Quantitative Verification Chapter 5: Continuous-time Markov chains

Jan Křetínský

Technical University of Munich

Winter 2021/22

Continuous-time Markov chains CTMC

CTMC - Motivation

Dicrete-time abstraction is fitting for situations where

- flow of time irrelevant: execution steps, steps of a game, ...
- flow of time important but timing within the steps irrelevant: discretized time (e.g. one day per step) without loss of precision.

CTMC - Motivation

Dicrete-time abstraction is fitting for situations where

- flow of time irrelevant: execution steps, steps of a game, ...
- flow of time important but timing within the steps irrelevant: discretized time (e.g. one day per step) without loss of precision.

For some problems, the discrete-time abstraction is not appropriate.

How long do I need to wait (in 1910') on average for a telephone connection?

How many pump machines a gas station needs to satisfy the peak demand?

How often do safety functions in a nuclear power plant fail (at the same time)?

CTMC - Motivation

Dicrete-time abstraction is fitting for situations where

- flow of time irrelevant: execution steps, steps of a game, ...
- flow of time important but timing within the steps irrelevant: discretized time (e.g. one day per step) without loss of precision.

For some problems, the discrete-time abstraction is not appropriate.

How long do I need to wait (in 1910') on average for a telephone connection?

How many pump machines a gas station needs to satisfy the peak demand?

How often do safety functions in a nuclear power plant fail (at the same time)?

- One could address these questions by discretizing time.
- However, continuous-time models are more suitable.
- Continuous-time models are actually also easy to solve!

CTMC – Stochastic Process Definition

CTMC - Math / Statistics Definition (1)

Recall

A discrete-time stochastic process $\{X_n \mid n \in \mathbb{N}\}$ over state space *S* is:

• Markov if for all n > 1 and s_0, \ldots, s_n with $P(X_{n-1} = s_{n-1}) > 0$:

$$P(X_n = s_n \mid X_{n-1} = s_{n-1}, \dots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1}).$$

▶ homogeneous if for all n > 1 and $s, s' \in S$ with $P(X_0 = s) > 0$:

$$P(X_{n+1} = s' | X_n = s) = P(X_1 = s' | X_0 = s)$$

CTMC - Math / Statistics Definition (1)

Recall

A discrete-time stochastic process $\{X_n \mid n \in \mathbb{N}\}$ over state space S is:

• Markov if for all n > 1 and s_0, \ldots, s_n with $P(X_{n-1} = s_{n-1}) > 0$:

$$P(X_n = s_n \mid X_{n-1} = s_{n-1}, \dots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1}).$$

▶ homogeneous if for all n > 1 and $s, s' \in S$ with $P(X_0 = s) > 0$:

$$P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)$$

Definition:

A continuous-time stochastic process $\{X_t \mid t \in \mathbb{R}_{\geq 0}\}$ over states S is

• Markov if for all n > 1, $0 = t_0 < t_1 < \cdots < t_n$ and s_0, \ldots, s_n with $P(X_{t_{n-1}} = s_{n-1}) > 0$:

$$P(X_{t_n} = s_n \mid X_{t_{n-1}} = s_{n-1}, \dots, X_{t_0} = s_0) = P(X_{t_n} = s_n \mid X_{t_{n-1}} = s_{n-1}).$$

▶ homogeneous if for all $t, t' \in \mathbb{R}$ and $s, s' \in S$ with $P(X_0 = s) > 0$:

$$P(X_{t+t'} = s' \mid X_t = s) = P(X_{t'} = s' \mid X_0 = s).$$

We consider only discrete-space homogeneous Markov processes, that we call continuous-time Markov chains (CTMC).

CTMC - Math / Statistics definition (2)

Sojourn time:

Let $\{X_t \mid t \in \mathbb{R}_{\geq 0}\}$ be a continuous-time Markov chain. We define for each state s and $i \in \mathbb{N}$

- ▶ random variables $A_{s,i}$, $B_{s,i}$ denoting time of entering and leaving *s* for the *i*-th time, respectively i.e. $A_{s,1} = \inf\{t \ge 0 \mid X_t = s\}$, and $B_{s,i} = \inf\{t > A_{s,i} \mid X_t \neq s\}$ and $A_{s,i+1} = \inf\{t > B_{s,i} \mid X_t = s\}$;
- ► random variable $T_{s,i}$ denoting the sojourn time upon the *i*-th visit to *s*, i.e. $T_{s,i} = B_{s,i} A_{s,i}$.

CTMC - Math / Statistics definition (2)

Sojourn time:

Let $\{X_t \mid t \in \mathbb{R}_{\geq 0}\}$ be a continuous-time Markov chain. We define for each state s and $i \in \mathbb{N}$

- ▶ random variables $A_{s,i}$, $B_{s,i}$ denoting time of entering and leaving *s* for the *i*-th time, respectively i.e. $A_{s,1} = \inf\{t \ge 0 \mid X_t = s\}$, and $B_{s,i} = \inf\{t > A_{s,i} \mid X_t \neq s\}$ and $A_{s,i+1} = \inf\{t > B_{s,i} \mid X_t = s\}$;
- ► random variable $T_{s,i}$ denoting the sojourn time upon the *i*-th visit to *s*, i.e. $T_{s,i} = B_{s,i} A_{s,i}$.

Observation:

For any *i* and t, t' we have from the two properties

$$P(T_{s,i} \leq t + t' | T_{s,i} > t) = P(T_{s,i} \leq t').$$

CTMC - Math / Statistics definition (2)

Sojourn time:

Let $\{X_t \mid t \in \mathbb{R}_{\geq 0}\}$ be a continuous-time Markov chain. We define for each state s and $i \in \mathbb{N}$

- ▶ random variables $A_{s,i}$, $B_{s,i}$ denoting time of entering and leaving s for the *i*-th time, respectively i.e. $A_{s,1} = \inf\{t \ge 0 \mid X_t = s\}$, and $B_{s,i} = \inf\{t > A_{s,i} \mid X_t \neq s\}$ and $A_{s,i+1} = \inf\{t > B_{s,i} \mid X_t = s\}$;
- ► random variable $T_{s,i}$ denoting the sojourn time upon the *i*-th visit to *s*, i.e. $T_{s,i} = B_{s,i} A_{s,i}$.

Observation:

For any i and t, t' we have from the two properties

$$P(T_{s,i} \leq t+t' \mid T_{s,i} > t) = P(T_{s,i} \leq t').$$

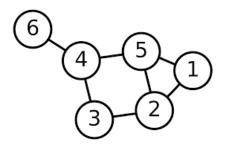
Proposition:

Each $T_{s,i}$ is exponentially distributed with some rate λ_s , i.e.

$$F_{T_{s,i}}(x) = 1 - e^{-\lambda_s x}$$
 $f_{T_{s,i}}(x) = \lambda_s e^{-\lambda_s x}$

with the expected value given by $E[T_{s,i}] = \frac{1}{\lambda_c}$.

CTMC – Graph Based Definition



CTMC [Graph] - Definition (1)

Definition: CTMC

A continuous-time Markov chain is a tuple (S, R, π_0) where

- S is the set of states,
- $\mathsf{R}: S \times S \to \mathbb{R}_{\geq 0}$ is the transition rate matrix, and
- π_0 is the initial distribution.

CTMC [Graph] - Definition (1)

Definition: CTMC

A continuous-time Markov chain is a tuple (S, R, π_0) where

- S is the set of states,
- ▶ $R: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the transition rate matrix, and
- π_0 is the initial distribution.

Definition: Embedded DTMC We define the exit rate of a state $s \in S$ as

$$E(s) = \sum_{s' \in S} \mathsf{R}(s, s') \quad \leftarrow \text{ including the self-loop!}$$

The embedded DTMC coincides on S and π_0 but has the transition probability matrix E defined by

$$\mathsf{E}(s,s') = \begin{cases} \frac{\mathsf{R}(s,s')}{E(s)} & \text{if } E(s) > 0, \\ 0 & \text{if } E(s) = 0 \land s \neq s', \text{ and} \\ 1 & \text{if } E(s) = 0 \land s = s'. \end{cases}$$

Definition:

The probability measure for a CTMC (S, R, π_0) is induced by the measure for cylinder sets $P(C(s_0 I_0 \dots s_n))$ defined as

$$\pi_0(s)\prod_{0\leq i< n}\mathsf{E}(s_i,s_{i+1})\left(e^{-\mathsf{E}(s_i)\inf I_i}-e^{-\mathsf{E}(s_i)\sup I_i}\right).$$

CTMC - Solution Techniques

CTMC - Transient Analysis (1)

Symbolic Solution:

For a CTMC $C = (S, Q, \pi_0)$, the transient probability distribution π_t at time t satisfies

$$\frac{d\pi_t}{dt} = \pi_t Q.$$

We can symbolically solve this system of differential equations by

$$\pi_t = \pi_0 e^{\mathsf{Q}t}$$

where

$$e^{\mathsf{Q}t} = \sum_{i=0}^{\infty} \frac{(\mathsf{Q}t)^i}{i!}.$$

But unfortunately $(Qt)^i$ is unstable to compute and the infinite sum is not easy to truncate.

CTMC - Transient Analysis (2)

Another approach?

CTMC - Transient Analysis (2)

Another approach?

Separate the discrete and continuous randomness!

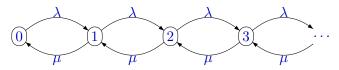
Definition: Uniformization Rate For a CTMC $C = (S, R, \pi_0)$ the uniformization rate q is defined as

 $q\geq \max_{s\in S}E(s).$

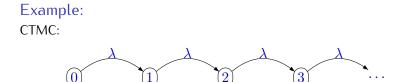
Definition: Uniformized DTMC For a CTMC $C = (S, R, \pi_0)$, the uniformized DTMC (with uniformization rate *q*), denoted by uni(C) is defined as the DTMC (S, P, π_0) with

$$\mathsf{R}'(i,j) = \begin{cases} \mathsf{R}(i,j) & \text{for } i \neq j \\ q - \sum_k \mathsf{R}(i,k) & \text{for } i = j \end{cases}.$$

Example: CTMC:



Uniformized DTMC with $q = \lambda + \mu$:



Uniformized DTMC with $q = \lambda + \mu$: add a self-loop with rate μ on 0

Lemma:

Let $C = (S, R, \pi_0)$ be a CTMC and $uni(C) = (S, P, \pi_0)$ its uniformized DTMC with uniformization rate q and t > 0. Let $\psi(i, qt)$ denote the Poisson probability at i (with parameter qt) and π'_i the transient probability distribution of the uniformized DTMC

at time step *i*. Then

$$\pi_t = \sum_{i=0}^{\infty} \psi(i, qt) \pi'_i.$$

Computation:

How to compute the infinite sum $\sum_{i=0}^{\infty} \pi'_i \psi(i, qt)$:

Computation:

How to compute the infinite sum $\sum_{i=0}^{\infty} \pi'_i \psi(i, qt)$:

> The Poisson probabilities decrease very fast, i.e.,

$$\lim_{i o\infty}rac{\psi(i+1,qt)}{\psi(i,qt)}=\lim_{i o\infty}rac{qt}{i+1}=0.$$

Computation:

How to compute the infinite sum $\sum_{i=0}^{\infty} \pi'_i \psi(i, qt)$:

The Poisson probabilities decrease very fast, i.e.,

$$\lim_{i
ightarrow\infty}rac{\psi(i+1,qt)}{\psi(i,qt)}=\lim_{i
ightarrow\infty}rac{qt}{i+1}=0.$$

For each $\epsilon > 0$, the Fox-Glynn algorithm provides bounds *L*, *R* such that

$$\sum_{i=L}^{\kappa} \psi(i,qt) \ge 1-\epsilon.$$

Moreover, $\psi(i, qt)$ for $L \leq i \leq R$ can be computed efficiently.

Computation:

How to compute the infinite sum $\sum_{i=0}^{\infty} \pi'_i \psi(i, qt)$:

The Poisson probabilities decrease very fast, i.e.,

$$\lim_{i
ightarrow\infty}rac{\psi(i+1,qt)}{\psi(i,qt)}=\lim_{i
ightarrow\infty}rac{qt}{i+1}=0.$$

For each $\epsilon > 0$, the Fox-Glynn algorithm provides bounds *L*, *R* such that

$$\sum_{i=L}^{\kappa} \psi(i,qt) \ge 1-\epsilon.$$

Moreover, $\psi(i, qt)$ for $L \leq i \leq R$ can be computed efficiently.

• Computation of π'_i via the known algorithms for DTMCs.

Theorem:

Steady state of a CTMC exists iff steady state of its uniformized DTMC exists. In this case, they equal.

Theorem:

Steady state of a CTMC exists iff steady state of its uniformized DTMC exists. In this case, they equal.

By taking higher uniformization rate than $\max_s E(s)$, we have self-loops in every state; hence the uniformized DTMC is aperiodic (other conditions on existence of steady-state were equivalent).

Continuous Stochastic Logic (CSL)

Definition: Labelled CTMC A labelled CTMC is a tuple $C = (S, R, \pi_0, L)$ with labelling function $L: S \rightarrow 2^{AP}$ where *AP* is a set of atomic propositions.

Definition: Syntax of CSL State formulas:

$$\Phi = true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathcal{P}_J(\phi) \mid \mathcal{S}_J(\Phi)$$

where $a \in AP$, $J \subseteq [0, 1]$ is an interval with rational bounds. Path formulas:

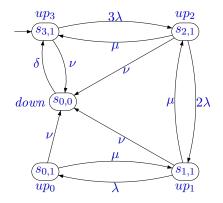
 $\phi = \mathcal{X} \ ^{\prime} \Phi \mid \Phi_1 \ \mathcal{U} \ ^{\prime} \Phi_2$

where $I \subseteq \mathbb{R}_{>0}$ denotes an interval.

CSL - Example

Example:

We consider a triple modular redundant system:



Specifications:

Let $up = \neg down$, then we can specify the following performance properties:

- S_J(up): steady state availability
- ▶ $\mathcal{P}_J(\mathcal{F}^{[t,t]}up)$: instantaneous availability at time t
- ▶ $\mathcal{P}_J(\Phi \ \mathcal{U}^{[t,t]}up)$: conditional instantaneous availability at time t
- $\mathcal{P}_J(\mathcal{G}^{[t,t']}up)$: interval availability

We can even nest \mathcal{P} and \mathcal{S} :

- ▶ $\mathcal{P}_{[0,0.01]}(up_2 \lor up_3 \ \mathcal{U}^{[0,10]} \ down)$: The probability of going down within 10 time units after having continuously operated with at least two processors is at most 0.01.
- S_[0.9,1.0](P_[0.8,1.0](G^[0,10]¬down)): In the long-run, at least 90% of time is spent in states where the probability that the system will not go down within 10 time units is at least 0.8.

Let us fix a labelled CTMC $C = (S, R, \pi_0, L)$, goal states $B \subseteq S$, and interval of time $I \subseteq \mathbb{R}_{\geq 0}$. We write $Reach^{I}(B) := Paths(\mathcal{F}^{I}B)$. Reachability What is the probability $P(Reach^{I}(B))$? Let us fix a labelled CTMC $C = (S, R, \pi_0, L)$, goal states $B \subseteq S$, and interval of time $I \subseteq \mathbb{R}_{\geq 0}$. We write $Reach^{I}(B) := Paths(\mathcal{F}^{I}B)$. Reachability What is the probability $P(Reach^{I}(B))$?

How to compute it?

Let us fix a labelled CTMC $C = (S, R, \pi_0, L)$, goal states $B \subseteq S$, and interval of time $I \subseteq \mathbb{R}_{\geq 0}$. We write $Reach^{I}(B) := Paths(\mathcal{F}^{I}B)$. Reachability What is the probability $P(Reach^{I}(B))$?

How to compute it? First, we address I = [0, t]

Let us fix a labelled CTMC $C = (S, R, \pi_0, L)$, goal states $B \subseteq S$, and interval of time $I \subseteq \mathbb{R}_{\geq 0}$. We write $Reach^{I}(B) := Paths(\mathcal{F}^{I}B)$. Reachability What is the probability $P(Reach^{I}(B))$?

How to compute it? First, we address I = [0, t]

Lemma:

For any labelled CTMC $C = (S, R, \pi_0, L)$, let C[B] be obtained by making states in B absorbing. Then, the reachability probability $P(Reach^{I}(B))$ does not change.

Theorem: For $C = (S, R, \pi_0, L)$ with an absorbing set of states B and I = [0, t]: $P(Reach^{[0,t]}(B)) \stackrel{1}{=} P(Reach^{[t,t]}(B)) \stackrel{2}{=} \sum_{s' \in B} \pi_t(s').$

Proof Sketch:

Theorem: For $C = (S, R, \pi_0, L)$ with an absorbing set of states B and I = [0, t]: $P(Reach^{[0,t]}(B)) \stackrel{1}{=} P(Reach^{[t,t]}(B)) \stackrel{2}{=} \sum_{s' \in B} \pi_t(s').$

Proof Sketch:

- 1. Show that $\sigma \in Reach^{[0,t]}(B)$ iff $\sigma \in Reach^{[t,t]}(B)$.
- 2. Trivial.

How to solve the case I = [a, b]?

How to solve the case I = [a, b]?

Observation: Assuming I = [a, b] with $0 < a \le b$. Note that

 $P(Reach^{[a,b]}(B)) = P(Reach^{[0,b]}(B)) - P(Reach^{[0,a]}(B)).$

How to solve the case I = [a, b]?

Observation: Assuming I = [a, b] with $0 < a \le b$. Note that

 $P(Reach^{[a,b]}(B)) \neq P(Reach^{[0,b]}(B)) - P(Reach^{[0,a]}(B)).$

How to solve the case I = [a, b]?

Observation: Assuming I = [a, b] with $0 < a \le b$. Note that $P(Reach^{[a,b]}(B)) \ne P(Reach^{[0,b]}(B)) - P(Reach^{[0,a]}(B)).$

Counterexample:

Theorem: Let $C = (S, R, \pi_0, L)$ with an absorbing set of states *B* and I = [a, b] with a > 0, then,

$$P(Reach^{[a,b]}(B)) = \sum_{s \in S} \pi_a(s) \cdot P_s(Reach^{[0,b-a]}(B)).$$

$$P(Reach^{[a,b]}(B)) = \sum_{s \in S} P_s(X_a = s) P\left(Reach^{[a,b]}(B) \mid X_a = s'\right)$$
$$= \sum_{s \in S} \pi_a(s) P\left(Reach^{[0,b-a]}(B) \mid X_0 = s\right)$$
$$= \sum_{s' \in S} \pi_a(s) P_s\left(Reach^{[0,b-a]}(B)\right).$$

Interval Bounded Until $\Phi_1 \mathcal{U}^{[a,b]} \Phi_2$:

Interval-bounded reachability - just discussed.

Interval Bounded Until $\Phi_1 \mathcal{U}^{[a,b]} \Phi_2$:

Interval-bounded reachability - just discussed.

Unbounded Until $\Phi_1 \mathcal{U} \Phi_2$:

Interval Bounded Until $\Phi_1 \mathcal{U}^{[a,b]} \Phi_2$:

Interval-bounded reachability - just discussed.

Unbounded Until $\Phi_1 \mathcal{U} \Phi_2$:

Can be reduced to the analogous PCTL model checking problem on the embedded Markov chain of C[B]. Intuition: Time does not play any role.

Interval Bounded Until $\Phi_1 \mathcal{U}^{[a,b]} \Phi_2$:

Interval-bounded reachability - just discussed.

Unbounded Until $\Phi_1 \mathcal{U} \Phi_2$:

Can be reduced to the analogous PCTL model checking problem on the embedded Markov chain of C[B]. Intuition: Time does not play any role.

Next $\mathcal{X}^{[a,b]}\Phi$:

Interval Bounded Until $\Phi_1 \mathcal{U}^{[a,b]} \Phi_2$:

Interval-bounded reachability - just discussed.

Unbounded Until $\Phi_1 \mathcal{U} \Phi_2$:

Can be reduced to the analogous PCTL model checking problem on the embedded Markov chain of C[B]. Intuition: Time does not play any role.

Next $\mathcal{X}^{[a,b]}\Phi$: $P_s(\mathcal{X}^{[a,b]}\Phi) = (e^{-E(s)a} - e^{-E(s)b}) \sum_{s' \in Sat(\Phi)} E(s,s').$ For $I = [0, \infty)$, this simplifies to $P_s(\mathcal{X} \Phi) = \sum_{s' \in Sat(\Phi)} E(s,s').$

Interval Bounded Until $\Phi_1 \mathcal{U}^{[a,b]} \Phi_2$:

Interval-bounded reachability - just discussed.

Unbounded Until $\Phi_1 \mathcal{U} \Phi_2$:

Can be reduced to the analogous PCTL model checking problem on the embedded Markov chain of C[B]. Intuition: Time does not play any role.

Next $\mathcal{X}^{[a,b]}\Phi$: $P_s(\mathcal{X}^{[a,b]}\Phi) = (e^{-E(s)a} - e^{-E(s)b}) \sum_{s' \in Sat(\Phi)} E(s,s').$ For $I = [0, \infty)$, this simplifies to $P_s(\mathcal{X} \Phi) = \sum_{s' \in Sat(\Phi)} E(s,s').$ Steady State $\mathcal{S}_{< p}(\Phi)$:

Interval Bounded Until $\Phi_1 \mathcal{U}^{[a,b]} \Phi_2$:

Interval-bounded reachability - just discussed.

Unbounded Until $\Phi_1 \mathcal{U} \Phi_2$:

Can be reduced to the analogous PCTL model checking problem on the embedded Markov chain of C[B]. Intuition: Time does not play any role.

Next $\mathcal{X}^{[a,b]}\Phi$: $P_{s}(\mathcal{X}^{[a,b]}\Phi) = (e^{-E(s)a} - e^{-E(s)b}) \sum_{s' \in Sat(\Phi)} E(s,s').$

For $I = [0, \infty)$, this simplifies to $P_s(\mathcal{X} \Phi) = \sum_{s' \in Sat(\Phi)} \mathsf{E}(s, s')$.

Steady State $S_{< p}(\Phi)$:

Can be reduced to the analogous PCTL model checking problem on the uniformized Markov chain uni(C). Intuition: A CTMC and its uniformized chain have the same steady state distribution.