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Continuous-time Markov chains
CTMC
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CTMC - Motivation
Dicrete-time abstraction is fitting for situations where
I flow of time irrelevant: execution steps, steps of a game, . . .
I flow of time important but timing within the steps irrelevant:

discretized time (e.g. one day per step) without loss of precision.

For some problems, the discrete-time abstraction is not appropriate.

How long do I need to
wait (in 1910’) on
average for a
telephone connection?

How many pump
machines a gas station
needs to satisfy the
peak demand?

How often do safety
functions in a nuclear
power plant fail (at
the same time)?

I One could address these questions by discretizing time.
I However, continuous-time models are more suitable.
I Continuous-time models are actually also easy to solve!
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CTMC – Stochastic Process
Definition
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CTMC - Math / Statistics Definition (1)

Recall
A discrete-time stochastic process {Xn | n ∈ N} over state space S is:
I Markov if for all n > 1 and s0, . . . , sn with P(Xn−1 = sn−1) > 0:

P(Xn = sn | Xn−1 = sn−1, . . . ,X0 = s0) = P(Xn = sn | Xn−1 = sn−1).

I homogeneous if for all n > 1 and s, s ′ ∈ S with P(X0 = s) > 0:
P(Xn+1 = s ′ | Xn = s) = P(X1 = s ′ | X0 = s)

Definition:
A continuous-time stochastic process {Xt | t ∈ R≥0} over states S is
I Markov if for all n > 1, 0 = t0 < t1 < · · · < tn and s0, . . . , sn with

P(Xtn−1 = sn−1) > 0:
P(Xtn = sn | Xtn−1 = sn−1, . . . ,Xt0 = s0) = P(Xtn = sn | Xtn−1 = sn−1).

I homogeneous if for all t, t ′ ∈ R and s, s ′ ∈ S with P(X0 = s) > 0:
P(Xt+t′ = s ′ | Xt = s) = P(Xt′ = s ′ | X0 = s).

We consider only discrete-space homogeneous Markov processes,
that we call continuous-time Markov chains (CTMC).

5 / 27



CTMC - Math / Statistics Definition (1)

Recall
A discrete-time stochastic process {Xn | n ∈ N} over state space S is:
I Markov if for all n > 1 and s0, . . . , sn with P(Xn−1 = sn−1) > 0:

P(Xn = sn | Xn−1 = sn−1, . . . ,X0 = s0) = P(Xn = sn | Xn−1 = sn−1).

I homogeneous if for all n > 1 and s, s ′ ∈ S with P(X0 = s) > 0:
P(Xn+1 = s ′ | Xn = s) = P(X1 = s ′ | X0 = s)

Definition:
A continuous-time stochastic process {Xt | t ∈ R≥0} over states S is
I Markov if for all n > 1, 0 = t0 < t1 < · · · < tn and s0, . . . , sn with

P(Xtn−1 = sn−1) > 0:
P(Xtn = sn | Xtn−1 = sn−1, . . . ,Xt0 = s0) = P(Xtn = sn | Xtn−1 = sn−1).

I homogeneous if for all t, t ′ ∈ R and s, s ′ ∈ S with P(X0 = s) > 0:
P(Xt+t′ = s ′ | Xt = s) = P(Xt′ = s ′ | X0 = s).

We consider only discrete-space homogeneous Markov processes,
that we call continuous-time Markov chains (CTMC). 5 / 27



CTMC - Math / Statistics definition (2)

Sojourn time:
Let {Xt | t ∈ R≥0} be a continuous-time Markov chain. We define for
each state s and i ∈ N
I random variables As,i , Bs,i denoting time of entering and leaving

s for the i-th time, respectively i.e. As,1 = inf{t ≥ 0 | Xt = s}, and
Bs,i = inf{t > As,i | Xt 6= s} and As,i+1 = inf{t > Bs,i | Xt = s};

I random variable Ts,i denoting the sojourn time upon the i-th
visit to s , i.e. Ts,i = Bs,i − As,i .

Observation:
For any i and t, t ′ we have from the two properties

P(Ts,i ≤ t + t ′ | Ts,i > t) = P(Ts,i ≤ t ′).

Proposition:
Each Ts,i is exponentially distributed with some rate λs , i.e.

FTs,i (x) = 1− e−λsx fTs,i (x) = λse
−λsx

with the expected value given by E [Ts,i ] = 1
λs

.
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CTMC – Graph Based Definition
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CTMC [Graph] - Definition (1)

Definition: CTMC
A continuous-time Markov chain is a tuple (S ,R, π0) where
I S is the set of states,
I R : S × S → R≥0 is the transition rate matrix, and
I π0 is the initial distribution.

Definition: Embedded DTMC
We define the exit rate of a state s ∈ S as

E (s) =
∑
s′∈S

R(s, s ′) ← including the self-loop!

The embedded DTMC coincides on S and π0 but has the transition
probability matrix E defined by

E(s, s ′) =


R(s,s′)
E(s) if E (s) > 0,

0 if E (s) = 0 ∧ s 6= s ′, and

1 if E (s) = 0 ∧ s = s ′.
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CTMC [Graph] - Definition (2)

Definition:
The probability measure for a CTMC (S ,R, π0) is induced by the
measure for cylinder sets P(C (s0I0 . . . sn)) defined as

π0(s)
∏

0≤i<n

E(si , si+1)
(
e−E(si ) inf Ii − e−E(si ) sup Ii

)
.
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CTMC - Solution Techniques

10 / 27



CTMC - Transient Analysis (1)

Symbolic Solution:
For a CTMC C = (S ,Q, π0), the transient probability distribution πt
at time t satisfies

dπt
dt

= πtQ.

We can symbolically solve this system of differential equations by

πt = π0e
Qt

where

eQt =
∞∑
i=0

(Qt)i

i !
.

But unfortunately (Qt)i is unstable to compute and the infinite sum
is not easy to truncate.
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CTMC - Transient Analysis (2)

Another approach?

Separate the discrete and continuous randomness!
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CTMC - Uniformization (1)

Definition: Uniformization Rate
For a CTMC C = (S ,R, π0) the uniformization rate q is defined as

q ≥ max
s∈S

E (s).

Definition: Uniformized DTMC
For a CTMC C = (S ,R, π0), the uniformized DTMC (with
uniformization rate q), denoted by uni(C) is defined as the DTMC
(S ,P, π0) with

R′(i , j) =

{
R(i , j) for i 6= j

q −∑k R(i , k) for i = j
.
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CTMC - Uniformization (2)

Example:
CTMC:

Example: M/M/1 queue

• single-server Markovian queue

• Poisson arrivals: the probability of k jobs arriving within time t is
given by:

f(k; λt) = e−λt (λt)k

k!
∀k = 0, 1, . . .

Equivalently: the customer interarrival times are exponentially
distributed with parameter λ (or mean 1

λ)

• the service times are independent exponentially distributed with
parameter µ

• the semantics is a CTMC

0 1 2 3 . . .

λ λ λ λ

µ µ µ µ

Zhang (Saarland University, Germany) Quantitative Model Checking September 02nd , 2009 11 / 1Uniformized DTMC with q = λ+ µ:

add a self-loop with rate µ on 0
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CTMC - Transient Analysis - By Uniformization

Lemma:
Let C = (S ,R, π0) be a CTMC and uni(C) = (S ,P, π0) its uniformized
DTMC with uniformization rate q and t > 0.
Let ψ(i , qt) denote the Poisson probability at i (with parameter qt)
and π′i the transient probability distribution of the uniformized DTMC
at time step i . Then

πt =
∞∑
i=0

ψ(i , qt)π′i .
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CTMC - Transient Analysis - Algorithm

Computation:
How to compute the infinite sum

∑∞
i=0 π

′
iψ(i , qt):

I The Poisson probabilities decrease very fast, i.e.,

lim
i→∞

ψ(i + 1, qt)

ψ(i , qt)
= lim

i→∞

qt

i + 1
= 0.

I For each ε > 0, the Fox-Glynn algorithm provides bounds L,R
such that

R∑
i=L

ψ(i , qt) ≥ 1− ε.

Moreover, ψ(i , qt) for L ≤ i ≤ R can be computed efficiently.
I Computation of π′i via the known algorithms for DTMCs.
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CTMC - Steady-State

Theorem:
Steady state of a CTMC exists iff steady state of its uniformized
DTMC exists. In this case, they equal.

By taking higher uniformization rate than maxs E (s), we have
self-loops in every state; hence the uniformized DTMC is aperiodic
(other conditions on existence of steady-state were equivalent).
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Continuous Stochastic Logic
(CSL)
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CSL - Labelled CTMC and Syntax

Definition: Labelled CTMC
A labelled CTMC is a tuple C = (S ,R, π0, L) with labelling function
L : S → 2AP where AP is a set of atomic propositions.

Definition: Syntax of CSL
State formulas:

Φ = true | a | Φ1 ∧ Φ2 | ¬Φ | PJ(φ) | SJ(Φ)

where a ∈ AP , J ⊆ [0, 1] is an interval with rational bounds.
Path formulas:

φ = X IΦ | Φ1 U IΦ2

where I ⊆ R≥0 denotes an interval.
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CSL - Example

Example:
We consider a triple modular redundant system:

Specifying properties using CSL

We consider a triple modular redundant system:

s0,1 s1,1

s3,1 s2,1

s0,0

µ

λ

ν

δ ν

3λ

µ

µ 2λ

ν

ν

up0 up1

up3 up2

down

Zhang (Saarland University, Germany) Quantitative Model Checking September 03th , 2009 33 / 1
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CSL - Example

Specifications:
Let up = ¬down, then we can specify the following performance
properties:
I SJ(up): steady state availability
I PJ(F [t,t]up): instantaneous availability at time t

I PJ(Φ U [t,t]up): conditional instantaneous availability at time t

I PJ(G [t,t′]up): interval availability
We can even nest P and S:
I P[0,0.01](up2 ∨ up3 U [0,10] down): The probability of going down

within 10 time units after having continuously operated with at
least two processors is at most 0.01.

I S[0.9,1.0](P[0.8,1.0](G [0,10]¬down)): In the long-run, at least 90% of
time is spent in states where the probability that the system
will not go down within 10 time units is at least 0.8.
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CSL - Reachability

Let us fix a labelled CTMC C = (S ,R, π0, L), goal states B ⊆ S , and
interval of time I ⊆ R≥0. We write ReachI (B) := Paths(F IB).

Reachability
What is the probability P(ReachI (B))?

How to compute it? First, we address I = [0, t]

Lemma:
For any labelled CTMC C = (S ,R, π0, L), let C[B] be obtained by
making states in B absorbing. Then, the reachability probability
P(ReachI (B)) does not change.

22 / 27
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CSL - Reachability - Time-bounded

Theorem:
For C = (S ,R, π0, L) with an absorbing set of states B and I = [0, t]:

P(Reach[0,t](B))
1
= P(Reach[t,t](B))

2
=
∑
s′∈B

πt(s
′).

Proof Sketch:

1. Show that σ ∈ Reach[0,t](B) iff σ ∈ Reach[t,t](B).
2. Trivial.
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CSL - Reachability - Interval Bounded (1)

How to solve the case I = [a, b]?

Observation:
Assuming I = [a, b] with 0 < a ≤ b. Note that
Counterexample:

Interval bounded reachability

Quiz

Consider I = [t, t′] with 0 < t ≤ t′. Does it hold:

p(s, [t, t′]) = p(s, [0, t′]) − p(s, [0, t])

Counterexample:

0

γ

Zhang (Saarland University, Germany) Quantitative Model Checking September 07th , 2009 26 / 1
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CSL - Reachability - Interval Bounded (2)

Theorem:
Let C = (S ,R, π0, L) with an absorbing set of states B and I = [a, b]
with a > 0, then,

P(Reach[a,b](B)) =
∑
s∈S

πa(s) · Ps(Reach[0,b−a](B)).

Proof Sketch:
By the theorem of total probability we have:

P(Reach[a,b](B)) =
∑
s∈S

Ps(Xa = s)P
(
Reach[a,b](B) | Xa = s ′

)
=
∑
s∈S

πa(s)P
(
Reach[0,b−a](B) | X0 = s

)
=
∑
s′∈S

πa(s)Ps

(
Reach[0,b−a](B)

)
.

25 / 27



CSL Model Checking
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CSL - Model Checking

Interval Bounded Until Φ1 U [a,b]Φ2:
Interval-bounded reachability - just discussed.

Unbounded Until Φ1 U Φ2:
Can be reduced to the analogous PCTL model checking problem on
the embedded Markov chain of C[B]. Intuition: Time does not play
any role.

Next X [a,b]Φ:

Ps(X [a,b]Φ) = (e−E(s)a − e−E(s)b)
∑

s′∈Sat(Φ)

E(s, s ′).

For I = [0,∞), this simplifies to Ps(X Φ) =
∑

s′∈Sat(Φ) E(s, s ′).

Steady State S<p(Φ):
Can be reduced to the analogous PCTL model checking problem on
the uniformized Markov chain uni(C). Intuition: A CTMC and its
uniformized chain have the same steady state distribution.
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