
Technische Universität München (I7) J. Křetínský / A. Evangelidis / K. Grover

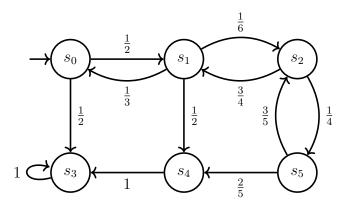
Quantitative Verification – Exercise sheet 12

Exercise 12.1

Draw the embedded DTMC of the following CTMC.

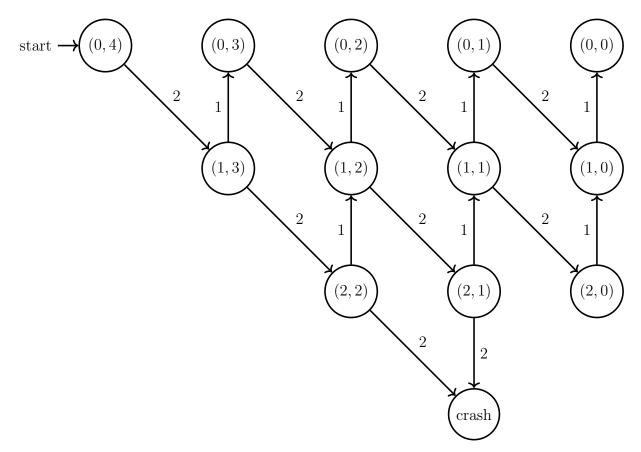
Exercise 12.2

Model the following scenario as a CTMC and uniformize it.


We consider a printer in a local network. Four printing jobs arrive consecutively with a rate of 2 and are placed in the printer's queue. It has a queue of size two. The jobs are handled with a rate of 1. If the queue overflows, the (buggy) firmware of the printer crashes.

Exercise 12.3

Set $AP = \{a, b\}$. Model the following specifications as CSL formulae.


- With probability at least 0.5, the system reaches a state where *a* holds within 5 to 10 time units.
- The probability to reach a state, that in the long run b holds with at least 0.9 probability, is at most 0.2.
- With probability at most 0.1, we have b for the first 100 time steps.

Solution 12.1 Embedded DTMC:

Solution 12.2

Our state space has two variables, namely the printer's queue size and the number of remaining jobs. Furthermore, there is a special *crash* state. Uniformizing with rate q = 3 divides all transitions by 3 and adds self-loops in states with E(s) < 3.

Solution 12.3

- $\mathcal{P}_{[0.5,1]}$ ($\mathbf{F}^{[5,10]}$ a)
- $\mathcal{P}_{[0,0.2]}$ (**F S**_[0.9,1] (b))
- $\mathcal{P}_{[0,0.1]}$ ($\mathbf{G}^{[0,100]}$ b)