Quantitative Verification

Chapter 4: Markov decision processes

Jan Kretinsky

Technical University of Munich

Winter 2021/22

1/63

Discrete-time
Markov Decision Processes

MDP

2/63

MDP

DTMC — purely probabilistic

1 .. Possible successor states are chosen
based on probabilities but not on
decisions.

We want decisions
to model both

» controllable setting (game theory,
operations theory, control theory);

Q000 =—z=z

.. . » uncontrollable setting (interleaving
in concurrent systems, abstractions
of models, open systems)

How to introduce decisions, i.e., non-determinism, to
DTMC?

3/63

MDP: Definition

Definition:
A (labelled) Markov Decision Process (MDP) is a tuple

M= (5 ACt, P, 7o, L)

where
» S is a countable set of states,
» Act is a finite set of actions,

» P:S X Act xS —[0,1] is the transition probability function,
such that for each state s and action «,

> > esP(s a, s’) = 1, then we say that « is enabled in s; or
» P(s,a,s’) =0 for all s, then we say that « is not enabled in s.

» 7o is the initial distribution, and

» [:S — 24P is the labeling function.

The set of actions enabled in s is denoted by Act(s). We assume that
for each s, we have Act(s) # 0.

4/63

MDP — Schedulers

Example:

Problem:
How is the non-determinism resolved?

5/63

MDP — Schedulers

Example:

Problem:
How is the non-determinism resolved?
Allowing memory and randomness:

Definition (Scheduler):

A scheduler (also called strategy or policy) on an MDP

M = (S, Act, P, 7, L) is a function © assigning to each history
so- -5, € ST a probability distribution over Act such that « is
enabled in s, whenever O(sp - - - s,)(a) > 0.

5/63

MDP — Schedulers

Definition (Induced DTMC):
Let M = (S, Act, P, 7, L) be a MDP and scheduler © on M. The
induced DTMC is given by

MO = (57,P® 7, L),
where for any h = spsy ... s,, we define

pe (h, hspe1) = Z O(h P(sn, v, Sps1)

aEAct

and L'(h) = L(sp).

6/63

MDP — Schedulers

Example:

We choose a scheduler © that always takes action /3 in state s and
action ~ in state u. The induced DTMC M® for the previous example:

Notation

» There is a bijection £ mapping each

sequence of states sysis> - to a
sequence of histories
o 5051 50515 - (a path of M©).

» When using previous notation for
sets of paths such as B, we
actually mean £(0OB)

» PO _ the probability measure of M®©

7/63

MDP — Schedulers

Classes of schedulers:
» A scheduler © is memoryless if for histories sos1...s, € ST and
s4s)...s, € ST with s, = s/ it holds

O(5051---5n) = O(84s] - - - 5p)-

n

» A scheduler © is deterministic if for all histories sps;...5, € ST
it holds ©(spsy ... s,)(a) = 1 for some action «.

A memoryless deterministic (MD) © can be viewed as a function
©:5 — Act.

Example:

The scheduler of the previous example was memoryless and
deterministic since the decision what action to take was fixed.

Note:
A scheduler has finite memory if representable by a finite automaton.

8/63

Analysis questions

For MC:
> Reachability: x = Ax+b (with (x(s))ses,)
» Probabilistic logics: combination of the techniques
» Transient analysis: 7, = moP"
> Steady-state analysis: 7P = 7, 71 = 1 (ergodic)

» Rewards: reduction to steady-state analysis

9/63

Analysis questions

For MC:
Reachability: x = Ax + b (with (x(s))ses,)
Probabilistic logics: combination of the techniques

>

4

» Transient analysis: 7, = moP"

> Steady-state analysis: 7P = 7, 71 = 1 (ergodic)
>

Rewards: reduction to steady-state analysis

For MDP:
> Quantities not defined per se, but depend on the scheduler

> We can naturally consider the best case and the worst case
among all schedulers

(recall that non-determinism can model controllable or uncontrollable choice)

9/63

MDP — Reachability

10/63

MDP - Reachability

Min

When playing “Mensch Argere dich nicht” against a fixed opponent
strategy, what is the minimal probability of having all pieces kicked
out into the outside area again?

Max

What is the maximal probability of winning the game?

11/63

MDP - Reachability

Min
» Best case for reaching undesirable states when controlled
> Worst case for reaching desirable states when not controlled

The minimum probability to reach a set of states B from a state s
(within n steps) is

igf PE(0B), igf PE(0="B)

Max
> Best case for reaching desirable states when controlled
» Worst case for reaching undesirable states when not controlled

The maximum probability to reach a set of states B from a state s
(within n steps) is

sup P?(OB% sup PS@(QS"B)
o) e

Focus on maximum; minimum is similar
12/63

MDP - Reachability

Recall for DTMC
Let (S, P, m) be a finite DTMC and B C S. The vector x with
x(s) = Ps(0B) is the unique solution of the equation system

1 if se B,
X(S): 0 lfSES():{S|P5(<>B):O}/
Z P(s,u) -x(u) otherwise.

ues

13/63

MDP - Reachability

Recall for DTMC
Let (S,P,m) be a finite DTMC and B C S. The vector x with
x(s) = Ps(0B) is the unique solution of the equation system

1 if s € B,
x(s) = 0 if se So={s|Ps(OB) =0},

Z P(s,u) -x(u) otherwise.

ues

Theorem (Maximum Reachability Probability):

Let (S, Act,P,mo, L) be a finite MDP and B C S. The vector x with
x(s) = supg PE(0B) is the least solution of the equation system

1 if s e B,
X(S): 0 ifsESé"aX:{5|supe PSG(OB):O}
max P(s,, u) - x(u) otherwise.

a€EAct(s) oS
u

13/63

MDP - Reachability

Theorem (Optimal Memoryless Scheduler):

Let M be a finite MDP with state space S, and B C S. There exist
memoryless deterministic schedulers ©™" ©7#* such that for any
s e S it holds

Ps@m;n(OB): igf P?(QB), Ps@max(OB):SUp Ps@(OB)
(C]

Proof Sketch

14/63

MDP - Reachability

Theorem (Optimal Memoryless Scheduler):

Let M be a finite MDP with state space S, and B C S. There exist
memoryless deterministic schedulers ©™" ©7#* such that for any
s e S it holds

PE"'(0B) = inf PE(0B), PE"(0B) = sup P2(0B)
S}

Proof Sketch

> For ©"" it suffices to fix in each s an arbitrary action « that
minimizes > < P(s,a, u) - x,.

14/63

MDP - Reachability

Theorem (Optimal Memoryless Scheduler):

Let M be a finite MDP with state space S, and B C S. There exist
memoryless deterministic schedulers ©™" ©7#* such that for any
s e S it holds

PE"'(0B) = inf PE(0B), PE"(0B) = sup P2(0B)
S}

Proof Sketch

» For ©™" it suffices to fix in each s an arbitrary action o that
minimizes > < P(s,a, u) - x,.
» Does not work for ©7%*!

14/63

MDP - Reachability

Theorem (Optimal Memoryless Scheduler):

Let M be a finite MDP with state space S, and B C S. There exist
memoryless deterministic schedulers ©™" ©7#* such that for any
s e S it holds

PE"'(0B) = inf PE(0B), PE"(0B) = sup P2(0B)
S}

Proof Sketch

» For ©™" it suffices to fix in each s an arbitrary action « that
minimizes > < P(s,a, u) - x,.

» Does not work for ©7!

» For ©7# we fix in each s among the actions that maximize
> ues P(s,a,u) -x, an arbitrary action o that minimizes the
number of steps needed to reach B with positive probability.

14/63

MDP - Reachability

Theorem (Optimal Memoryless Scheduler):

Let M be a finite MDP with state space S, and B C S. There exist
memoryless deterministic schedulers ©™" ©7#* such that for any
s e S it holds

PE"'(0B) = inf PE(0B), PE"(0B) = sup P2(0B)
S}

Proof Sketch
» For ©™" it suffices to fix in each s an arbitrary action o that
minimizes > < P(s,a, u) - x,.
» Does not work for ©7!
» For ©7# we fix in each s among the actions that maximize

> ues P(s,a,u) -x, an arbitrary action o that minimizes the
number of steps needed to reach B with positive probability.

How can we compute the vectors of values?
» linear programming

» value iteration
14/63

MDP - Reachability - Linear Programming

15/63

MDP - Reachability - Linear Programming

Linear Program:
Let (S, Act,P,mo, L) be a finite MDP and B C S. The vector x with
x(s) = supg P2(0B) is the unique solution of the linear program

Vs € B,
Vs € 55,

1
0
x(s) > Y P(s,a,u)-x(u) Vse S\ (BUSF™),Va € Act.

satisfying x(s) =

15/63

MDP - Reachability - Linear Programming

Linear Program:
Let (S, Act,P,mo, L) be a finite MDP and B C S. The vector x with
x(s) = supg P2(0B) is the unique solution of the linear program

minimize Zx(s)

H)
satisfying x(s)=1 Vs € B,
x(s)=0 Vs € S5,

x(s) > Y P(s,a,u)-x(u) Vse S\ (BUSF™),Va € Act.
uesS

15/63

MDP - Reachability - Value lteration

Value Iteration Algorithm:

Let M be a finite MDP with state space S, and B C S.
> Initialize xo(s) to 1 if s € B and to 0, otherwise.
> lterate

1 if s e B,

xn+1(5) =

max z P(s,a, u) - x,(u) otherwise
a€Act(s) ves

until convergence, i.e., until maxses [x,41(s) — xn(s)| < ¢
for a small e > 0

0 if s € S,

16/63

MDP - Reachability - Value lteration

Value Iteration Algorithm:

Let M be a finite MDP with state space S, and B C S.
> Initialize xo(s) to 1 if s € B and to 0, otherwise.
> lterate

1 if s e B,

><n+1() =
max E P(s,a, u) - x,(u) otherwise
a€EAct(s

until convergence, i.e., until maxses [x,41(s) — xn(s)| < ¢
for a small e > 0

Theorem

> x,(s) = sup P2(O="B).
o

n—o0

» lim x,(s) =sup PSO(OB).
(€]

0 if s € Smax,

16/63

MDP - Step-Bounded Reachability

Is @ memoryless deterministic scheduler enough for
optimizing 0="B?

17/63

MDP - Step-Bounded Reachability

Is @ memoryless deterministic scheduler enough for
optimizing 0="B?

No! For step-bounded reachability we might need finite memory.
(Intuition: Depending on the current step, different paths of different
length might be optimal).

17/63

maXx

MDP - Reachability - Computing 5;

We rather compute the set

T ={s| sup P2(0B) > 0}

and return
max __ max
Sg =S\ 555

18/63

MDP - Reachability - Computing 57"

We rather compute the set

5 ={s| sup P2(0B) > 0}

and return
max __ max
Sg =S\ 555

max.
>0 -

Initialize the set to B and in every iteration add states that reach
the set in one step with positive probability for some enabled action.
Repeat until fix-point is reached.

18/63

MDP - Reachability - Computing 57"

We rather compute the set
e ={s| sup P2(0B) > 0}

and return
Smax o 5\ ma><

max.
>0 -

Initialize the set to B and in every iteration add states that reach
the set in one step with positive probability for some enabled action.
Repeat until fix-point is reached.

(Similarly for ST

18/63

MDP - Reachability - Computing 57"

We rather compute the set
e ={s| sup P2(0B) > 0}

and return
Smax o 5\ ma><

max.
>0 -

Initialize the set to B and in every iteration add states that reach
the set in one step with positive probability for some enabled action.
Repeat until fix-point is reached.

(Similarly for ST": replace “some” by "every”)

18/63

Analysis questions

» Reachability: LP or VI

» Probabilistic logics: combination of the techniques (in particular
reachability and bounded reachability)

> Transient analysis

v

Steady-state analysis

» Rewards

19/63

MDP — PCTL & LTL

Recall: MDP non-determinism

We consider two different sources of
non-determinism:

Controllable If we can control the choice of actions:
Is there possibly a scheduler
guaranteeing the specified desirable
behavior?

Uncontrollable If we cannot control the choice of
actions:
Do all schedulers necessarily
guarantee the specified desirable
behavior?

Note: If we have undesirable behaviour specified, we can apply
negation to obtain the desirable behaviour.

21/63

MDP + Logics

pLTL

Example: the probability that eventually red player is kicked out and
then immediately kicks out blue player is possibly / necessarily > 0.8

30 /YO : PPO(F (rkicked N X bkicked)) > 0.8

PCTL
Example: with prob. necessarily > 0.5 the probability to return to
initial state is always necessarily > 0.1: P~o5 G P>q.1 F init

22/63

PCTL Semantics

Recall: DTMC

For a state s:

» s |= true (always),

> sk a iff a € L(s),

> s o1 Agp iff s =@ and s = ¢,
> s ¢ iff s £ o,

» s =Py(y) iff Ps(Paths(v)) € J

MDP

Stays the same except for P, defined in one of the following ways:
> Possibility (controllable): s = P,(¢) iff 30 : PS(Paths(v))) € J;
» Necessity (uncontrollable): s = P,(v) iff VO : PO(Paths(v))) € J.

Note

PCTL path formulae semantics stays the same.

23/63

PCTL Verification (1) — Algorithm

Algorithm
Input: MDP M, state s, PCTL state formula ¢
Output: TRUE iff s = ®.

The algorithm is conceptually the same as for DTMC:
Again, consider the bottom-up traversal of the parse tree of ®:

» The leaves are a € AP or true and
» the inner nodes are:

> unary — labelled with the operator — or P,(X);
> binary — labelled with an operator A, P;(U), or Py(U =").

Example: —a A P<ga(—b U P=00(0)

//\

7 P<02(U)
g
a — Pao U)
b true

Compute Sat(V) = {s € S | s |= W} for each node V of the tree in a
bottom-up fashion. Then s = ¢ iff s € Sat(®).

24/63

PCTL Verification (2) — Algorithm

As before:
» Sat(true) =S,
> Sat(a) = {s | a € L(s)}
> Sat(Py A Py) = Sat(Py) N Sat(Py)
» Sat(—P) =S\ Sat(d)

Path operator for “possibly”

We need to restrict to path operators of the form P.,, with p € [0, 1]
and € {<, <, >, >}. We have
> for e {<, <}
Sat(Poap(V)) = {s € S | ming PE(Paths(V)) < p}
> forae {> >}
Sat(Poap(V)) = {s € S | maxg PO (Paths(V)) < p}

25/63

PCTL Verification (2) — Algorithm

As before:
» Sat(true) =S,
> Saf()={slacLl(s)}
> Sat(Py A Py) = Sat(Py) N Sat(Py)
» Sat(—P) =S\ Sat(d)

Path operator for “possibly”

We need to restrict to path operators of the form P.,, with p € [0, 1]
and < € {<, <, >, >}. We have

> for e {<, <}

Sat(Poap(V)) = {s € S | ming PE(Paths(V)) < p}
> forpae {> >}

Sat(Poap(V)) = {s € S | maxg PO (Paths(V)) < p}

“Necessarily”
can be done similarly by swapping max and min.

25/63

PCTL Verification — Algorithm (3)

Similar as before:
» Next:

max P2 ((Paths(x @)) =

» Bounded Until:

max P® (Paths(cbl usn <D2)> =

» Unbounded Until:

mgxP5<Paths(<D1 u ¢2)> =

26/63

PCTL Verification — Algorithm (3)

Similar as before:
» Next:

max PS@(Paths X o) = max P(s,s’
© () acAct(s) s’e§(¢) ()

» Bounded Until:

€] <n o S} <n
max P (Paths(d)l u <D2)> = max P <Sat(¢1) u Sat(¢2)>

» Unbounded Until:

méles<Paths(¢1 u <D2)> = méaxP5<Sat(¢1) u Sat(d)g))

26/63

PCTL Verification — Algorithm (3)

Similar as before:
» Next:

max PS@(Paths X o) = max P(s,s’
<) () aEAct(s) s’e§(¢) (/)

» Bounded Until:

€] <n o S} <n
max P (Paths(cbl u <D2)> = max P <5at(¢1) u Sat(¢2)>

» Unbounded Until:

mgxPs<Path5(¢1 u <D2)> = méaxP5<Sat(¢1) u Sat(d)g))

» similarly for mein

26/63

PCTL Verification — Algorithm (3)

Similar as before:
» Next:

max P?(Paths X o) = max P(s,s’
<) () aEAct(s) s’e%(:b) (/)

» Bounded Until:

€] <n o S} <n
mgxPs (Paths(cbl u <D2)> = max P (Sat(Cbl) u Sat(¢2)>

» Unbounded Until:

mgxP5<Paths(<D1 u ¢2)> = mé]xP5<Sat(¢1) u Sat(¢2)>

» similarly for m@in

As before:
can be reduced to step-bounded/unbounded max/min reachability.

26/63

LTL Verification
Input: MDP M, state s, LTL formula W, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.

Reducing subcases

We can reduce < to > by:
30 : PO (Paths(V)) < p <=

27/63

LTL Verification
Input: MDP M, state s, LTL formula W, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.

Reducing subcases

We can reduce < to > by:
30 : PO (Paths(V)) < p <= 3O : PO(Paths(-V)) >1—p

27/63

LTL Verification

Input: MDP M, state s, LTL formula W, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.

Reducing subcases

We can reduce < to > by:

30 : PO (Paths(V)) < p <= 3O : PO(Paths(-V)) >1—p
and necessarily to possibly (V — J) by:

VO : PO (Paths(V)) > p <=

27/63

LTL Verification

[nput: MDP M, state s, LTL formula W, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.

Reducing subcases

We can reduce < to > by:

30 : PO (Paths(V)) < p <= 3O : PO(Paths(-V)) >1—p
and necessarily to possibly (V — J) by:

VO : PO (Paths(V)) > p <= —30 : PO(Paths(V)) < p.

27163

LTL Verification

[nput: MDP M, state s, LTL formula W, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.
Reducing subcases

We can reduce < to > by:

30 : PO (Paths(V)) < p <= 3O : PO(Paths(-V)) >1—p
and necessarily to possibly (V — J) by:

VO : PO (Paths(V)) > p <= —30 : PO(Paths(V)) < p.

Algorithm

27163

LTL Verification

Input: MDP M, state s, LTL formula W, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.

Reducing subcases

We can reduce < to > by:

3O : PO(Paths(V)) < p <= 30 : P®(Paths(-V¥)) >1—p

and necessarily to possibly (V — J) by:

VO : PO (Paths(V)) > p <= —30 : PO(Paths(V)) < p.

Algorithm

The algorithm is conceptually the same as for DTMC:

1. transform W to a deterministic Rabin automaton R with

Lang(R) = Paths(V),

27/63

LTL Verification

Input: MDP M, state s, LTL formula W, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.

Reducing subcases
We can reduce < to > by:
3O : PO(Paths(V)) < p <= 30 : P®(Paths(-V¥)) >1—p
and necessarily to possibly (V — J) by:
VO : PO (Paths(V)) > p <= —30 : PO(Paths(V)) < p.
Algorithm
The algorithm is conceptually the same as for DTMC:
1. transform W to a deterministic Rabin automaton R with
Lang(R) = Paths(V),
2. construct product MDP M x R,

27/63

LTL Verification

Input: MDP M, state s, LTL formula W, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.
Reducing subcases
We can reduce < to > by:
3O : PO(Paths(V)) < p <= 30 : P®(Paths(-V¥)) >1—p
and necessarily to possibly (V — 3) by:
VO : PO (Paths(V)) > p <= —30 : PO(Paths(V)) < p.
Algorithm
The algorithm is conceptually the same as for DTMC:
1. transform W to a deterministic Rabin automaton R with
Lang(R) = Paths(V),
2. construct product MDP M x R,

3. by graph algorithms, find in the product MDP all
accepting end components,

27/63

LTL Verification

Input: MDP M, state s, LTL formula V, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.
Reducing subcases
We can reduce < to > by:
3O : PO(Paths(V)) < p <= 30 : P®(Paths(-V¥)) >1—p
and necessarily to possibly (V — 3) by:
VO : PO (Paths(V)) > p <= —30 : PO(Paths(V)) < p.
Algorithm
The algorithm is conceptually the same as for DTMC:
1. transform W to a deterministic Rabin automaton R with
Lang(R) = Paths(V),
2. construct product MDP M x R,

3. by graph algorithms, find in the product MDP all
accepting end components,

4. their union is denoted by X
5. return TRUE iff maxg P2 (OX) > p.

27/63

LTL Verification

Input: MDP M, state s, LTL formula W, threshold p € [0, 1]
Output: TRUE iff 3© : PO (Paths(V)) > p.
Reducing subcases
We can reduce < to > by:
3O : PO(Paths(V)) < p <= 30 : P®(Paths(-V¥)) >1—p
and necessarily to possibly (V — 3) by:
VO : PO (Paths(V)) > p <= —30 : PO(Paths(V)) < p.
Algorithm
The algorithm is conceptually the same as for DTMC:
1. transform W to a deterministic Rabin automaton R with
Lang(R) = Paths(V),
2. construct product MDP M x R,

3. by graph algorithms, find in the product MDP all
accepting end components, +— How to do this?!?

4. their union is denoted by X
5. return TRUE iff maxg P2 (OX) > p.

27/63

End Components

» An end component is a subset of states S’ and actions A’ such
that

> > cs P(s,a,s") =1for each s € " and o € A'(s") and
» it is strongly connected (when considering edges of all actions).

» With probability 1, infinitely often visited states on a run form
an end component.

28/63

End Components

» An end component is a subset of states S’ and actions A’ such
that

> > cs P(s,a,s") =1for each s € " and o € A'(s") and
» it is strongly connected (when considering edges of all actions).

» With probability 1, infinitely often visited states on a run form
an end component.

» It is accepting if for some Rabin pair (E;, F;) it contains no state
of E; and some state of F;.

» But: there are exponentially many end components.

28/63

End Components

» An end component is a subset of states S’ and actions A’ such
that

> > cs P(s,a,s") =1for each s € " and o € A'(s") and
» it is strongly connected (when considering edges of all actions).

» With probability 1, infinitely often visited states on a run form
an end component.

» It is accepting if for some Rabin pair (E;, F;) it contains no state
of E; and some state of F;.

» But: there are exponentially many end components.

The solution: Maximal end components

» Maximal exist as union of two non-disjoint end components is an
end component.

» Thus, we can deal with partition, instead.

28/63

MDP: Maximal End Components — Algorithm

A partition-refinement algorithm

Start with partition {S}. In each iteration for each partition class T.

29/63

MDP: Maximal End Components — Algorithm

A partition-refinement algorithm

Start with partition {S}. In each iteration for each partition class T.

1. Find in the induced subgraph of T (when considering edges of
all actions) all SCCs that have at least one edge.

2. Repetitively:

(a) Remove all actions that leave with positive probability its SCC.
(b) Remove from each SCC all states that have no actions.

3. Replace T by what is left of each SCC.

4. Newly added classes may be not strongly-connected, repeat.

29/63

Accepting Maximal End Components

Accepting MEC for Rabin condition (E;, F;);e,

» For each / € /, run the algorithm with initial “partitioning” S\ £

i.e. construct an MDP M; by removing states £; and repetitively removing
(a) actions that lead with positive probability to some removed state and
(b) states with no actions,

then run the algorithm

» Accepting MEC in each M; are those containing some state of F;.

30/63

Analysis questions

» Reachability: LP or VI

» Probabilistic logics: combination of the techniques
» Transient analysis: preference over S needed

> Steady-state analysis: preference over S needed

> Rewards: solves transient and steady-state analysis

For best/worst transient/steady-state distribution, a preference over
S needed

» Step bounded reachability ¢="5 is one approach to distribution
after n steps (preferred are exactly the states in B).

» A more fine tuned preference can be specified by rewards

31/63

MDP — Rewards

» expected instantaneous reward
» expected mean payoff

32/63

MDP - Rewards

Instantaneous rewards
What is the maximal expected number of my pieces in the play area
after 50 rounds?

Step-bounded cumulative rewards

What is the maximal expected number of times | kick out a piece of
the opponent within the first 100 steps?

Cumulative rewards to reach a target

What is the minimal expected number of steps before the game ends?

Mean payoff (long-run average reward)

What is the average number of pieces on board?
(restart after game end = infinite run)

33/63

MDP - Rewards - Instantaneous

Definition
supg E®[/=¥] where [=%(&(sos1 . ..)) = r(sk)

34/63

MDP - Rewards - Instantaneous

Definition
supg E®[/=¥] where [=%(&(sos1 . ..)) = r(sk)

Theorem
For an MDP with reward r, the vector x(s) = supg EZ[/=*] equals to

x"(s) where

r(s) if{=0
¢ :
x'(s) = max P(s,a,s’) -x*"(s’) otherwise
a€Act(s) £

34/63

MDP - Rewards - Instantaneous

Definition
supg E®[/=¥] where [=%(&(sos1 . ..)) = r(sk)

Theorem
For an MDP with reward r, the vector x(s) = supg EZ[/=*] equals to
x"(s) where

r(s) if¢=0

¢

X (5) = P / tl A
Qerrﬁ? E (s,a,s") -x*71(s') otherwise

Corollary

There are optimal deterministic schedulers for max E€[/~¥]
(and similarly min).

34/63

MDP - Rewards - Instantaneous

Definition
supg E®[/=¥] where [=%(&(sos1 . ..)) = r(sk)

Theorem
For an MDP with reward r, the vector x(s) = supg EZ[/=*] equals to
x“(s) where

r(s) if¢=0

¢

x(s) = P(/ therwi
aen;i;(E (s,a,5")-x""1(s') otherwise

Corollary
There are optimal deterministic schedulers for max E€[/~¥]
(and similarly min).
What about step-bounded cumulative reward?
0 if=0
¢ .
x'(s) = r(s) + max P(s,a,s') - x*"1(s') otherwise

s’eS 34/63

MDP - Rewards - Mean Payoff

Recall mean payoff (long-run average reward):

RiRy---=42121212--. lim

n—oo n

Example: Money investment
> > 0 earning, < 0 losing
» maximize expected mean payoff

35/63

MDP - Rewards - Mean Payoff

Recall mean payoff (long-run average reward):
TR
RiRy--—42121212... fim 2= g

Example: Money investment
> > 0 earning, < 0 losing
» maximize expected mean payoff

Limit may not exist:

0 (1)10 (0)1000 (1)1000000 L

liminf =0
n—oo

Z/‘n:l Ri
n

Definition

1 n
sup liminf — E E9[r(A;)] where A; is (random variable for) ith action
@ n—oo n4

=1 35/63

MDP — Mean payoff — Value iteration

For ergodic systems, extensible to general but more complicated

Value vector v found by successive approximation

w' is the optimal total reward in time t

1. Choose ¢ > 0, and take w° := 0 € RI°l
2. Compute iteration:
>
St41
=) W, for S 1
Ws aCrg‘?txr +Z(, for s € (1)

s'eS

36/63

MDP — Mean payoff — Value iteration

For ergodic systems, extensible to general but more complicated

Value vector v found by successive approximation

w' is the optimal total reward in time t

1. Choose ¢ > 0, and take w° := 0 € RI°l
2. Compute iteration:
>
St41
=) 5/. for S 1
W acrg‘?}r +§< , for s € (1)

3. Compute error

> upper ;= maxses(WiTt — W)
> Jower := minscs(Ws witl —w!)

If upper — lower > ¢: go to step 2. with t:=t+1;
else “Pperlover g o S-approximation of the value v (Stop)
Optimal strategy: pick maximum in (1)

upper and lower approximate v from above and below, respectively
witt — Wt converges to v

36/63

MDP — Mean payoff — Strategy iteration |

Sequence 7Y, 1, ... of strategies such that v(f"*) > V(") and

converging to an optimal strategy
Finitely many strategies = termination
forallse S: X = s 0(f(s),s")

forallseS: X +ys =D ,c50(f(s),s)
forallse S yo+z =) ,.50(f(s),s)

/

/

LR XL

X is equal to E'[MP]
¥ is the difference between total and long-run rewards
Z is used in the algorithm to prevent cycling

+r(f(s))

37/63

MDP — Mean payoff — Strategy iteration Il

Using (X, ¥)

B(s,f) = ¢ a € Act(s)

1. Start with any f € F.
2. Determine unique (X,y)-part in a solution of the linear system (2)

3. For every s € S : determine B(s, f) as defined in (3) using the
values x and y from step 2

4. If B(s,f) =0 for every s € S : go to step 6
Otherwise: take any g # f such that g(s) € B(s.f) if g(s) # f(s)

. f:=g and go to step 2

> Ol

. f is an average optimal strategy

38/63

MDP — Mean payoff — Linear programming |

v the smallest solution of LP, strategy derived from its dual LP

Primary linear program:

Minimize:
g [1sXs
seS

Subject to:

forall s € S, a € Act(s):

for all s € S,a € Act(s):

where /is > 0 arbitrarily chosen

39/63

MDP — Mean payoff — Linear programming |l

Dual linear program:

Maximize:
Z r(a)X,
acA
Subject to:
for all s € S: ()
I+ 8= Y. it > %
acA acAct(s) acAct(s)
forall s € S:
D I@E%= > %
acA acAct(s)

X: occupation measure in the limit
V2. expected number of taking action a during the transient phase

both flows subject to Kirchhof's law
40/63

MDP — Mean payoff — Linear programming I

Optimal strategy: f such that
>)?f‘(s) >0ifse Sy
> Vis) > 0ifs ¢ S;

where Sy :={se S|>) Xa > 0}

acAct(s

41/63

Multiple mean payoff

Optimize multiple mean payoffs MP;, i € {1,...,n}, in MDP:

» expectation
/\E[MP;] > exp;
i

> satisfaction (quantiles, percentiles)
» conjunctive
/\P[MP,- > sat;] > prob;
> joint
IP[/\ MP; > sat;] > prob

> conjunctions thereof [CKK15,CR15]

42/63

Examples

Example 1: Money investment H

» > 0 earning, < 0 losing FHH

|)

» maximize expected mean payoff E[MP]

43/63

Examples

Example 1: Money investment

» > 0 earning, < 0 losing

» maximize expected mean payoff E[MP]
» maximize probability P[MP > 0]

] T
N\
\

43/63

Examples

Example 1: Money investment

>

>
| 4
>

> 0 earning, < 0 losing

maximize expected mean payoff E[MP]
maximize probability P[MP > 0]
maximize E[MP] while ensuring

P[MP > 0] > 0.95

“risk-averse” strategies

43/63

Examples

Example 1: Money investment

» > 0 earning, < 0 losing

> maximize expected mean payoff E[MP] N
» maximize probability P[MP > 0] '
» maximize E[MP] while ensuring

R~ —

B[MP > 0] > 0.95 [o I =
[~ e [EEET eme

“risk-averse” strategies —_ e e T
T om om oo

Example 2: Downloading service (multiple mean payoffs)
> gratis service: expected throughput MP; > 1Mbps
» premium service: E[MP,] > 10Mbps and > 95% connections run
on > 5Mbps; sold at p, per Mb
» need to hire MP5 resources from a cloud each at price p;

» while satisfying the guarantees, maximize E[p, - MP, — p3 - MP3]

43/63

Example

sat = (0.5,0.5), prob = (0.8,0.8)

44163

Example

exp = (1.1,0.5), sat = (0.5,0.5), prob = (0.8, 0.8)

44163

Example

exp = (1.1,0.5), sat = (0.5,0.5), prob = (0.8,0.8)

» linear programming

> feasible and practically useful

44/63

Model Construction Principles

45/63

Model Construction - Parallelism and Communication

The setting

> “Real” parallel system: P =Py || ... | Pp,.

46/63

Model Construction - Parallelism and Communication

The setting

> “Real” parallel system: P =Py || ... | Pp,.
» Transition system: T = Ty || ... | T,

46/63

Model Construction - Parallelism and Communication

The setting

> “Real” parallel system: P =Py || ... | Pp,.
» Transition system: T = Ty || ... | T,

Our goal: Define semantic parallel operators on transition systems
to model “real” parallel operators.

46/63

Model Construction - Parallelism and Communication

The setting
> “Real” parallel system: P =Py || ... | Pp,.
» Transition system: T = Ty || ... | T,

Our goal: Define semantic parallel operators on transition systems
to model “real” parallel operators.

In the following we:
1. recall the notions without randomness

2. observe how to add the randomness

46/63

Model Construction - (non-random) Transition System

A transition system in a tuple

T = (S, Act,—,s0, AP, L)

> S is the state space, i.e., set of states,
> Act is a set of actions,

> C S x Act x S is the transition relation of the form s = s’
where s,s" € S and « € Act.

» 5, € S is the initial state,

> AP is a set of atomic propositions,

v

L:S — 2P is the labelling function.

47163

Model Construction - Operators for parallelism (1)

O W N

Pure concurrency: Interleaving operator, no communication, no
dependencies

Synchronous product: For hardware systems with a shared clock
Synchronous message passing
Communication via shared variables

Channel systems: Shared variables + communication via
channels

48/63

Model Construction - 1. Interleaving Operator

T1 = (51, Act1, —1, 501, AP, L)

T2 = (52, Actz, =2, S02, AP2, L>)

The composite transition system 7; ||| 72 is given by:
ﬂ H‘ 75 = (51 X 52, ACtl @] ACfQ, —, <S()1, 502>,AP7 L)

where — is given by:

o ’ o ’
S1—15 S2 —2 S
(s1,%) N (s], %) (s1,5) = (s1,5)

atomic propositions: AP = AP; W AP,
labelling function: L({s1,s,)) = L(s1) U L(s»)

49/63

Model Construction - 2. Synchronous Product &

T1 = (51, Act1, —1, 501, AP, L)

To = (52, Acta, =2, 502, AP2, L)

The composite transition system 7; @ 7, is given by:
7;. ® 7—2 = (51 X 527 ACta —, <501-, 502>7AP7 L)

where — is given by:

[e}% 12 ﬂ /
51 —>1 5 N Sy —» S>

51,5 o, s, s
1552

% 1 Acty X Actyr — Act

50/63

Model Construction - 3. Synch. Message Passing |5,

T = (51, Acty, —1, So1, AP, Ll)

T> = (52, Acty, —2, S0z, AP>, L2)

Concurrent execution with synchronization over all actions in
Syn C Acty N Acty:

71 HSyn 75 = (51 X 527 ACtl @] ACtz, —, <501, 502>,AP, L)

> Interleaving for o ¢ Syn:

a / o /
S1 —1 5 S2 —2 5
(s1,%2) = (s1,%2) (s1,%2) = (s1,53)

» Handshaking for oo € Syn:

« «
ST —1 S{ N Sy —o Sé

@

(s1,9) = (s1, %)

51/63

Model Construction - Operators for parallelism (2)

1. Pure concurrency: Interleaving operator, no communication, no
dependencies

Synchronous product: For hardware systems with a shared clock
Synchronous message passing: Interleaving + synchronization

4. Communication via shared variables
» Encode possible variable values as states
> Transition system describes possible updates and lookups
> Resort to synchronous message passing
5. Channel systems: Shared variables + communication via
channels
» communication over shared variables
» synchronous message passing (channels of capacity 0)
» asynchronous message passing (channels of capacity > 1)
can be encoded into
P transition systems using only
» synchronous message passing

52/63

Model Construction - 4. Shared Variables

» Given n different processes i =1,....n

» To model variable x with values V' = {vi,... vy}

» Introduce another process and new actions

» T = (Sx, Acty, =, .. .)

Se=A{wvi,..., Vm}

Act, = {get, ; ,,set.iv |i€{l,...,n},ve V}

—x={(v, get, ;. v), (v,set, ;. v') [ie{l,...,n},ve V,v eV}
Act of process i is extended by Act, to get and set the variable x
Mathematical operations can be derived

vyVyVYYVYY

53/63

Model Construction - 5. Asynchronous message pass.

> Extension similar to shared variables
» Use transition system to model channel

> parallel composition
» rename actions as needed

@

54/63

Model Construction - Operators for parallelism (3)

» Pure concurrency and Synchronous product are special cases of
synchronous message passing

» Communication via shared variables and Channel systems can
be encoded by synchronous message passing

55/63

Model Construction Principles
The Stochastic Case

56/63

Probabilistic automata - Pure concurrency |||

Dl = (Sl,ACtl,%l, ..)

Dy = (52, Acty, —o, ..)

The composite transition system Dy ||| D, is given by:
D1 H| D, = (51 x Sy, Act1 U Acta, —, ..)

where — is given by:

« «
S1 —1 M1 Sp —2 M2
(s1,9) = (u1,%2) (s1,%) = (51, 412)

where (i1, 5)((s1,s5)) = pi(s]) if s = s, and 0 otherwise, and
(s1, p12)((s1,55)) = pa(sh) if s; = s; and 0 otherwise.

57/63

Probabilistic automata - Synch. Message Passing | s,

Recall:

T1 :(Sl,ACtl,—>1,...) 75:(52,AC1'2,—>2,...)
Concurrent execution with synchronization over all actions in
Syn C Acty N Acty:

T HSyn T = (51 x S, Acty U Acty, —, . .)

> Interleaving for o & Syn:

@ / « /
S1—1 85 S =2 S,
(s1,%2) = (s1,%2) (s1,%) = (s1,%)

» Handshaking for oo € Syn:

« «
S1 —1 5{ NSy —1 Sé

(s1,9) = (s],55)

58/63

Probabilistic automata - Synch. Message Passing | s,

Dy = (Sl,ACtl,*)l, ..) D, = (SQ,ACtQ,‘)Q, ..)

Concurrent execution with synchronization over all actions in
Syn C Act1 N Acty:

Dl HSyn DQ = (51 X 52,ACt1 U ACtQ,%, .)

> Interleaving for o ¢ Syn:

« «
Sp —r1 M1 Sp —>2 U2
<51-,52> = <,“1,52> <51752> = <51-,lf/2>

» Handshaking for oo € Syn:
[e3 83
S] —1 M1 A S2 —1 2

<51,- 52> = </117 /1/2>

where (u1, p12)((s1,53)) = pa(s1) - p2(s3)-

59/63

Probabilistic automata - Example

What is sy [|{a} t0?

60/63

Probabilistic automata - Example

- ’ N \\\ 02

-‘ b-

61/63

Probabilistic automata - Parallelism&Communication

Pure concurrency

Synchronous product

| 4

>

» Synchronous message passing

» Communication via shared variables
>

Channel systems

What is the difference pt PA to MDPs, actually?

62/63

Probabilistic automata - Parallelism&Communication

Pure concurrency

Synchronous product

| 4

>

» Synchronous message passing

» Communication via shared variables
>

Channel systems

What is the difference pt PA to MDPs, actually?

MDP: each state has at most one transition for a given action.
PA: each state can have several transitions for a given action.

62/63

Outlook

Further models
» PTA, Attack trees
> STA
» CTMC, CTMDP, fault trees (transient, steady-state, CSL)
» hybrid automata (reachability)
>

corresponding games

63/63

