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Continuous-time Markov chains

CTMC
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CTMC - Motivation

Dicrete-time abstraction is fitting for situations where
> flow of time irrelevant: execution steps, steps of a game, ...
> flow of time important but timing within the steps irrelevant:
discretized time (e.g. one day per step) without loss of precision.
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CTMC - Motivation

Dicrete-time abstraction is fitting for situations where
> flow of time irrelevant: execution steps, steps of a game,
> flow of time important but timing within the steps irrelevant:
discretized time (e.g. one day per step) without loss of precision.

For some problems, the discrete-time abstraction is not appropriate.

How often do safety
functions in a nuclear

How long do | need to

How many pump

wait (in 1910°) on machines a gas station ]
average for a needs to satisfy the power plant fail (at

telephone connection? peak demand? the same time)?

» One could address these questions by discretizing time.
» However, continuous-time models are more suitable.

» Continuous-time models are actually also easy to solve!
3/27



CTMC — Stochastic Process
Definition



CTMC - Math / Statistics Definition (1)

Recall

A discrete-time stochastic process {X, | n € N} over state space S is:
» Markov if for all n > 1 and s, ..., s, with P(X,_1 =s,-1) > 0:

P(Xn = 5; ‘ Xn,1 = Sp—1,--- ,XO = 50) = P(X,, = Sp | Xn,1 = Snfl).
» homogeneous if for all n > 1 and s.s" € S with P(Xy = s) > 0:
P(Xn+1 iS/ | Xn:S) = P(X1 :S/ | XQ :S)
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CTMC - Math / Statistics Definition (1)

Recall

A discrete-time stochastic process {X, | n € N} over state space S is:
» Markov if for all n > 1 and s, ..., s, with P(X,_1 =s,-1) > 0:
P(X,=sn| Xoc1 =Sn-1,.--, X0 = 50) = P(Xy, = sp | Xoe1 = Sn—1)-
» homogeneous if for all n > 1 and s.s" € S with P(Xy = s) > 0:
PXpr1=5 | Xo=s)=P(X1=5"| Xo=5)
Definition:

A continuous-time stochastic process {X; | t € R>o} over states S is

» Markovifforalln>1,0=t <t;<---<t,and s,...,s, with
P(Xt,_, = sn—1) > O:

P(X:, = sn | Xt,_, = Sn—1,--, Xty = 50) = P(Xt, = sn | Xt,_, = Sn—1)-
» homogeneous if for all ¢, € R and s,s" € S with P(Xy = s) > 0:
P(Xt+f/:5/ ‘Xt:S):P(Xt/:SI|X():5).

We consider only discrete-space homogeneous Markov processes,

that we call continuous-time Markov chains (CTMC). 512



CTMC - Math / Statistics definition (2)

Sojourn time:
Let {X; | t € R>o} be a continuous-time Markov chain. We define for
each state s and / € N

> random variables A ;, B ; denoting time of entering and leaving
s for the i-th time, respectively t.e. A;; = inf{t > 0| X; = s}, and
Bsi= inf{t > AS),' ‘ Xt 74— S} and A53[+1 = inf{t > B ; ‘ Xi = S};

> random variable T;; denoting the sojourn time upon the /-th
visit to s, Le. To; = B — A .
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Observation:
For any i and t,t" we have from the two properties

P(Tsi<t+t| Tsi>t)=P(Ts; <t).
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CTMC - Math / Statistics definition (2)

Sojourn time:

Let {X; | t € R>o} be a continuous-time Markov chain. We define for
each state s and / € N

> random variables A ;, B ; denoting time of entering and leaving
s for the i-th time, respectively t.e. A;; = inf{t > 0| X; = s}, and
Bsi=inf{t > As ;| X¢ # s} and Ag ip1 = inf{t > Bs; | Xy = s};

> random variable T;; denoting the sojourn time upon the /-th
visitto s, te. Ts; = Bs; — As,,'.

Observation:
For any i and t,t" we have from the two properties

'D(Tsfi <t+ t/ ‘ Ts,i> t) = P(Ts),' < t/).

Proposition:

Each T ; is exponentially distributed with some rate A, i.e.
FTS_’,(X) =1- e_ASX fTSJ(X) = /\se_Asx

with the expected value given by E[T, ] = +. 6127



CTMC — Graph Based Definition

O



CTMC [Graph] - Definition (1)
Definition: CTMC
A continuous-time Markov chain is a tuple (S, R, m) where

» S is the set of states,
> R:S5 x5 — Ry is the transition rate matrix, and

» 7o is the initial distribution.

8/27



CTMC [Graph] - Definition (1)

Definition: CTMC

A continuous-time Markov chain is a tuple (S, R, m) where
» S is the set of states,
> R:S5 x5 — Ry is the transition rate matrix, and

» 7o is the initial distribution.

Definition: Embedded DTMC

We define the exit rate of a state s € S as

E(s) = Z R(s,s’) < including the self-loop!
s’eS

The embedded DTMC coincides on S and 7y but has the transition
probability matrix E defined by

R(s,s’)
(E(s)) if E(s) >0,
E(s,s") = 0 if E(s) Ns # s and

=0
1if E(s)=0As=5".
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CTMC [Graph] - Definition (2)

Definition:
The probability measure for a CTMC (S, R, mp) is induced by the
measure for cylinder sets P(C(soly .. .s,)) defined as

Wo(S) H E(5i55i+1) (efE(s,-)ian,- - efE(s,')supl,) )

0<i<n
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CTMC - Solution Techniques




CTMC - Transient Analysis (1)

Symbolic Solution:

For a CTMC C = (5, Q. m), the transient probability distribution 7;

at time t satisfies

We can symbolically solve this system of differential equations by

where

th

= m.Q.
dt !
Ty = ﬂ_ert

/!

But unfortunately (Qt)’ is unstable to compute and the infinite sum

is not easy to truncate.
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CTMC - Transient Analysis (2)

Another approach?
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CTMC - Transient Analysis (2)

Another approach?

Separate the discrete and continuous randomness!

12127



CTMC - Uniformization (1)

Definition: Uniformization Rate
For a CTMC C = (S, R, mg) the uniformization rate g is defined as

> E(s).
72 1 E)

Definition: Uniformized DTMC

For a CTMC C = (5, R, ), the uniformized DTMC (with
uniformization rate g), denoted by uni(C) is defined as the DTMC
(S,P,mp) with

i) = R(i,J) for i #J
RI(i,j) = {qzk R(i,k) fori=j
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CTMC - Uniformization (2)

Example:
CTMC:

Uniformized DTMC with g = A +
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CTMC - Uniformization (2)

Example:
CTMC:

Uniformized DTMC with g = A + u: add a self-loop with rate ;2 on 0
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CTMC - Transient Analysis - By Uniformization

Lemma:

Let C = (5,R,mp) be a CTMC and uni(C) = (S, P, m) its uniformized
DTMC with uniformization rate g and t > 0.

Let ¥ (i, gt) denote the Poisson probability at / (with parameter gt)
and 7/ the transient probability distribution of the uniformized DTMC
at time step /. Then

o0
T = Z W(i, gt)m).

i=0
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CTMC - Transient Analysis - Algorithm

Computation:
How to compute the infinite sum >~ ", 7/ (7, gt):
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CTMC - Transient Analysis - Algorithm

Computation:
How to compute the infinite sum >~ ", 7/ (7, gt):
» The Poisson probabilities decrease very fast, i.e.,
Y(i+1,qt) _ gt

lim ———— = | = 0.
S (i, qt) imbe i+ 1
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CTMC - Transient Analysis - Algorithm

Computation:
How to compute the infinite sum >~ ", 7/ (7, gt):
» The Poisson probabilities decrease very fast, i.e.,
(i +1,qt) _ qt

lim ———— = | = 0.
S (i, qt) imbe i+ 1

» For each ¢ > 0, the Fox-Glynn algorithm provides bounds L, R
such that

M=

AT

Y(i,qt) > 1 —e.

1

Moreover, (i, gt) for L < i < R can be computed efficiently.
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CTMC - Transient Analysis - Algorithm

Computation:
How to compute the infinite sum >~ ", 7/ (7, gt):
» The Poisson probabilities decrease very fast, i.e.,
(i +1,qt) _ qt

lim ———— = | = 0.
S (i, qt) imbe i+ 1

» For each ¢ > 0, the Fox-Glynn algorithm provides bounds L, R
such that

R
Z (i, qt) >1—e.
i=L
Moreover, (i, gt) for L < i < R can be computed efficiently.

» Computation of 7/ via the known algorithms for DTMCs.
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CTMC - Steady-State

Theorem:
Steady state of a CTMC exists iff steady state of its uniformized
DTMC exists. In this case, they equal.
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CTMC - Steady-State

Theorem:
Steady state of a CTMC exists iff steady state of its uniformized
DTMC exists. In this case, they equal.

By taking higher uniformization rate than max. E(s), we have
self-loops in every state; hence the uniformized DTMC is aperiodic
(other conditions on existence of steady-state were equivalent).
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Continuous Stochastic Logic

(CSL)
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CSL - Labelled CTMC and Syntax

Definition: Labelled CTMC
A labelled CTMC is a tuple C = (S, R, 7o, L) with labelling function
L:S — 247 where AP is a set of atomic propositions.

Definition: Syntax of CSL

State formulas:
d=true|a| P APy | =D | Py(o) | Sy(P)

where a € AP, J C [0, 1] is an interval with rational bounds.

Path formulas:
p=X"'d| o, U D,

where | C R>( denotes an interval.
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CSL - Example

Example:

We consider a triple modular redundant system:
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CSL - Example

Specifications:
Let up = —down, then we can specify the following performance
properties:
> S,(up): steady state availability
> P, (F [Eup): instantaneous availability at time t
> P,(¢ U [ up): conditional instantaneous availability at time ¢
> PG
We can even nest P and S:

G (L1 up): interval availability

> Ploo.01)(up> V ups U %1% down): The probability of going down
within 10 time units after having continuously operated with at
least two processors is at most 0.01.

> Sj0.0.1.0/(Pos.1.0/(G ©*down)): In the long-run, at least 90% of
time is spent in states where the probability that the system
will not go down within 10 time units is at least 0.8.
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CSL - Reachability

Let us fix a labelled CTMC C = (S, R, 7o, L), goal states B C S, and
interval of time / C R-(. We write Reach’(B) := Paths(F 'B).

Reachability
What is the probability P(Reach'(B))?

22(27
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CSL - Reachability

Let us fix a labelled CTMC C = (S, R, 7o, L), goal states B C S, and
interval of time / C R-(. We write Reach’(B) := Paths(F 'B).

Reachability
What is the probability P(Reach'(B))?

How to compute it? First, we address | = [0, t]

Lemma:

For any labelled CTMC C = (S, R, 7o, L), let C[B] be obtained by
making states in B absorbing. Then, the reachability probability
P(Reach'(B)) does not change.

22(27



CSL - Reachability - Time-bounded

Theorem:
For C = (5,R, mo, L) with an absorbing set of states B and / = [0, t]:

P(Reach[o't](B)) L P(Reach[t"t](B)) 2 Z me(s').

s’eB

Proof Sketch:
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CSL - Reachability - Time-bounded

Theorem:
For C = (5,R, mo, L) with an absorbing set of states B and / = [0, t]:

P(Reach[o't](B)) L P(Reach[t"t](B)) 2 Z me(s').

s’eB

Proof Sketch:
1. Show that o € Reachl®tl(B) iff o € Reachl"*l(B).
2. Trivial.
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CSL - Reachability - Interval Bounded (1)

How to solve the case | = [a, b]?
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CSL - Reachability - Interval Bounded (1)

How to solve the case | = [a, b]?

Observation:
Assuming | = [a, b] with 0 < a < b. Note that

P(Reach!®*!1(B)) = P(Reach®*l(B)) — P(Reachl®?(B)).
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CSL - Reachability - Interval Bounded (1)

How to solve the case | = [a, b]?
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CSL - Reachability - Interval Bounded (1)

How to solve the case | = [a, b]?
Observation:
Assuming | = [a, b] with 0 < a < b. Note that

P(Reach!®*1(B)) # P(Reach®*l(B)) — P(Reachl®?(B)).

Counterexample:

24/27



CSL - Reachability - Interval Bounded (2)

Theorem:

Let C = (S5,R, mo, L) with an absorbing set of states B and | = [a, b]
with a > 0, then,

P(ReachlPl(B)) = > " m,(s) - Ps(Reachl®*~(B)).

seS

Proof Sketch:
By the theorem of total probability we have:

P(Reach®?(B)) = 3~ Py( (Reach[a (B | X, = s’>
seS

=3 m(s)P (Reach[o’b""](B) | Xo = s>

ses

= Z ma(s (Reach[o b a](B)> .

s’eS

25/27



CSL Model Checking



CSL - Model Checking

Interval Bounded Until ®; ¢/ [@Pld,:

Interval-bounded reachability - just discussed.
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Interval Bounded Until ®; ¢/ [@Pld,:

Interval-bounded reachability - just discussed.

Unbounded Until ®; ¢/ ®5:

Can be reduced to the analogous PCTL model checking problem on
the embedded Markov chain of C[B]. Intuition: Time does not play
any role.

Next X [2bld:

Ps(X [a'b]cb) = (e*E(s) Z E(s,s’)

s’ €Sat(P)

For / = [0.00), this simplifies to Ps(X ®) =37, o, 4 E(s,s").
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CSL - Model Checking

Interval Bounded Until ®; ¢/ [@Pld,:

Interval-bounded reachability - just discussed.

Unbounded Until ®; ¢/ ®5:

Can be reduced to the analogous PCTL model checking problem on
the embedded Markov chain of C[B]. Intuition: Time does not play
any role.

Next X [2bld:

Ps(X [a'b](b) = (e*E(s) Z E(s,s’)

s’ €Sat(P)

For / = [0.00), this simplifies to Ps(X ®) =37, o, 4 E(s,s").

Steady State S_,(P):

Can be reduced to the analogous PCTL model checking problem on
the uniformized Markov chain uni(C). Intuition: A CTMC and its
uniformized chain have the same steady state distribution.

27/27



