
CTL: Overview

We now define CTL (Computation-Tree Logic) as a syntactic restriction of CTL⇤.

Operators are restricted to the following form:

Q T
X
F
G
U

E
A

next
finally
globally
until

there exists an execution
for all executions

(and possibly others)

288

CTL: Syntax

We define a minimal syntax first. Later we define additional operators with the
help of the minimal syntax.

Let AP be a set of atomic propositions: The set of CTL formulas over AP is as
follows:

if a 2 AP, then a is a CTL formula;

if �
1

,�
2

are CTL formulas, then so are

¬�
1

, �
1

_ �
2

, EX�
1

, EG�
1

, �
1

EU �
2

289

It is easy to see that every CTL formula is also a CTL⇤ formula.

Previously, we defined the satisfaction relationship between valuation trees and
CTL⇤ formulae. Since each state of a Kripke structure has a clearly defined
computation tree, we may just as well say that a state satisfies a CTL/CTL⇤
formula, meaning that its computation tree does.

Let K be a Kripke structure, let s one of its states, and let � be a CTL formula.
On the following slide, we define a set [[�]]K in such a way that s 2 [[�]]K iff
TK(s) |= �.

290

CTL: Semantics

Let K = (S,!, r ,AP, ⌫) be a Kripke structure.

We define the semantic of every CTL formula � over AP w.r.t. K as a set of
states [[�]]K, as follows:

[[a]]K = { s | a 2 ⌫(s) } for a 2 AP

[[¬�
1

]]K = S \ [[�
1

]]K
[[�

1

_ �
2

]]K = [[�
1

]]K [[[�
2

]]K
[[EX�

1

]]K = { s | there is a t s.t. s ! t and t 2 [[�
1

]]K }
[[EG�

1

]]K = { s | there is a run ⇢ with ⇢(0) = s

and ⇢(i) 2 [[�
1

]]K for all i � 0 }
[[�

1

EU �
2

]]K = { s | there is a run ⇢ with ⇢(0) = s and k � 0 s.t.

⇢(i) 2 [[�
1

]]K for all i < k and ⇢(k) 2 [[�
2

]]K }

291

We say that K satisfies � (denoted K |= �) iff r 2 [[�]]K.

The local model-checking problem is to check whether K |= �.

The global model-checking problem is to compute [[�]]K.

We declare two formulas equivalent (written �
1

⌘ �
2

) iff for every Kripke
structure K we have [[�

1

]]K = [[�
2

]]K.

In the following, we omit the index K from [[·]]K if K is understood.

292

CTL: Extended syntax

�
1

^ �
2

⌘ ¬(¬�
1

_ ¬�
2

) AX� ⌘ ¬EX¬�
true ⌘ a _ ¬a AG� ⌘ ¬EF¬�
false ⌘ ¬true AF� ⌘ ¬EG¬�

�
1

EW �
2

⌘ EG�
1

_ (�
1

EU �
2

) �
1

AW �
2

⌘ ¬(¬�
2

EU ¬(�
1

_ �
2

))

EF� ⌘ true EU � �
1

AU �
2

⌘ AF�
2

^ (�
1

AW �
2

))

Other logical and temporal operators (e.g. !, ER, AR), . . . may also be defined.

293

CTL: Examples

We use the following computation tree as a running example (with varying
distributions of red and black states):

{p}

{p}

{q}

...

...

...

...

...

...
{q}

In the following slides, the topmost state satisfies the given formula if the black
states satisfy p and the red states satisfy q.

294

...

...

...

...

...

...

AG p

295

...

...

...

...

...

...

AF p

296

...

...

...

...

...

...

AX p

297

...

...

...

...

...

...

p AU q

298

...

...

...

...

...

...

EG p

299

...

...

...

...

...

...

EF p

300

...

...

...

...

...

...

EX p

301

...

...

...

...

...

...

p EU q

302

Solving nested formulas: Is s
0

2 [[AFAG x]]?

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

To compute the semantics of formulas with nested operators, we first compute
the states satisfying the innermost formulas; then we use those results to solve
progressively more complex formulas.

In this example, we compute [[x]], [[AG x]], and [[AFAG x]], in that order.

303

Bottom-up method (1): Compute [[x]]

{y}

{z}

s3

{ }

s7

s5

s1

{y,z}

s4

s6

s0

s2
{x,z}

{x,y}

{x,y,z} {x}

304

Bottom-up method (2): Compute [[AG x]]

{y}

{z}

{x}

s3

{ }

s7

s5

s1

{y,z}

s4
{x,y,z}

s6

s0

s2
{x,z}

{x,y}

305

Bottom-up method (3): Compute [[AFAG x]]

{z}

{x}

s3

{ }

s7

s5

s1

s4

s6

s0

s2
{y} {x,z}

{x,y}{y,z}

{x,y,z}

306

Example: Dining Philosophers

1

2

34

5

Five philosophers are sitting around a table, taking turns at thinking and eating.

We shall express a couple of properties in CTL. Let us assume the following
atomic propositions:

ei c
= philosopher i is currently eating

307

Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e
1

^ e
4

)

“It is possible that Philosopher 3 never eats.”

EG¬e
3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”

AGEF(¬e
1

^ e
2

^ ¬e
3

^ ¬e
4

)

308

Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e
1

^ e
4

)

“It is possible that Philosopher 3 never eats.”

EG¬e
3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”

AGEF(¬e
1

^ e
2

^ ¬e
3

^ ¬e
4

)

309

Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e
1

^ e
4

)

“It is possible that Philosopher 3 never eats.”

EG¬e
3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”

AGEF(¬e
1

^ e
2

^ ¬e
3

^ ¬e
4

)

310

Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e
1

^ e
4

)

“It is possible that Philosopher 3 never eats.”

EG¬e
3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”

AGEF(¬e
1

^ e
2

^ ¬e
3

^ ¬e
4

)

311

Part 10: Algorithms for CTL

CTL-Model-Checking

In the following, let K = (S,!, r ,AP, ⌫) be a Kripke structure (where S is finite)
and � a CTL formula over AP.

We shall solve the global model-checking problem for CTL, i.e. to compute [[�]]K
(all states of K whose computation tree satisfies �).

Our solution works “bottom-up”, i.e. it considers simple subformulae first, and
then successively more complex ones.

The solution shown here considers only the minimal syntax. For additional
efficiency one could extend it by treating some cases of the extended syntax
more directly.

313

The ‘bottom-up’ algorithm for CTL

The algorithm reducs � step by step to a single atomic proposition. Reminder:
[[p]]K = { s | p 2 ⌫(s) } for p 2 AP. In the following, we abbreviate this set as
µ(p).

1. Check whether � = p, where p 2 AP. If yes, output µ(p) and stop.

2. Otherwise, � contains some subformula of the form ¬p, p _ q, EX p, EG p,
or p EU q, where p, q 2 AP. Compute [[]]K using the algorithms on the
following slides.

3. Let p0 /2 AP be a “fresh” atomic proposition. Add p0 to AP and set
µ(p0) := [[]]K. Replace all occurrences of in � by p0 and continue at step
1.

314

Computation of [[]]K: simple cases

Case 1: ⌘ ¬p, p 2 AP

By definition, [[]]K = S \ µ(p).

Case 2: ⌘ p _ q, p, q 2 AP

Then [[]]K = µ(p) [µ(q).

Case 3: ⌘ EX p, p 2 AP

In the following, let pre(X), for X ✓ S, denote the set

pre(X) := { s | 9t 2 X : s ! t }.
Then by definition [[]]K = pre(µ(p)).

315

Computation of [[]]K: EU and EG

We shall first define EU and EG in terms of fixed points.

EU is characterized by a smallest fixed point: We first assume that no state
satisfies the EU formula and then, one by one, identify those that do satisfy it
after all.

By contrast, EG can be characterized by a largest fixed point: We first assume
that all states satisfy a given EG formula and then, one by one, eliminate those
that do not.

Based on this, we then derive algorithms for EG and EU.

316

Computation of [[]]K: EG

Case 4: ⌘ EG p, p 2 AP

Lemma 1: [[EG p]]K is the largest solution (w.r.t. ✓) of the equation

X = µ(p) \ pre(X).

Proof: We proceed in two steps:

1. We show that [[EG p]]K is indeed a solution of the equation, i.e.

[[EG p]]K = µ(p) \ pre([[EG p]]K).

Reminder: [[EG p]]K = { s | 9⇢ : ⇢(0) = s ^ 8i � 0: ⇢(i) 2 µ(p) }.

“)” Let s 2 [[EG p]]K and ⇢ a “witness” path. Then obviously s 2 µ(p).
Moreover, ⇢(1) 2 [[EG p]]K (because of ⇢1), hence s 2 pre([[EG p]]K).

317

Continuation of the proof of Lemma 1:

1. “(” Let s 2 µ(p) \ pre([[EG p]]K). Then s has a direct successor t ,
where a path ⇢ starts proving that t 2 [[EG p]]K. Thus, s⇢ is a path
witnessing that s 2 [[EG p]]K.

2. We show that [[EG p]]K is indeed the largest solution, i.e., if M is a
solution of the equation, then M ✓ [[EG p]]K.

Let M ✓ S be a solution of the equation, i.e. M = µ(p) \ pre(M), and let
s 2 M. We shall show s 2 [[EG p]]K.

– Since s 2 M, we have s 2 µ(p) and s 2 pre(M).

– Since s 2 pre(M), there exist s
1

2 M with s ! s
1

.

– Repeating this argument, we can construct an infinite path ⇢ = ss
1

· · · in
which all states are contained in µ(p). Therefore, s 2 [[EG p]]K.

318

Lemma 2: Consider the sequence S, ⇡(S), ⇡(⇡(S)), . . ., i.e.
⇣
⇡i
(S)

⌘

i�0

,
where ⇡(X) := µ(p) \ pre(X).
For all i � 0 we have ⇡i

(S) ◆ [[EG p]]K.

We state the following two facts:

(1) ⇡ is monotone: if X ◆ X 0, then ⇡(X) ◆ ⇡(X 0
).

(2) The sequence is descending: S ◆ ⇡(S) ◆ ⇡(⇡(S)) . . . (follows from (1)).

Proof of Lemma 2: (induction over i)
Base: i = 0: obvious.
Step: i ! i +1:

⇡i+1

(S) = µ(p) \ pre(⇡i
(S))

◆ µ(p) \ pre([[EG']]K) (i.h. and monotonicity)

= [[EG p]]K

319

Lemma 3: There exists an index i such that ⇡i
(S) = ⇡i+1

(S), and
[[EG p]]K = ⇡i

(S).

Proof: Since S is finite, the descending sequence must reach a fixed point, say
after i steps. Then we have ⇡i

(S) = ⇡(⇡i
(S)) = µ(p) \ pre(⇡i

(S)).
Therefore, ⇡i

(S) is a solution of the equation from Lemma (1).

Because of Lemma 1, we have ⇡i
(S) ✓ [[EG p]]K.

Because of Lemma 2, we have ⇡i
(S) ◆ [[EG p]]K.

320

An algorithm for EG

Lemma 3 gives us a strategy for computing [[EG p]]K: compute the sequence
S, ⇡(S), · · · until a fixed point is reached.

For practicality, one would start immediately with X := µ(p). Then, in each
round, one eliminates those states having no successors in X .

This can be efficiently implemented in O(|K|) time (“reference counting”).

321

Example: Computation of [[EG y]]K (1/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

⇡0(S) = S

322

Example: Computation of [[EG y]]K (2/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

⇡1(S) = µ(y) \ pre(S)

323

Example: Computation of [[EG y]]K (3/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

⇡2(S) = µ(y) \ pre(⇡1(S))

324

Example: Computation of [[EG y]]K (4/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

⇡3(S) = µ(y) \ pre(⇡2(S)) = ⇡2(S): [[EG y]]K = {s
0

, s
2

, s
4

}

325

Computation of EU

Case 5: ⌘ p EU q, p, q 2 AP

Analogous to EG (proofs omitted):

Lemma 4: [[p EU q]]K is the smallest solution (w.r.t. ✓) of the equation

X = µ(q) [(µ(p) \ pre(X)).

Lemma 5: [[p EU q]]K is the fixed point of the sequence

;, ⇠(;), ⇠(⇠(;)), . . .where ⇠(X) := µ(q) [(µ(p) \ pre(X))

326

An algorithm for EU

Lemma 5 proposes a strategy: Compute the sequence ;, ⇠(;), · · · until a fixed
point is reached.

In practice one would start with X := µ(q). Then, in each step, one can add
those direct predecessors that are in µ(p).

Can be done efficiently in O(|K|) time (multiple backwards DFS).

327

Example: Computation of [[z EU y]]K (1/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

⇠0(;) = ;

328

Example: Computation of [[z EU y]]K (2/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

⇠1(;) = µ(y) [(µ(z) \ pre(⇠0(;)))

329

Example: Computation of [[z EU y]]K (3/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

⇠2(;) = µ(y) [(µ(z) \ pre(⇠1(;)))

330

Example: Computation of [[z EU y]]K (4/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

⇠3(;) = µ(y) [(µ(z) \ pre(⇠2(;))) = ⇠2(;)
[[z EU y]]K = {s

0

, s
1

, s
2

, s
4

, s
5

, s
6

}

331

