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Linear Regression Setting

X € H (Hilbert space) and response y € R
Assumptions: (x,y) mean-zero, well-specified E[y|x]| = xT6*

= VAY22, where ¥ = VAV is the spectral decomposition of ¥ and z has components that
are independent o2 -subgaussian

Define:

Y :=E[xxT] = z Avvf
i

6" := argminE(y —xT0 )?
0

o :=E(y —xT0%)?



Minimum norm estimator

We consider overparameterized regime

DataX e H™,y e R"

Estimator 0
f = arg 1%111 {H9H2 X TX0 = XTy}
T
- (XTX) XTy
T T\ !
— X (XX ) y.
solves
min 16]]2
fcH

such that X0 — y|? :mBinHXB—yH2.



Excess Prediction Error

=(6-07) £(6-06

Y:=E[xxT] = Z Aviv]

i

A =1, > ... = A  denote the eigenvalues of Z in descending order



Prediction error has two components:

« @ is the distorted version of 8%,
because we have acess to the samples x4, ... x,, and not to the covariance of x

£~ £, where £ = x"X

* 0 is corrupted by the noise in y;, ... ¥,

Estimator: 6=XTX)TXxTy = XTX)TXT(X0* + ¢)
Excess Risk: R(é) — (é — 0*)T2 (é — 9*)

~(ODT(I-25*) (2 -5) (1-2*8) 0"+ o2 tr((XTX)* X)



Theorem 4. For any o, there are b,c,cy > 1 for which the following holds. Consider a linear
regression problem from Definition 1. Define

E*=min{k > 0:rp(X) > bn},

where the minimum of the empty set is defined as co. Suppose 6 < 1 with log(1/6) < n/e. If
k* > n/cy, then ER(0) > 02 /c. Otherwise,

zﬂmgc(wﬂﬂzhmm{Jm§3f%fkwbﬁy®})+fbguaqﬂﬁ:+R;63)

with probability at least 1 — &, and

Emmz%(%+Rﬁm>'

Moreover, there are universal constants ay,as,ng such that for all n > ng, for all X, for all
t >0, there is a 6% with ||0*| = t such that for x ~ N(0,%) and y|lx ~ N (x 76, (0|2, with
probability at least 1/4,

) i * (|2 TO(E) a
RO)> 0P 191 |t >



Definition: Effective Rank

A = A, = ... = A, denote the eigenvalues of 2 in descending order

2
Z'}k Ai (Z-':ﬂc )‘i)
re(3) = ==k Ri(X) = & .
k41 D sk AF
Examples
1. 2= Idxd :

10 (Taxa) = RoUgxq) =d

2.11 2/12=02 . /1d=01
10(2) =Rp(2) =1



3.rank(2) =d:

R

ro(2)=rank(2)s(X) Ry (X)=rank(X)s(X)
1$p 1sp 2
3P A GIP, )
_ b 1=1 — 1Y =1
s(2) = Ak+1 5(2) %Z?ﬂ 2;°

Both s and S lie between 1/d (1, = 0) and 1 (4; all equal)

E*=min{k > 0 :rp(2) = bn}

2
Zi>k Ai o (Zi>k /\i)
3 Rk‘(z) - 2
Ak+1 2 isk N

) SC(||9*|2|E|M { /_Toff)?mff)? /1_0g(;/5)}) T clog(1/5)0? (%+ ka’(z))

rr(X) =




Intultion

* The eigenvalues of 3 determines how errors in @ affect prediction
accuracy

* To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions

e Overparameterization is essential for benign overfitting
=» Number of small eigenvalues must be large compared to n
=» Small eigenvalues must be roughly equal



Proof: Upper Bound
Excess Prediction Error: R(é) = E[xT(H* — é)]z

6 =XT(Xx")1y
= XT(XXT)"1(X0* + ¢)

Using (1), the definition of ¥, and the fact that y = X0* + €,
. ~1 -1 \?2
R(0) = E, (mT (1 —xT (XXT) X) 0 — 2 X7 (XXT) s)

< 2K, (.q:T (I e (XXT)_I X) 9*)2 +2E, ( TXT (XXT)_l s)

—1
—20*T (I X7 XXT )E(I X7 XXT X) 0*

2

+ 2T (XXT) nxX T (XXT) ls

— 20" BO* + 2T Ce.



We showed that  R(0) = E, (:I:T (6’* - é))z < 20" BO* +2¢" Ce

,where
B

(I _xT (XXT)_1 X) 5 (I X7 (XXT) - X) ,

1

C (XXT)_1 Xox’ (XXT)_ .



Bias Term

Lemma 35. There is a constant c, that depends only on o, such that for any 1 < t < n, with
probability at least 1 — e ¢,

0" BO* < ¢

n n

ww%zumx{ ro(Z) ro(%) f}.
n

Proof:
0T BY — ¢+ 7 (I X7 (XXT)_l X) 5 (I X7 (XXT)_l X) o*

— 0T (1 'y (XXT)_l X) (2 - %XTX) (I ' (XXT)_1 X) 0*.

1
<= 2xmx| hor12



Variance Term Roadmap

RO) = (27 (07— 0)) <207 Bo* + 27 Ce

Lemma 19
1
< 20* " BO* + co? log 5 tr(C) with probability at least 1 — § over e.
Lemma 8 Lemma 11 Lemma 17
l AT A%, l o \2 l k* b
tr(O): izt —’Lzl EC i_i_n 21)3 ’::2 S _+ n
~ (14 Nz AZ;2)? n (Siap M) bn = Rp«(X)



Proof:

Lemma 8. Consider a covariance operator ¥ with \; = p;(X) and N, > 0. Write its spectral
decomposition ¥ =) i )\jvjva, where the orthonormal v; € H are the eigenvectors corresponding to

the Aj. For i with \; > 0, define z; = Xv;//Ai. Then

-2

b2 (C)= Z o) Z /\jzjij 2 | »
i J
and these z; € R™ are independent o2-subgaussian. Furthermore, for any i with \; > 0, we have

-2

Mal Az %
AaF E Xjzizg 2= R
J

(1+ iz AZjzi)?

where A_; = ., )\jzjij.

By Assumption 2 in Definition 1, the random variables z'v;/v/\; are independent o2-
subgaussian. We consider X in the basis of eigenvectors of ¥, Xv; = v/ \;2;, to see that

XXT=Y "Nazl. xDXT =3 Mz




tr (C) = tr ((XXT) T xuxT (XXT)_I)

() ]

7N 722" + A)727 =

I+ Z"A'2) 1 Z2TA2Z2(I+ 2" A7t 2)~!

—2
A2zl (Z )\jzjz;) zi = N2z, (/\izizg + A_g-)
J

-2
_ /\,?25,;'_}4_,.‘1 Z;
(1+ Nzl AZ}2)?

-2

Zq



—n/c
?

with probability at least 1 — Te

z
tr(C)<ec|—+n
(& (Sisk i)

S N )

Lemma 11. There are constants b,c > 1 such that if 0 < k < n/c, r.(X) > bn, and | < k then

Proof:

Lemma 8

l

A2, T A2, AT A2,
tI‘(O)Z 171 =1 < 171 i~ + /\2ZTA 22
; (1+ /\iz;rA:;zi)z ; (1+ Aiz;'_A }zl)2 ; v ‘
Lemma 10 Corollary 13
A2zl A2z - 2 A2 < 2% < cl ,
(T+ Xz AT 2)2 ~ (2] ATl2)2 = gz ~ " n

2

1

=1

2.T A—2 .
Nz, Az

(1+ Nz AZjz)? ~

l

< cq—

n

% is the span of the n — k eigenvectors of A_; corresponding to its smallest n — k eigenvalues



Lemma 10 shows that with probability at least 1 — 2;3_”/ “ forall i <k

pn(A—i) > Aep1rr(2) /1

{ 11(A) and p,(A) denote the largest and the smallest eigenvalues of the n x n matrix A.J

lower bounds on the p,(A_;)’s imply that, for all z € R™” and 1 <1 </,

212
TA2, < ctl| 2|l :
(Apr17e(2))

?

Lemma 10 also shows that for all 7, pur+1(A—;) < 1 App176(2)

Mg, 2]

_— T 4-1
2 AT 2> (Mgz) A Ilgz> ’
iR =2 ( Zi ) —i L = Cl)\k+1rk(2)

where . is the span of the n — k eigenvectors of A_; corresponding to its smallest n — k eigenvalues.
So for ¢ <1,

—2 —2

Azl ATP 2 - zl A7 oy 212 )
— — — =19~ _ na-

(L+Xiz] AZjzi)? — (2f Az)? ~ Mzl



Lemma 11. There are constants b,c > 1 such that if 0 < k < n/ec, r,(X) > bn, and | < k then
with probability at least 1 — Te ™ ™/¢,

l Zz>£ 7 )
tr(C) <c|—+n .
i (n (Zz>ﬁc )\i)

Lemma 10

Z)GZTA—QZ. < ct it Ml

= Mer17x(2))?

Lemma 12

Z)‘zz“zi||2 = nZAf +ao2max | A\ t, th)\él
i>l i>l -

<nZ)\2—l—aa max(tZ)\ \/_Z/\2>

> 1> 1>1

< Csnz A

1>

2
Z)\Q TA™ 22 < con sl i :
i>1 (Ak17:(2))




Lemma 17. For any b > 1 and k™ :== min{k : r(2) > bn}, if k¥ < oo, we have

( l + anz>E [ ) _ E+ bn21>k* ’\12 _ E“F bn
b e (2))2) 00 (N (8)) bn - By ()

min
[<E*

Proof:

We can write the function of [ being minimized as

BN YL, __ZE: b2
bn = ( Ay 17 ()

bn ()\k*-l-l?ﬂk*
k*
1 bn\?
> Z min {—j DA 5 }
i=1 bn (A= 417r+ (2))
b’n,/\?
S Meegami= ()

E*’
1 bn?
Yt T
i=1 n P> ( k* 41Tk (E))

+

where [* is the largest value of ¢+ < k* for which

1 bn/\?
— <

b = (N arae (£))°

)



where [* is the largest value of ¢« < k* for which

M=A= .= Ay

i - bn)\z2
bn = (Agei1mp ()

27

since the \? are non-increasing. This condition holds iff

A > Ak 4175+ (2)
b= bn '

The definition of £* implies ri+_1(X) < bn. So we can write

E* =min{k > 0:7(X) > bn}

Zi>k* Ai
Ak* 41
B Zfe}>k*—l Ai = Age

rEs(2) =

Al 41

M (Tex—1(3) — 1)

Ak 41
e

k*+1

< (bn — 1),

and so the minimizing [ is £*. Also,

Z@}>k* /\32 _ Zi>k‘* A%Q _ 1

Merr1ris(2) (Do M) B (D)

T (2)

Zi>k Ai

Ak+1




Proof:

Lower Bound

Excess Prediction Error: R(é) = E[xT(H* — é)]z

Also, since € has zero mean conditionally on X, and is independent of x, we have
(:ﬂ (1 -x" (xxT) X) 9*) + (:rTXT (xxT) e) ]
~1 -1
=07 (1 - X" (xx7) X) > (1 -x" (xx7) X) 0"
—1 ~1
tr ((XXT) xex" (xxT) B [ssT|X])

> 0*"BO* 4 o2 tr (C).

E.cR(0) =E,.




Variance Term Roadmap

Lemma 8 Lemma 14
l 2, TA”22 l . —2
O Z /\ A~ S Z i 1+ Zj>k )\3 + n)\k+1
(14 N\ zTA ) - T cn n\;

Lemma 16.2




Proof:

Lemma 14. There is a constant ¢ such that for any i > 1 with \; > 0, and any 0 < k < n/c, with
probability at least 1 — 5e /¢,

-2

>

)\?Z,;—A:?Zi L (1 N Zpk Aj + nAk_i_l)
(1+ Nz AZ}z)2 — cn

J#

Fix ¢ > 1 with \; > 0 and 0 < k£ < n/c. By Lemma 10, with probability at least 1 — 26_”/61,

pr1(A—;) < Z Aj+ Agn |,

>k
and hence

|y, i

c1 (Zj>k: Aj+ /\k+1ﬂ) ‘

T 4—1
2 A"z >

% is the span of the n — k eigenvectors of A_; corresponding to its smallest n — k eigenvalues




By Corollary 13, with probability at least 1 — 3e™ ¢,
Ly, 2i]|> > n — acZ(k +t + Vitn) > n/ca,

provided that t < n/cy and ¢ > ¢y for some sufficiently large c¢y. Thus, with probability at least
1 — 5e /e,
n

c3 (Zj>k Aj + )\k+1n)

3

5 Ajzi >

hence

c3 (Zj>k Aj+ )\k+1n)

i

14 Nz AT}z <

Dividing )\275; Azgz?; by the square of both sides, we have

1
-2
A2zl ATz €3 (Zj>k Aj+ )‘k+l’”) 1 2y A}z

> .
(14 Nz AZjzi)? At (7 AZjzi)?

Also, from the Cauchy-Schwarz inequality and Corollary 13 again, we have that on the same event,
zzTA:;“-)zi Z;_A:?Zi
—1 = a—1 12
(2 AZjzi)? ~ || A2z 1212
1 - 1 - 1
|2il[> = n+4ao2(t +/nt) ~ can




Proof:

Lemma 16. There are constants ¢ such that for any 0 < k < n/c and any b > 1 with probability at
least 1 — 10e /¢,
1. If re(¥2) < bn, then tr(C) > %.
2. If r(X) > bn, then
tr(C) > — min (Z LA VSE ) |

cb? 1<k \n - (\p1rr(D))?

1 D jsk Aj + A4 -
> L J
tr(C) 2 cin Z (1 - nA; )

7

E—Zmin 1, il 23/\2%
CoN “~—
i (Ej>k )‘j) bt
>

1 m \?2 A2 pY:
. 13‘ 7 , 1 .
> ; mm{ (Tk(z)) )\%H /\%H }




1 bm \Z2 A2 A2
> . 1 1 1
tr(C) =2 cob?n ;mln{ ’ (?’k(Z)) A2 7 )\2 }

k+1 k+1

if ri.(A) > bn,

2,2
tr(O)lezmin{la bn)\'i 2}
e2b? 4 n’ (Akr1ru(E))

1 I b2nd> A\
—min(+ n 2zt ),

Ceb? 1<k \ n (/\k-i—l?“k(z))Q

where the equality follows from the fact that the A\;s are non-increasing.




Theorem 4. For any o, there are b,c,cy > 1 for which the following holds. Consider a linear
regression problem from Definition 1. Define

E*=min{k > 0:rp(X) > bn},

where the minimum of the empty set is defined as co. Suppose 6 < 1 with log(1/6) < n/e. If
k* > n/cy, then ER(0) > 02 /c. Otherwise,

zﬂmgc(wﬂﬂzhmm{Jm§3f%fkwbﬁy®})+fbguaqﬂﬁ:+R;63)

with probability at least 1 — &, and

Emmz%(%+Rﬁm>'

Moreover, there are universal constants ay,as,ng such that for all n > ng, for all X, for all
t >0, there is a 6% with ||0*| = t such that for x ~ N(0,%) and y|lx ~ N (x 76, (0|2, with
probability at least 1/4,

) i * (|2 TO(E) a
RO)> 0P 191 |t >
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