CTL: Overview

We now define CTL (Computation-Tree Logic) as a syntactic restriction of CTL*.

Operators are restricted to the following form:

there exists an execution \ ‘

X next
F finally
for all executions G globally
until

(and possibly others)
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CTL: Syntax

We define a minimal syntax first. Later we define additional operators with the
help of the minimal syntax.

Let AP be a set of atomic propositions: The set of CTL formulas over AP is as
follows:

if a € AP, then ais a CTL formula;

if 1, ¢ are CTL formulas, then so are

—¢1, »1V @2, EX ¢1, EG ¢4, ¢»1 EU ¢
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It is easy to see that every CTL formula is also a CTL* formula.

Previously, we defined the satisfaction relationship between valuation trees and
CTL* formulae. Since each state of a Kripke structure has a clearly defined
computation tree, we may just as well say that a stafe satisfies a CTL/CTL*
formula, meaning that its computation tree does.

Let IC be a Kripke structure, let s one of its states, and let ¢ be a CTL formula.
On the following slide, we define a set [¢] - in such a way that s € [[¢] i iff

Tic(s) = ¢.
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CTL: Semantics

Let I = (S, —, r, AP, v) be a Kripke structure.

We define the semantic of every CTL formula ¢ over AP w.r.t. I as a set of
states [[¢] x, as follows:

lalx = {s|aev(s)} fora e AP
[=¢1llc = S\loalk
[¢1V @2l = [o1llcU o2l
[EX ¢1]lxc = {s|thereisatst s—tandte [¢1]c}
TEG ¢1lx = {s]|thereisarun pwith p(0) = s

and p(i) € [¢1]lc foralli > 0}
[¢1 EU o]l = {s|thereis arun pwith p(0) = sand k > 0 s.t.

p(i) € @11l for all i < k and p(k) € [¢2]lx }
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We say that KC satisfies ¢ (denoted K = ¢) iff r € [[¢]l .

The local model-checking problem is to check whether IC = ¢.

The global model-checking problem is to compute [¢] k.

We declare two formulas equivalent (written ¢1 = ¢») iff for every Kripke
structure IC we have [¢1]lc = @21 k-

In the following, we omit the index /C from [[-] ¢ if K is understood.
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CTL: Extended syntax

®1 N\ @2

true

false

»1 EW ¢5
EF ¢

Other logical and temporal operators (e.g. —, ER, AR), ...

—(—¢1 V —¢2)
av —a

—true

EG ¢1 V (¢1 EU ¢7)
true EU ¢

AX ¢
AG o
AF ¢
¢1 AW ¢o
¢1 AU ¢2

S EX ¢
~EF —¢
~EG —¢
—(=¢2 EU —=(¢1 V ¢2))
AF ¢o A (91 AW ¢2))

may also be defined.
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CTL: Examples

We use the following computation tree as a running example (with varying
distributions of red and black states):

In the following slides, the topmost state satisfies the given formula if the black
states satisfy p and the red states satisfy q.
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Solving nested formulas: Is sg € [AF AG x]|?

s6 S/

—i

To compute the semantics of formulas with nested operators, we first compute

the states satisfying the innermost formulas; then we use those results to solve
progressively more complex formulas.

In this example, we compute [x], [AG x]|, and [AF AG x|, in that order.
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Bottom-up method (1): Compute [x]|

s6 S/
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Bottom-up method (2): Compute [AG x]|

s6 s/
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Bottom-up method (3): Compute [[AF AG x|

s6 s/
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Example: Dining Philosophers

’
4
3 x©% 2

o' oW
< S
Oy O
4 ﬁk é@ 3
Five philosophers are sitting around a table, taking turns at thinking and eating.

We shall express a couple of properties in CTL. Let us assume the following
atomic propositions:

e; = philosopher / is currently eating
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Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”
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Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG—-(e1 N eyg)

“It is possible that Philosopher 3 never eats.”
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Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG—-(e1 Ney)

“It is possible that Philosopher 3 never eats.”

EG —e3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”
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Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG—-(e1 N eyg)

“It is possible that Philosopher 3 never eats.”

EG —e3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”

AGEF(—e; N ey A —e3 A —ey)
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Part 10: Algorithms for CTL



CTL-Model-Checking

In the following, let IC = (S, —, r, AP, v) be a Kripke structure (where S is finite)
and ¢ a CTL formula over AP.

We shall solve the global model-checking problem for CTL, i.e. to compute [¢] x
(all states of IC whose computation tree satisfies ¢).

Our solution works “bottom-up”, i.e. it considers simple subformulae first, and
then successively more complex ones.

The solution shown here considers only the minimal syntax. For additional

efficiency one could extend it by treating some cases of the extended syntax
more directly.
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The ‘bottom-up’ algorithm for CTL

The algorithm reducs ¢ step by step to a single atomic proposition. Reminder:
el = {s| pev(s)} for pe AP. In the following, we abbreviate this set as

n(p)-

1. Check whether ¢ = p, where p € AP. If yes, output n(p) and stop.

2. Otherwise, ¢ contains some subformula ) of the form —p, pVv q, EX p, EG p,
or p EU q, where p, g € AP. Compute [[¢] ¢ using the algorithms on the
following slides.

3. Let p’ ¢ AP be a “fresh” atomic proposition. Add p’ to AP and set
n(p’) := [[«/] . Replace all occurrences of ¢ in ¢ by p’ and continue at step
1.
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Computation of [[¢]«: simple cases

Case 1: ¢y =—-p, peAP

By definition, [¢v]lx = S\ u(p).

Case2:v=pVvaqg, p,qeAP

Then [y ] = n(p) U n(q).

Case 3: v =EXp, peAP

In the following, let pre(X), for X C S, denote the set
pre(X) :={s|dte X:s—t}.
Then by definition [[¢ ]l = pre(u(p)).
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Computation of [¢/]]x: EU and EG

We shall first define EU and EG in terms of fixed points.

EU is characterized by a smallest fixed point: We first assume that no state
satisfies the EU formula and then, one by one, identify those that do satisfy it
after all.

By contrast, EG can be characterized by a largest fixed point: We first assume
that all states satisfy a given EG formula and then, one by one, eliminate those
that do not.

Based on this, we then derive algorithms for EG and EU.
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Computation of [¢]x: EG

Case4: ¢y =EGp, peAP

Lemma 1: [EG p]| is the largest solution (w.r.t. C) of the equation

X = p(p) N pre(X).

Proof: We proceed in two steps:

1. We show that [EG p]|« is indeed a solution of the equation, i.e.

[EG pllic = n(p) N pre([EG plk)-

Reminder: [EGpllx = {s|3p: p(0) =sAVi>0: p(i) € u(p) }.

‘=" Let s € [EG p]lx and p a “witness” path. Then obviously s € u(p).
Moreover, p(1) € [EG p]x (because of pl), hence s € pre([EG p] ).
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Continuation of the proof of Lemma 1:

1. “<="Let s € u(p) N pre([EG p] ). Then s has a direct successor t,
where a path p starts proving that t € [EG p]l. Thus, sp is a path
witnessing that s € [EG p]|«.

2. We show that [EG p] ¢ is indeed the largest solution, i.e., if M is a

solution of the equation, then M C [EG p]|«.

Let M C S be a solution of the equation, i.e. M = n(p) N pre(M), and let

s € M. We shall show s € [EG p] k.

— Since s € M, we have s € u(p) and s € pre(M).

— Since s € pre(M), there exist s; € M with s — s7.

— Repeating this argument, we can construct an infinite path p = ss{ - -- in
which all states are contained in n(p). Therefore, s € [EG p]|«.
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Lemma 2: Consider the sequence S, 7 (S), n(7(S)), ..., i.e. (w’(S))

i>0’
where 7(X) 1= p(p) N pre(X).
For all i > 0 we have ©/(S) O [EG p]«.
We state the following two facts:
(1) = is monotone: if X D X', then n(X) D =(X').
(2) The sequence is descending: S O ©(S) O w(7(S)) ... (follows from (1)).

Proof of Lemma 2: (induction over /)
Base: i = 0: obvious.
Step: i — i+ 1:

i+l (S)

pu(p) N pre(x'(S))
w(p) Npre([EG ©]lxc) (i.h. and monotonicity)

[EG plk

U
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Lemma 3: There exists an index i such that 7/(S) = =/11(S), and
[EG plx = 7'(S).

Proof: Since S is finite, the descending sequence must reach a fixed point, say
after i steps. Then we have 7/(S) = n(«x'(S)) = u(p) N pre(w'(S)).
Therefore, 7/(S) is a solution of the equation from Lemma (1).

Because of Lemma 1, we have 7/(S) C [EG p]«.
Because of Lemma 2, we have 7/(S) DO [EG p] k.
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An algorithm for EG

Lemma 3 gives us a strategy for computing [EG p] «: compute the sequence
S, ©(S), --- until a fixed point is reached.

For practicality, one would start immediately with X := n(p). Then, in each
round, one eliminates those states having no successors in X.

This can be efficiently implemented in O(|K|) time (“reference counting”).
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Example: Computation of [EG y]« (1/4)
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Example: Computation of [EG y]« (2/4)

mH(8) = pu(y)npre(S)
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Example: Computation of [EG y]« (3/4)

N
N
P
0
g
|

u(y) N pre(r*(8))
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Example: Computation of [EG y] « (4/4)

N
w
P
0
g
|

p(y) Npre(n2(8)) = 72(S): [EGylx = {so0, 52, 84}
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Computation of EU

Case5:y=pEUqg, p,qgec AP
Analogous to EG (proofs omitted):

Lemma 4: [p EU q] ¢ is the smallest solution (w.r.t. C) of the equation

X = p(q) U (p(p) N pre(X)).

Lemma 5: [p EU q] ¢ is the fixed point of the sequence
0, £0), £&@)), ...where &(X) 1= pu(q) U (u(p) N pre(X))
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An algorithm for EU

Lemma 5 proposes a strategy: Compute the sequence 0, £(0), --- until a fixed
point is reached.

In practice one would start with X := n(q). Then, in each step, one can add
those direct predecessors that are in n(p).

Can be done efficiently in O(|K|) time (multiple backwards DFS).

327



Example: Computation of [z EU y] i (1/4)

328



Example: Computation of [z EU y] i (2/4)

D) = p(y) U (u(2) N pre€®(0)))
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Example: Computation of [z EU y]  (3/4)

&2(0) = ply)u(u(2)npreEt(0)))

330



Example: Computation of [[zZ EU y|[|« (4/4)

SO S’/

&) = p(y)Uu(@) npre€2(0)) = £2(0)

[z EU yllx = {S0,S1, 52,54, S5, S6}
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