline for de-registration
- Mid January : Submit report and first version of slides (both as PDF)
- Mid February: Final presentation (block seminar, date to be finalised)
- Office hours: weekly 2h

Most important thing to do now...

Fill out the form to help us match you in the system https://forms.gle/s7neSKFVL9iEToyG6

Slide deck and the form will be uploaded to the webpage