Quantitative Verification – Exercise sheet 8

For the questions below, we define the following notation $\mathbf{F}_{\sim p}\phi := \mathcal{P}_{\sim p}[\mathbf{F} \phi]$, and $\mathbf{G}_{\sim p}\phi := \mathcal{P}_{\sim p}[\mathbf{G} \phi]$ for $\sim \in \{=, <, \leq, >, \geq\}, p \in [0, 1]$, and $\phi \in \mathbf{PCTL}$. We define analogous abbreviations for the step-bounded versions of \mathbf{F} and \mathbf{G} .

Exercise 8.1

Translate the following formulae to English

- 1. send $\Rightarrow \mathbf{F}_{\geq 0.95}^{\leq 10}$ deliver
- 2. $\mathcal{P}_{\leq 0.05} \mathbf{F} \mathbf{F}_{\geq 0.9}$ error
- 3. $\mathcal{P}_{\geq 0.8}$ empty $U~(\texttt{send} \land G_{\leq 0.5} \ \neg\texttt{receive})$

Exercise 8.2

Translate the following specifications into **PCTL/PLTL** formulae

- 1. The system with two processes satisfies mutual exclusion almost surely $(crit_i holds if process i is in the critical section).$
- 2. The probability that every request will eventually be granted with a probability greater than 0.95 is 0.99.
- 3. The probability that component B fails (B_fail) before component A (A_fail) is less than 0.4.

Exercise 8.3

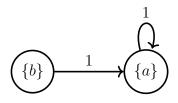
For each of the following properties, draw a labelled Markov Chain which satisfies it or argue why the property is unsatisfiable.

- 1. $\mathbf{G}_{\leq 0.5} (a \wedge \neg b)$
- 2. $\mathbf{G}_{=1}$ $(\neg a \wedge \mathbf{F}_{=1} a)$
- 3. $\neg a \land \mathcal{P}_{=1} [b \mathbf{U} a]$
- 4. $\mathbf{F}_{=1} (a \Rightarrow (\mathbf{G}_{=1} ((b \Rightarrow c) \mathbf{U} \neg a \land (\mathbf{F}_{\geq 0.5} c \lor \neg b))))$

Solution 8.1

- 1. When there is a send in the first time step, with probability ≥ 0.95 there will be a deliver in the next 10 steps.
- 2. With probability ≤ 0.05 , the system reaches a state which can reach error with probability ≥ 0.9 .
- 3. With probability ≥ 0.8 the system is empty until it reaches a state with send and never receives with probability ≤ 0.5 .

Solution 8.2


- 1. $\mathbf{G}_{=1} \neg (\mathtt{crit}_1 \land \mathtt{crit}_2)$
- 2. $\mathbf{G}_{=0.99} \text{ (request} \Rightarrow \mathbf{F}_{\geq 0.95} \text{ grant})$
- 3. $\mathcal{P}_{<0.4}$ [(¬A_fail U (B_fail $\land \neg A_fail)$) $\lor G \neg B_fail$]

Solution 8.3

1. Consider the following automaton:

- 2. Not satisfiable. The formula requires to almost surely have a at every step and eventually reaching $\neg a$ with probability 1.
- 3. Consider the following automaton:

4. Look at the automaton from part 1 of this question.