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Discrete-time
Markov Decision Processes

MDP
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DTMC – purely probabilistic
Possible successor states are chosen
based on probabilities but not on
decisions.

We want decisions
to model both
I controllable setting (game theory,

operations theory, control theory);
I uncontrollable setting (interleaving

in concurrent systems, abstractions
of models, open systems)

How to introduce decisions, i.e., non-determinism, to
DTMC?
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MDP: Definition

Definition:
A (labelled) Markov Decision Process (MDP) is a tuple

M = (S ,Act,P, π0, L)

where
I S is a countable set of states,
I Act is a finite set of actions,
I P : S × Act × S → [0, 1] is the transition probability function,

such that for each state s and action α,
I

∑
s′∈S P(s, α, s

′) = 1, then we say that α is enabled in s; or
I P(s, α, s ′) = 0 for all s ′, then we say that α is not enabled in s .

I π0 is the initial distribution, and
I L : S → 2AP is the labeling function.

The set of actions enabled in s is denoted by Act(s). We assume that
for each s , we have Act(s) 6= ∅.
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MDP – Schedulers

Example:

t s u
{a} {b}
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Problem:
How is the non-determinism resolved?

Allowing memory and randomness:

Definition (Scheduler):
A scheduler (also called strategy or policy) on an MDP
M = (S ,Act,P, π0, L) is a function Θ assigning to each history
s0 · · · sn ∈ S+ a probability distribution over Act such that α is
enabled in sn whenever Θ(s0 · · · sn)(α) > 0.
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MDP – Schedulers

Definition (Induced DTMC):
LetM = (S ,Act,P, π0, L) be a MDP and scheduler Θ onM. The
induced DTMC is given by

MΘ = (S+,PΘ, π0, L
′),

where for any h = s0s1 . . . sn, we define

PΘ(h, hsn+1) =
∑
α∈Act

Θ(h)(α) · P(sn, α, sn+1)

and L′(h) = L(sn).
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MDP – Schedulers

Example:
We choose a scheduler Θ that always takes action β in state s and
action γ in state u. The induced DTMCMΘ for the previous example:
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Notation
I PΘ – the probability measure ofMΘ

I There is a bijection ξ mapping each
sequence of states s0s1s2 · · · to a
sequence of histories
s0 s0s1 s0s1s2 · · · (a path ofMΘ).

I When using previous notation for
sets of paths such as ♦B , we
actually mean ξ(♦B)
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MDP – Schedulers

Classes of schedulers:
I A scheduler Θ is memoryless if for histories s0s1 . . . sn ∈ S+ and

s ′0s
′
1 . . . sn ∈ S+ with sn = s ′n it holds

Θ(s0s1 . . . sn) = Θ(s ′0s
′
1 . . . s

′
n).

I A scheduler Θ is deterministic if for all histories s0s1 . . . sn ∈ S+

it holds Θ(s0s1 . . . sn)(α) = 1 for some action α.
A memoryless deterministic (MD) Θ can be viewed as a function
Θ : S → Act .

Example:
The scheduler of the previous example was memoryless and
deterministic since the decision what action to take was fixed.

Note:
A scheduler has finite memory if representable by a finite automaton.
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Analysis questions

For MC:
I Reachability: x = Ax + b (with (x(s))s∈S?

)
I Probabilistic logics: combination of the techniques
I Transient analysis: πn = π0Pn

I Steady-state analysis: πP = π, π~1 = 1 (ergodic)
I Rewards: reduction to steady-state analysis

For MDP:
I Quantities not defined per se, but depend on the scheduler
I We can naturally consider the best case and the worst case

among all schedulers
(recall that non-determinism can model controllable or uncontrollable choice)
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MDP – Reachability
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MDP - Reachability

Min
When playing “Mensch Ärgere dich nicht” against a fixed opponent
strategy, what is the minimal probability of having all pieces kicked
out into the outside area again?

Max
What is the maximal probability of winning the game?
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MDP - Reachability
Min
I Best case for reaching undesirable states when controlled
I Worst case for reaching desirable states when not controlled

The minimum probability to reach a set of states B from a state s
(within n steps) is

inf
Θ

PΘ
s (♦B), inf

Θ
PΘ
s (♦≤nB)

Max
I Best case for reaching desirable states when controlled
I Worst case for reaching undesirable states when not controlled

The maximum probability to reach a set of states B from a state s
(within n steps) is

sup
Θ

PΘ
s (♦B), sup

Θ
PΘ
s (♦≤nB)

Focus on maximum; minimum is similar
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MDP - Reachability

Recall for DTMC
Let (S ,P, π0) be a finite DTMC and B ⊆ S . The vector x with
x(s) = Ps(♦B) is the unique solution of the equation system

x(s) =


1 if s ∈ B,

0 if s ∈ S0 = {s | Ps(♦B) = 0},∑
u∈S

P(s, u) · x(u) otherwise.

Theorem (Maximum Reachability Probability):
Let (S ,Act,P, π0, L) be a finite MDP and B ⊆ S . The vector x with
x(s) = supΘ PΘ

s (♦B) is the least solution of the equation system

x(s) =


1 if s ∈ B,

0 if s ∈ Smax
0 = {s | supΘ PΘ

s (♦B) = 0},
max

α∈Act(s)

∑
u∈S

P(s, α, u) · x(u) otherwise.
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MDP - Reachability

Theorem (Optimal Memoryless Scheduler):
LetM be a finite MDP with state space S , and B ⊆ S . There exist
memoryless deterministic schedulers Θmin,Θmax such that for any
s ∈ S it holds

PΘmin

s (♦B) = inf
Θ

PΘ
s (♦B), PΘmax

s (♦B) = sup
Θ

PΘ
s (♦B)

Proof Sketch

I For Θmin it suffices to fix in each s an arbitrary action α that
minimizes

∑
u∈S P(s, α, u) · xu .

I Does not work for Θmax !
I For Θmax we fix in each s among the actions that maximize∑

u∈S P(s, α, u) · xu an arbitrary action α that minimizes the
number of steps needed to reach B with positive probability.

How can we compute the vectors of values?
I linear programming
I value iteration
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MDP - Reachability - Linear Programming

Linear Program:
Let (S ,Act,P, π0, L) be a finite MDP and B ⊆ S . The vector x with
x(s) = supΘ PΘ

s (♦B) is the unique solution of the linear program

minimize
∑
s∈S

x(s)

satisfying x(s) = 1 ∀s ∈ B,

x(s) = 0 ∀s ∈ Smax
0 ,

x(s) ≥
∑
u∈S

P(s, α, u) · x(u) ∀s ∈ S \ (B ∪ Smax
0 ),∀α ∈ Act.
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MDP - Reachability - Value Iteration

Value Iteration Algorithm:
LetM be a finite MDP with state space S , and B ⊆ S .
I Initialize x0(s) to 1 if s ∈ B and to 0, otherwise.
I Iterate

xn+1(s) =


1 if s ∈ B,

0 if s ∈ Smax
0 ,

max
α∈Act(s)

∑
u∈S

P(s, α, u) · xn(u) otherwise

until convergence, i.e., until maxs∈S |xn+1(s)− xn(s)| < ε
for a small ε > 0

Theorem
I xn(s) = sup

Θ
PΘ
s (♦≤nB).

I lim
n→∞

xn(s) = sup
Θ

PΘ
s (♦B).
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MDP - Step-Bounded Reachability

Is a memoryless deterministic scheduler enough for
optimizing ♦≤nB?

No! For step-bounded reachability we might need finite memory.
(Intuition: Depending on the current step, different paths of different
length might be optimal).
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MDP - Reachability - Computing Smax
0

We rather compute the set

Smax
>0 = {s | sup

Θ
PΘ
s (♦B) > 0}

and return
Smax

0 = S \ Smax
>0

Smax
>0 :

Initialize the set to B and in every iteration add states that reach
the set in one step with positive probability for some enabled action.
Repeat until fix-point is reached.

(Similarly for Smin
>0 : replace “some” by ”every”)
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Analysis questions

I Reachability: LP or VI
I Probabilistic logics: combination of the techniques (in particular

reachability and bounded reachability)
I Transient analysis
I Steady-state analysis
I Rewards
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MDP – PCTL & LTL
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Recall: MDP non-determinism

We consider two different sources of
non-determinism:
Controllable If we can control the choice of actions:

Is there possibly a scheduler
guaranteeing the specified desirable
behavior?

Uncontrollable If we cannot control the choice of
actions:
Do all schedulers necessarily
guarantee the specified desirable
behavior?

Note: If we have undesirable behaviour specified, we can apply
negation to obtain the desirable behaviour.
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MDP + Logics

pLTL
Example: the probability that eventually red player is kicked out and
then immediately kicks out blue player is possibly / necessarily ≥ 0.8

∃Θ / ∀Θ : PΘ(F (rkicked ∧ X bkicked)) ≥ 0.8

PCTL
Example: with prob. necessarily ≥ 0.5 the probability to return to
initial state is always necessarily ≥ 0.1: P≥0.5 G P≥0.1 F init
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PCTL Semantics

Recall: DTMC
For a state s :
I s |= true (always),
I s |= a iff a ∈ L(s),
I s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2,
I s |= ¬φ iff s 6|= φ,
I s |= PJ(ψ) iff Ps(Paths(ψ)) ∈ J

MDP
Stays the same except for PJ defined in one of the following ways:
I Possibility (controllable): s |= PJ(ψ) iff ∃Θ : PΘ

s (Paths(ψ)) ∈ J ;
I Necessity (uncontrollable): s |= PJ(ψ) iff ∀Θ : PΘ

s (Paths(ψ)) ∈ J .

Note
PCTL path formulae semantics stays the same.
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PCTL Verification (1) – Algorithm

Algorithm
Input: MDPM, state s , PCTL state formula Φ

Output: TRUE iff s |= Φ.

The algorithm is conceptually the same as for DTMC:
Again, consider the bottom-up traversal of the parse tree of Φ:
I The leaves are a ∈ AP or true and
I the inner nodes are:

I unary – labelled with the operator ¬ or PJ(X );
I binary – labelled with an operator ∧, PJ( U ), or PJ( U ≤n).

Example: ¬a ∧ P≤0.2(¬b U P≥0.9(♦ c))

∧

a
P!0.2(   U   )

¬

b

P"0.9(  U   )

true c

¬

Compute Sat(Ψ) = {s ∈ S | s |= Ψ} for each node Ψ of the tree in a
bottom-up fashion. Then s |= Φ iff s ∈ Sat(Φ).
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PCTL Verification (2) – Algorithm

As before:
I Sat(true) = S ,
I Sat(a) = {s | a ∈ L(s)}
I Sat(Φ1 ∧ Φ2) = Sat(Φ1) ∩ Sat(Φ2)

I Sat(¬Φ) = S \ Sat(Φ)

Path operator for “possibly”
We need to restrict to path operators of the form P./ p with p ∈ [0, 1]
and ./ ∈ {≤, <,>,≥}. We have
I for ./ ∈ {≤, <}:

Sat(P./p(Ψ)) = {s ∈ S | minΘ PΘ
s (Paths(Ψ)) ./ p}

I for ./ ∈ {≥, >}:
Sat(P./p(Ψ)) = {s ∈ S | maxΘ PΘ

s (Paths(Ψ)) ./ p}

“Necessarily”
can be done similarly by swapping max and min.
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PCTL Verification – Algorithm (3)
Similar as before:
I Next:

max
Θ

PΘ
s

(
Paths(X Φ)

)
=

max
α∈Act(s)

∑
s′∈Sat(Φ)

P(s, s ′)

I Bounded Until:

max
Θ

PΘ
s

(
Paths(Φ1 U ≤n Φ2)

)
=

max
Θ

PΘ
s

(
Sat(Φ1) U ≤n Sat(Φ2)

)

I Unbounded Until:

max
Θ

Ps

(
Paths(Φ1 U Φ2)

)
=

max
Θ

Ps

(
Sat(Φ1) U Sat(Φ2)

)
I similarly for min

Θ

As before:
can be reduced to step-bounded/unbounded max/min reachability.
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LTL Verification
Input: MDPM, state s , LTL formula Ψ, threshold p ∈ [0, 1]

Output: TRUE iff ∃Θ : PΘ
s (Paths(Ψ)) ≥ p.

Reducing subcases
We can reduce ≤ to ≥ by:
∃Θ : PΘ

s (Paths(Ψ)) ≤ p ⇐⇒

∃Θ : PΘ
s (Paths(¬Ψ)) ≥ 1− p

and necessarily to possibly (∀ → ∃) by:
∀Θ : PΘ

s (Paths(Ψ)) > p ⇐⇒

¬∃Θ : PΘ
s (Paths(Ψ)) ≤ p

.
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End Components

I An end component is a subset of states S ′ and actions A′ such
that
I

∑
s′∈S′ P(s, α, s

′) = 1 for each s ∈ S ′ and α ∈ A′(s ′) and
I it is strongly connected (when considering edges of all actions).

I With probability 1, infinitely often visited states on a run form
an end component.

I It is accepting if for some Rabin pair (Ei ,Fi ) it contains no state
of Ei and some state of Fi .

I But: there are exponentially many end components.

The solution: Maximal end components
I Maximal exist as union of two non-disjoint end components is an

end component.
I Thus, we can deal with partition, instead.
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MDP: Maximal End Components – Algorithm

A partition-refinement algorithm
Start with partition {S}. In each iteration for each partition class T .

1. Find in the induced subgraph of T (when considering edges of
all actions) all SCCs that have at least one edge.

2. Repetitively:
(a) Remove all actions that leave with positive probability its SCC.
(b) Remove from each SCC all states that have no actions.

3. Replace T by what is left of each SCC.
4. Newly added classes may be not strongly-connected, repeat.
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Accepting Maximal End Components

Accepting MEC for Rabin condition (Ei ,Fi)i∈I
I For each i ∈ I , run the algorithm with initial “partitioning” S \ Ei

i.e. construct an MDP Mi by removing states Ei and repetitively removing
(a) actions that lead with positive probability to some removed state and
(b) states with no actions,
then run the algorithm

I Accepting MEC in each Mi are those containing some state of Fi .
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Analysis questions

I Reachability: LP or VI
I Probabilistic logics: combination of the techniques
I Transient analysis: preference over S needed
I Steady-state analysis: preference over S needed
I Rewards: solves transient and steady-state analysis

For best/worst transient/steady-state distribution, a preference over
S needed
I Step bounded reachability ♦≤nB is one approach to distribution

after n steps (preferred are exactly the states in B).
I A more fine tuned preference can be specified by rewards
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MDP – Rewards
I expected instantaneous reward
I expected mean payoff
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MDP – Rewards

Instantaneous rewards
What is the maximal expected number of my pieces in the play area
after 50 rounds?

Step-bounded cumulative rewards
What is the maximal expected number of times I kick out a piece of
the opponent within the first 100 steps?

Cumulative rewards to reach a target
What is the minimal expected number of steps before the game ends?

Mean payoff (long-run average reward)
What is the average number of pieces on board?
(restart after game end ⇒ infinite run)
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MDP - Rewards - Instantaneous

Definition
supΘ EΘ[I=k

r ] where I=k
r (ξ(s0s1 . . .)) = r(sk)

Theorem
For an MDP with reward r , the vector x(s) = supΘ EΘ

s [I=k
r ] equals to

xk(s) where

x`(s) =

r(s) if ` = 0

max
α∈Act(s)

∑
s′∈S

P(s, α, s ′) · x`−1(s ′) otherwise

Corollary
There are optimal deterministic schedulers for max EΘ

s [I=k
r ]

(and similarly min).

What about step-bounded cumulative reward?

x`(s) =

0 if ` = 0

r(s) + max
α∈Act(s)

∑
s′∈S

P(s, α, s ′) · x`−1(s ′) otherwise
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MDP - Rewards - Mean Payoff
Recall mean payoff (long-run average reward):

R1R2 · · · = 42 1 2 1 2 1 2 · · · lim
n→∞

∑n
i=1 Ri

n
= 1.5

Example: Money investment
I > 0 earning, < 0 losing
I maximize expected mean payoff

Limit may not exist:

0 (1)10 (0)1000 (1)1000000 · · ·

lim inf
n→∞

∑n
i=1 Ri

n
= 0

Definition
sup

Θ
lim inf
n→∞

1

n

n∑
i=1

EΘ[r(Ai )] where Ai is (random variable for) ith action
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MDP – Mean payoff – Value iteration

For ergodic systems, extensible to general but more complicated

Value vector ~v found by successive approximation
~w t is the optimal total reward in time t

1. Choose ε > 0, and take ~w0 := ~0 ∈ R|S|

2. Compute iteration:
I

~w t+1
s := max

a∈Act(s)
r(a) +

∑
s′∈S

δ(a)(s ′)~ws′ , for s ∈ S (1)

3. Compute error
I upper := maxs∈S(~w

t+1
s − ~w t

s )
I lower := mins∈S(~w

t+1
s − ~w t

s )

If upper − lower > ε: go to step 2. with t:=t+1;
else upper+lower

2 is a ε
2 -approximation of the value ~v (Stop)

Optimal strategy: pick maximum in (1)
upper and lower approximate ~v from above and below, respectively
~w t+1 − ~w t , converges to ~v
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MDP – Mean payoff – Strategy iteration I

Sequence f 0, f 1, . . . of strategies such that ~v(f t+1) ≥ ~v(f t) and
converging to an optimal strategy

Finitely many strategies ⇒ termination

for all s ∈ S : ~xs =
∑

s′∈S δ(f (s), s ′)~xs′
for all s ∈ S : ~xs + ~ys =

∑
s′∈S δ(f (s), s ′)~ys′ + r(f (s))

for all s ∈ S : ~ys + ~zs =
∑

s′∈S δ(f (s), s ′)~zs′
(2)

~x is equal to Ef [MP]
~y is the difference between total and long-run rewards
~z is used in the algorithm to prevent cycling
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MDP – Mean payoff – Strategy iteration II

Using (~x , ~y )

B(s, f ) =

a ∈ Act(s)

∣∣∣∣∣
∑

s′ δ(a)(s ′)~xs′ > ~xs or∑
s′ δ(a)(s ′)~xs′ = ~xs and

r(a) +
∑

s′ δ(a)(s ′)~ys′ > ~xs + ~ys

 (3)

1. Start with any f ∈ F .
2. Determine unique (~x ,~y )-part in a solution of the linear system (2)
3. For every s ∈ S : determine B(s, f ) as defined in (3) using the

values ~x and ~y from step 2
4. If B(s, f ) = ∅ for every s ∈ S : go to step 6

Otherwise: take any g 6= f such that g(s) ∈ B(s, f ) if g(s) 6= f (s)

5. f := g and go to step 2
6. f is an average optimal strategy
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MDP – Mean payoff – Linear programming I

~v the smallest solution of LP, strategy derived from its dual LP

Primary linear program:

Minimize: ∑
s∈S

~µs~xs

Subject to: (4)

for all s ∈ S , a ∈ Act(s): ~xs ≥
∑
s′∈S

δ(a)(s ′)~xs′

for all s ∈ S , a ∈ Act(s): ~xs ≥ r(a) +
∑
s′∈S

δ(a)(s ′)~ys′ − ~ys

where ~µs > 0 arbitrarily chosen
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MDP – Mean payoff – Linear programming II
Dual linear program:

Maximize: ∑
a∈A

r(a)~xa

Subject to:
for all s ∈ S : (5)

~µs +
∑
a∈A

δ(a)(s)~ya =
∑

a∈Act(s)

~ya +
∑

a∈Act(s)

~xa

for all s ∈ S :∑
a∈A

δ(a)(s)~xa =
∑

a∈Act(s)

~xa

~x : occupation measure in the limit
~ya: expected number of taking action a during the transient phase

both flows subject to Kirchhof’s law
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MDP – Mean payoff – Linear programming III

Optimal strategy: f such that
I ~xf (s) > 0 if s ∈ S~x
I ~yf (s) > 0 if s /∈ S~x

where S~x := {s ∈ S |
∑

a∈Act(s) ~xa > 0}
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Multiple mean payoff

Optimize multiple mean payoffs MP i , i ∈ {1, . . . , n}, in MDP:
I expectation ∧

i

E[MP i ] ≥ expi

I satisfaction (quantiles, percentiles)
I conjunctive ∧

i

P[MP i ≥ sati ] ≥ probi

I joint
P[
∧
i

MP i ≥ sati ] ≥ prob

I conjunctions thereof [CKK15,CR15]
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Examples

Example 1: Money investment
I > 0 earning, < 0 losing
I maximize expected mean payoff E[MP]

I maximize probability P[MP ≥ 0]

I maximize E[MP] while ensuring
P[MP ≥ 0] ≥ 0.95

“risk-averse” strategies

Example 2: Downloading service (multiple mean payoffs)
I gratis service: expected throughput MP1 ≥ 1Mbps

I premium service: E[MP2] ≥ 10Mbps and ≥ 95% connections run
on ≥ 5Mbps ; sold at p2 per Mb

I need to hire MP3 resources from a cloud each at price p3

I while satisfying the guarantees, maximize E[p2 ·MP2 − p3 ·MP3]
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I gratis service: expected throughput MP1 ≥ 1Mbps

I premium service: E[MP2] ≥ 10Mbps and ≥ 95% connections run
on ≥ 5Mbps ; sold at p2 per Mb

I need to hire MP3 resources from a cloud each at price p3

I while satisfying the guarantees, maximize E[p2 ·MP2 − p3 ·MP3]
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Example

s

u v w

`

0.5

a, (4, 0)

0.5
r

b, (1, 0)

c , (0, 0)

d , (0, 1)

e, (0, 0)

exp = (1.1, 0.5),

sat = (0.5, 0.5), prob = (0.8, 0.8)

I linear programming
I feasible and practically useful
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Model Construction Principles
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Model Construction - Parallelism and Communication

The setting
I “Real” parallel system: P = P1 ‖ . . . ‖ Pn.

I Transition system: T = T1 ‖ . . . ‖ Tn.
Our goal: Define semantic parallel operators on transition systems
to model “real” parallel operators.

In the following we:
1. recall the notions without randomness
2. observe how to add the randomness
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Model Construction - (non-random) Transition System

A transition system in a tuple

T = (S ,Act,→, s0,AP, L)

I S is the state space, i.e., set of states,
I Act is a set of actions,
I →⊆ S × Act × S is the transition relation of the form s

α−→ s ′

where s, s ′ ∈ S and α ∈ Act .
I s0 ∈ S is the initial state,
I AP is a set of atomic propositions,
I L : S → 2AP is the labelling function.
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Model Construction - Operators for parallelism (1)

1. Pure concurrency: Interleaving operator, no communication, no
dependencies

2. Synchronous product: For hardware systems with a shared clock
3. Synchronous message passing
4. Communication via shared variables
5. Channel systems: Shared variables + communication via

channels
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Model Construction - 1. Interleaving Operator 9

T1 = (S1,Act1,→1, s01,AP1, L1)

T2 = (S2,Act2,→2, s02,AP2, L2)

The composite transition system T1 9 T2 is given by:

T1 9 T2 = (S1 × S2,Act1 ∪ Act2,→, 〈s01, s02〉,AP, L)

where → is given by:

s1
α−→1 s ′1

〈s1, s2〉
α−→ 〈s ′1, s2〉

s2
α−→2 s ′2

〈s1, s2〉
α−→ 〈s1, s

′
2〉

atomic propositions: AP = AP1 ] AP2

labelling function: L(〈s1, s2〉) = L(s1) ∪ L(s2)
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Model Construction - 2. Synchronous Product ⊗

T1 = (S1,Act1,→1, s01,AP1, L1)

T2 = (S2,Act2,→2, s02,AP2, L2)

The composite transition system T1 ⊗ T2 is given by:

T1 ⊗ T2 = (S1 × S2,Act,→, 〈s01, s02〉,AP, L)

where → is given by:

s1
α−→1 s ′1 ∧ s2

β−→2 s ′2

〈s1, s2〉
α∗β−−→ 〈s ′1, s ′2〉

∗ : Act1 × Act2 → Act
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Model Construction - 3. Synch. Message Passing ‖Syn
T1 = (S1,Act1,→1, s01,AP1, L1)
T2 = (S2,Act2,→2, s02,AP2, L2)
Concurrent execution with synchronization over all actions in
Syn ⊆ Act1 ∩ Act2:

T1 ‖Syn T2 = (S1 × S2,Act1 ∪ Act2,→, 〈s01, s02〉,AP, L)

I Interleaving for α 6∈ Syn:

s1
α−→1 s ′1

〈s1, s2〉
α−→ 〈s ′1, s2〉

s2
α−→2 s ′2

〈s1, s2〉
α−→ 〈s1, s

′
2〉

I Handshaking for α ∈ Syn:

s1
α−→1 s ′1 ∧ s2

α−→2 s ′2

〈s1, s2〉
α−→ 〈s ′1, s ′2〉
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Model Construction - Operators for parallelism (2)

1. Pure concurrency: Interleaving operator, no communication, no
dependencies

2. Synchronous product: For hardware systems with a shared clock
3. Synchronous message passing: Interleaving + synchronization
4. Communication via shared variables

I Encode possible variable values as states
I Transition system describes possible updates and lookups
I Resort to synchronous message passing

5. Channel systems: Shared variables + communication via
channels
I communication over shared variables
I synchronous message passing (channels of capacity 0)
I asynchronous message passing (channels of capacity ≥ 1)

can be encoded into
I transition systems using only
I synchronous message passing
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Model Construction - 4. Shared Variables

I Given n different processes i = 1, . . . , n

I To model variable x with values V = {v1, . . . , vm}
I Introduce another process and new actions
I Tx = (Sx ,Actx ,→x , . . .)

I Sx = {v1, . . . , vm}
I Actx = {getx,i,v , setx,i,v | i ∈ {1, . . . , n}, v ∈ V }
I →x= {(v , getx,i,v , v), (v , setx,i,v′ , v ′) | i ∈ {1, . . . , n}, v ∈ V , v ′ ∈ V }
I Act of process i is extended by Actx to get and set the variable x
I Mathematical operations can be derived
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Model Construction - 5. Asynchronous message pass.

I Extension similar to shared variables
I Use transition system to model channel

I parallel composition
I rename actions as needed

0

1

2 aa ab bb ba

a b

i

put get

put get

puta
putb

puta
putb

geta

puta
putb

getb

geta
getb

getb
geta
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Model Construction - Operators for parallelism (3)

I Pure concurrency and Synchronous product are special cases of
synchronous message passing

I Communication via shared variables and Channel systems can
be encoded by synchronous message passing

55 / 63



Model Construction Principles
The Stochastic Case
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Probabilistic automata - Pure concurrency 9

D1 = (S1,Act1,→1, . . .)

D2 = (S2,Act2,→2, . . .)

The composite transition system D1 9D2 is given by:

D1 9D2 = (S1 × S2,Act1 ∪ Act2,→, . . .)

where → is given by:

s1
α−→1 µ1

〈s1, s2〉
α−→ 〈µ1, s2〉

s2
α−→2 µ2

〈s1, s2〉
α−→ 〈s1, µ2〉

where 〈µ1, s2〉(〈s ′1, s ′2〉) = µ1(s ′1) if s ′2 = s2 and 0 otherwise, and
〈s1, µ2〉(〈s ′1, s ′2〉) = µ2(s ′2) if s ′1 = s1 and 0 otherwise.
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Probabilistic automata - Synch. Message Passing ‖Syn
Recall:

T1 = (S1,Act1,→1, . . .) T2 = (S2,Act2,→2, . . .)

Concurrent execution with synchronization over all actions in
Syn ⊆ Act1 ∩ Act2:

T1 ‖Syn T2 = (S1 × S2,Act1 ∪ Act2,→, . . .)

I Interleaving for α 6∈ Syn:

s1
α−→1 s ′1

〈s1, s2〉
α−→ 〈s ′1, s2〉

s2
α−→2 s ′2

〈s1, s2〉
α−→ 〈s1, s

′
2〉

I Handshaking for α ∈ Syn:

s1
α−→1 s ′1 ∧ s2

α−→1 s ′2

〈s1, s2〉
α−→ 〈s ′1, s ′2〉
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Probabilistic automata - Synch. Message Passing ‖Syn

D1 = (S1,Act1,→1, . . .) D2 = (S2,Act2,→2, . . .)

Concurrent execution with synchronization over all actions in
Syn ⊆ Act1 ∩ Act2:

D1 ‖Syn D2 = (S1 × S2,Act1 ∪ Act2,→, . . .)

I Interleaving for α 6∈ Syn:

s1
α−→1 µ1

〈s1, s2〉
α−→ 〈µ1, s2〉

s2
α−→2 µ2

〈s1, s2〉
α−→ 〈s1, µ2〉

I Handshaking for α ∈ Syn:

s1
α−→1 µ1 ∧ s2

α−→1 µ2

〈s1, s2〉
α−→ 〈µ1, µ2〉

where 〈µ1, µ2〉(〈s ′1, s ′2〉) = µ1(s ′1) · µ2(s ′2).
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Probabilistic automata - Example

s0start

s1 s2 s3

t0start

t1 t2

α
β

0.6
0.4 1

α

0.5
0.5

What is s0 ‖{α} t0?
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Probabilistic automata - Example

s0 ‖{α} t0start 〈s3, t0〉

〈s2, t1〉 〈s1, t2〉〈s1, t1〉 〈s2, t2〉

β

α

0.2
0.2

0.30.3

1
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Probabilistic automata - Parallelism&Communication

I Pure concurrency
I Synchronous product
I Synchronous message passing
I Communication via shared variables
I Channel systems

What is the difference pf PA to MDPs, actually?

MDP: each state has at most one transition for a given action.
PA: each state can have several transitions for a given action.
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Outlook

Further models
I PTA, Attack trees
I STA
I CTMC, CTMDP, fault trees (transient, steady-state, CSL)
I hybrid automata (reachability)
I corresponding games
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