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Example: Simulation of a die by coins

Knuth & Yao die

Simulating a Fair Die by a Fair Coin
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Quiz

Is the probability of obtaining 3 equal to 1
6?
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Question:
I What is the probability of obtaining 2?
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DTMC - Graph-based Definition

Definition:
A discrete-time Markov chain (DTMC) is a tuple (S ,P, π0) where
I S is the set of states,
I P : S × S → [0, 1] with

∑
s′∈S P(s, s ′) = 1 is the transitions

matrix, and
I π0 ∈ [0, 1]|S| with

∑
s∈S π0(s) = 1 is the initial distribution.
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Example: Craps

Two dice game:
I First:

∑∈{7, 11} ⇒ win,
∑∈{2, 3, 12} ⇒ lose, else s=

∑
I Next rolls:

∑
= s ⇒ win,

∑
= 7⇒ lose, else iterate

Modelling Markov Chains

init

won

lost

2
9

1
9

Zhang (Saarland University, Germany) Quantitative Model Checking August 24th , 2009 14 / 35

5 / 83



Example: Craps

Two dice game:
I First:

∑∈{7, 11} ⇒ win,
∑∈{2, 3, 12} ⇒ lose, else s=

∑
I Next rolls:

∑
= s ⇒ win,

∑
= 7⇒ lose, else iterate

Modelling Markov Chains

init

won

1

lost

1

2
9

1
9

4 5 6 8 9 10

1
12

1
9

5
36

5
36

1
9

1
12

Zhang (Saarland University, Germany) Quantitative Model Checking August 24th , 2009 15 / 35

6 / 83



Example: Craps

Two dice game:
I First:

∑∈{7, 11} ⇒ win,
∑∈{2, 3, 12} ⇒ lose, else s=

∑
I Next rolls:

∑
= s ⇒ win,

∑
= 7⇒ lose, else iterate

Modelling Markov Chains

init

won

1

lost

1

2
9

1
9

4 5 6 8 9 10

1
12

1
12

1
6

3
4

1
9

1
9

1
6

13
18

5
36

5
36

1
6

25
36

5
36

5
36

1
6

25
36

1
9

1
9

1
6

13
18

1
12

1
12

1
6

3
4

Zhang (Saarland University, Germany) Quantitative Model Checking August 24th , 2009 16 / 35

7 / 83



Example: Zero Configuration Networking (Zeroconf)
I Previously: Manual assignment of IP addresses
I Zeroconf: Dynamic configuration of local IPv4 addresses
I Advantage: Simple devices able to communicate automatically

Automatic Private IP Addressing (APIPA) – RFC 3927
I Used when DHCP is configured but unavailable
I Pick randomly an address from 169.254.1.0 – 169.254.254.255
I Find out whether anybody else uses this address (by sending

several ARP requests)

Model:
I Randomly pick an address among the K (65024) addresses.
I With m hosts in the network, collision probability is q = m

K .
I Send 4 ARP requests.
I In case of collision, the probability of no answer to the ARP

request is p (due to the lossy channel)
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Example: Zero Configuration Networking (Zeroconf)

Zeroconf as a Markov chain

s0 s1 s2 s3 s4

s5
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s8

q p p p
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1 − q

1

1 − p
1 − p

1 − p

1 − p

start

error
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For 100 hosts and p = 0.001, the probability of error is ≈ 1.55 · 10−15.
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Probabilistic Model Checking

What is probabilistic model checking?
I Probabilistic specifications, e.g. probability of reaching bad

states shall be smaller than 0.01.
I Probabilistic model checking is an automatic verification

technique for this purpose.

Why quantities?
I Randomized algorithms
I Faults e.g. due to the environment, lossy channels
I Performance analysis, e.g. reliability, availability
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Basics of Probability Theory
(Recap)
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What are probabilities? - Intuition

Throwing a fair coin:
I The outcome head has a probability of 0.5.
I The outcome tail has a probability of 0.5.

But . . . [Bertrand’s Paradox]
Draw a random chord on the unit circle. What is the probability that
its length exceeds the length of a side of the equilateral triangle in
the circle?
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Probability Theory - Probability Space

Definition: Probability Function
Given sample space Ω and σ-algebra F , a probability function
P : F → [0, 1] satisfies:
I P(A) ≥ 0 for A ∈ F ,
I P(Ω) = 1, and
I P(

⋃̇∞
i=1Ai ) =

∑∞
i=1 P(Ai ) for pairwise disjoint Ai ∈ F

Definition: Probability Space
A probability space is a tuple (Ω,F ,P) with a sample space Ω,
σ-algebra F ⊆ 2Ω and probability function P .

Example
A random real number taken uniformly from the interval [0, 1].
I Sample space: Ω = [0, 1].

I σ-algebra: F is the minimal superset of {[a, b] | 0 ≤ a ≤ b ≤ 1}
closed under complementation and countable union.

I Probability function: P([a, b]) = (b − a), by Carathéodory’s extension
theorem there is a unique way how to extend it to all elements of F .
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Random Variables
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Random Variables - Introduction

Definition: Random Variable
A random variable X is a measurable function X : Ω→ I to some I .
Elements of I are called random elements. Often I = R:

0

!

"

X

42

Example (Bernoulli Trials)
Throwing a coin 3 times: Ω3 = {hhh, hht, hth, htt, thh, tht, tth, ttt}.
We define 3 random variables Xi : Ω→ {h, t}. For all x , y , z ∈ {h, t},
I X1(xyz) = x ,
I X2(xyz) = y ,
I X3(xyz) = z .
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Stochastic Processes and
Markov Chains
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Stochastic Processes - Definition

Definition:
Given a probability space (Ω,F ,P), a stochastic process is a family
of random variables

{Xt | t ∈ T}
defined on (Ω,F ,P). For each Xt we assume

Xt : Ω→ S

where S = {s1, s2, . . . } is a finite or countable set called state space.

A stochastic process {Xt | t ∈ T} is called
I discrete-time if T = N or
I continuous-time if T = R≥0.

For the following lectures we focus on discrete time.
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Discrete-time Stochastic Processes - Construction (1)

Example: Weather Forecast
I S = {sun, rain},
I we model time as discrete – a random variable for each day:

I X0 is the weather today,
I Xi is the weather in i days.

I how can we set up the probability space to measure e.g.
P(Xi = sun)?
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Discrete-time Stochastic Processes - Construction (2)

Let us fix a state space S . How can we construct the probability
space (Ω,F ,P)?

Definition: Sample Space Ω
We define Ω = S∞. Then, each Xn maps a sample ω = ω0ω1 . . . onto
the respective state at time n, i.e.,

(Xn)(ω) = ωn ∈ S .
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Discrete-time Stochastic Processes - Construction (3)

Definition: Cylinder Set
For s0 · · · sn ∈ Sn+1, we set the cylinder C (s0 . . . sn) = {s0 · · · sn ω ∈ Ω}.

Example:
S = {s1, s2, s3} and C (s1s3)

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

...

...

...
t

S

Definition: σ-algebra F
We define F to be the smallest σ-Algebra that contains all cylinder
sets, i.e.,

{C (s0 . . . sn) | n ∈ N, si ∈ S} ⊆ F .

Check: Is each Xi measurable?
(on the discrete set S we assume the full σ-algebra 2S ).
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Discrete-time Stochastic Processes - Construction (4)

How to specify the probability Function P?
We only need to specify it for each s0 · · · sn ∈ Sn

P(C (s0 . . . sn)).

This amounts to specifying
1. P(C (s0)) for each s0 ∈ S , and
2. P(C (s0 . . . si ) | C (s0 . . . si−1)) for each s0 · · · si ∈ S i

since

P(C (s0 . . . sn)) = P(C (s0 . . . sn) | C (s0 . . . sn−1)) · P(C (s0 . . . sn−1))

= P(C (s0)) ·
n∏

i=1

P(C (s0 . . . si ) | C (s0 . . . si−1))

Still, lots of possibilities...
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Discrete-time Stochastic Processes - Construction (5)

Weather Example: Option 1 - statistics of days of a year
I the forecast starts on Jan 01,
I a distribution pj over {sun, rain} for

each 1 ≤ j ≤ 365,
I for each i ∈ N and s0 · · · si ∈ S i+1

P(C (s0 . . . si ) | C (s0 . . . si−1)) = pi % 365(si )

Weather Example: Option 2 - two past days
I a distribution ps′s′′ over {sun, rain}

for each s ′, s ′′ ∈ S ,
I for each i ≥ 2 and s0 · · · si ∈ S i+1

P(C (s0 . . . si ) | C (s0 . . . si−1)) = psi−2si−1 (si )

Here: time-homogeneous Markovian stochastic processes

Not Markovian.

Not time-homogeneous.
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Stochastic Processes - Restrictions

Definition: Markov
A discrete-time stochastic process
{Xn | n ∈ N} is Markov if

P(Xn = sn | Xn−1 = sn−1, . . . ,X0 = s0)

= P(Xn = sn | Xn−1 = sn−1)

for all n > 1 and s0, . . . , sn ∈ S with
P(Xn−1 = sn−1) > 0.

Definition: Time-homogeneous
A discrete-time Markov process {Xn | n ∈ N}
is time-homogeneous if

P(Xn+1 = s ′ | Xn = s) = P(X1 = s ′ | X0 = s)

for all n > 1 and s, s ′ ∈ S with P(X0 = s) > 0.
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Discrete-time Stochastic Processes - Construction (6)

Weather Example: Option 3 - one past day
I a distribution ps′ over {sun, rain} for

each s ′ ∈ S ,
I for each i ≥ 1 and s0 · · · si ∈ S i+1

P(C (s0 . . . si ) | C (s0 . . . si−1)) = psi−1 (si )

I a distribution π over {sun, rain} such
that P(C (s0)) = π(s0).

Overly restrictive, isn’t it?

Not really – one only needs to extend the state space
I S = {1, . . . , 365} × {sun, rain} × {sun, rain},
I now each state encodes current day of the year, current

weather, and weather yesterday,
I we can define over S a time-homogeneous Markov process

based on both Options 1 & 2 given earlier.
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Discrete-time Markov Chains
DTMC
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DTMC - Relation of Definitions

Stochastic process → Graph based
Given a discrete-time homogeneous Markov process {X (n) | n ∈ N}
I with state space S ,
I defined on a probability space (Ω,F ,P)

we take over the state space S and define
I P(s, s ′) = P(Xn = s ′ | Xn−1 = s) for an arbitrary n ∈ N and
I π0(s) = P(X0 = s).

Graph based → stochastic process
Given a DTMC (S ,P, π0), we set Ω to S∞, F to the smallest
σ-Algebra containing all cylinder sets and

P(C (s0 . . . sn)) = π0(s0) ·
∏

1≤i≤n

P(si−1, si )

which uniquely defines the probability function P on F .
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DTMC - Conditional Probability and Expectation

Let (S ,P, π0) be a DTMC. We denote by
I Ps the probability function of DTMC (S ,P, δs) where

δs(s ′) =

{
1 if s ′ = s

0 otherwise

I Es the expectation with respect to Ps
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Analysis questions

I Transient analysis
I Steady-state analysis
I Rewards
I Reachability
I Probabilistic logics
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DTMC - Transient Analysis
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DTMC - Transient Analysis - Example (1)

Example: Gambling with a Limit

0 10 20 30 40

1

1/2

1/2

1/2

1/2

1/2

1/2

1

What is the probability of being in state 0 after 3 steps?
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DTMC - Transient Analysis - n-step Probabilities

Definition:
Given a DTMC (S ,P, π0), we assume w.l.o.g. S = {0, 1, . . . } and write
pij = P(i , j). Further, we have
I P(1) = P = (pij) is the 1-step transition matrix
I P(n) = (p

(n)
ij ) denotes the n-step transition matrix with

p
(n)
ij = P(Xn = j | X0 = i) (= P(Xk+n = j | Xk = i)).

How can we compute these probabilities?
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DTMC - Transient Analysis - Chapman-Kolmogorov

Definition: Chapman-Kolmogorov Equation
Application of the law of total probability to the n-step transition
probabilities p

(n)
ij results in the Chapman-Kolmogorov Equation

p
(n)
ij =

∑
h∈S

p
(m)
ih p

(n−m)
hj ∀0 < m < n.

Consequently, we have P(n) = PP(n−1) = · · · = Pn.

Definition: Transient Probability Distribution
The transient probability distribution at time n > 0 is defined by

πn = πn−1P = π0Pn.
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DTMC - Transient Analysis - Example (2)

0 10 20 30 40

1

1/2

1/2

1/2

1/2

1/2

1/2

1

Example:

P =


1 0 0 0 0

0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0 0 1

 P2 =


1 0 0 0 0

0.5 0.25 0 0.25 0
0.25 0 0.5 0 0.25

0 0.25 0 0.25 0.5
0 0 0 0 1


I For π0 =

[
0 0 1 0 0

]
, π2 = π0P2 =

[
0.25 0 0.5 0 0.25

]
.

I For, π0 =
[
0.4 0 0 0 0.6

]
, π2 = π0P2 =

[
0.4 0 0 0 0.6

]
.

Actually, πn =
[
0.4 0 0 0 0.6

]
for all n ∈ N!

Are there other “stable” distributions?
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DTMC - Steady State Analysis
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DTMC - Steady State Analysis - Definitions

Definition: Stationary Distribution
A distribution π is stationary if

π = πP.

Stationary distribution is generally not unique.

Definition: Limiting Distribution

π∗ := lim
n→∞

πn = lim
n→∞

π0Pn = π0 lim
n→∞

Pn = π0P∗.

The limit can depend on π0 and does not need to exist.

Connection between stationary and limiting?
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DTMC - Steady-State Analysis - Periodicity

Example: Gambling with Social Guarantees

0 10 20 30 40
1

1/2

1/2

1/2

1/2

1/2

1/2

1

What are the stationary and limiting distributions?

Definition: Periodicity
The period of a state i is defined as

di = gcd{n | pnii > 0}.

A state i is called aperiodic if di = 1 and periodic with period di
otherwise. A Markov chain is aperiodic if all states are aperiodic.

Lemma
In a finite aperiodic Markov chain, the limiting distribution exists.
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DTMC - Steady-State Analysis - Irreducibility (1)

Example

0 10 20 30 40

1

1/2

1/2

1/2

1/2

1/2

1/2

1
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DTMC - Steady-State Analysis - Irreducibility (2)

Definition:
A DTMC is called irreducible if for all states i , j ∈ S we have pnij > 0
for some n ≥ 1.

Lemma
In an aperiodic and irreducible Markov chain, the limiting
distribution exists and does not depend on π0.

Examples

0 1

1 1

0 1

1

1
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DTMC - Steady-State Analysis - Irreducibility (3)
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Lemma
In a finite aperiodic and irreducible Markov chain, the limiting
distribution exists, does not depend on π0, and equals the unique
stationary distribution.
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DTMC - Steady-State Analysis - Recurrence (1)

Definition:
Let f (n)

ij = P(Xn = j ∧ ∀1 ≤ k < n : Xk 6= j | X0 = i) for n ≥ 1 be the
n-step hitting probability. The hitting probability is defined as

fij =
∞∑
n=1

f
(n)
ij

and a state i is called
I transient if fii < 1 and
I recurrent if fii = 1.
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DTMC - Steady-State Analysis - Recurrence (2)

Definition:
Denoting expectation mij =

∑∞
n=1 n · f

(n)
ij , a recurrent state i is called

I positive recurrent or recurrent non-null if mii <∞ and
I recurrent null if mii =∞.

Lemma
The states of an irreducible DTMC are all of the same type, i.e.,
I all periodic or
I all aperiodic and transient or
I all aperiodic and recurrent null or
I all aperiodic and recurrent non-null.
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DTMC - Steady-State Analysis - Ergodicity

Definition: Ergodicity
A DTMC is ergodic if all its states are irreducible, aperiodic and
recurrent non-null.

Theorem
In an ergodic Markov chain, the limiting distribution exists, does not
depend on π0, and equals the unique stationary distribution.

As a consequence, the steady-state distribution can be computed by
solving the equation system

π = πP,
∑
x∈S

πs = 1.

Note: The Lemma for finite DTMC follows from the theorem as every
irreducible finite DTMC is positive recurrent.
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DTMC - Steady-State Analysis - Ergodicity

Example: Unbounded Gambling with House Edge

0 10 20 30 . . .

1 − p
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1

1 − p

The DTMC is only ergodic for p ∈ [0, 0.5).
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DTMC - Rewards
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DTMC - Rewards - Definitions

Definition
A reward Markov chain is a tuple (S ,P, π0, r) where (S ,P, π0) is a
Markov chain and r : S → Z is a reward function.

Every run ρ = s0, s1, . . . induces a sequence of values r(s0), r(s1), . . .

Value of the whole run can be defined as
total reward ∑T

i=0 r(si ) But what if T =∞?
discounted reward∑∞

i=0 λ
i r(si ) for some 0 < λ < 1

average reward
limn→∞

1
n

∑n
i=0 r(si )

also called long-run average or mean payoff

Definition
The expected average reward is

EAR := lim
n→∞

1

n

n∑
i=0

E[r(Xi )]
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DTMC - Rewards - Solution Sketch

Definition: Time-average Distribution

π̂ = lim
n→∞

1

n

n∑
i=0

πi .

π̂(s) expresses the ratio of time spent in s on the long run.

Lemma
1. E[r(Xi )] =

∑
s∈S πi (s) · r(s).

2. If π̂ exists then EAR =
∑

s∈S π̂(s) · r(s).
3. If limiting distribution exists, it coincides with π̂.

Algortithm
1. Compute π̂ (or limiting distribution if possible).1

2. Return
∑

s∈S π̂(s) · r(s).

1More details later for Markov decision processes.
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DTMC - Reachability

Definition: Reachability
Given a DTMC (S ,P, π0), what is the probability of eventually
reaching a set of goal states B ⊆ S?

S

Bs
xs

Let x(s) denote Ps(♦B) where ♦B = {s0s1 · · · | ∃i : si ∈ B}. Then
I s ∈ B : x(s) =

1

I s ∈ S \ B : x(s) =

∑
t∈S\B P(s, t)x(t) +

∑
u∈B P(s, u).
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DTMC - Reachability

Lemma (Reachability Matrix Form)
Given a DTMC (S ,P, π0), the column vector x = (x(s))s∈S\B of
probabilities x(s) = Ps(♦B) satisfies the constraint

x = Ax + b,

where matrix A is the submatrix of P for states S \ B and
b = (b(s))s∈S\B is the column vector with b(s) =

∑
u∈B P(s, u).
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DTMC - Reachability

Example:

s0

s1s2 s3

0.5

0.5

0.5

0.250.25

1 1

B = {s3}

0
0
0
0

0.5 0.5 0
0.5 0.25 0.25
0 1 0
0 0 1

P =

A b

The vector x =
[
x0 x1 x2

]T
=
[
0.25 0.5 0

]T satisfies the
equation system x = Ax + b.

Is it the only solution?
I No! Consider, e.g.,

[
0.55 0.7 0.4

]
or
[
1 1 1

]T .

What is the equation system for these probabilities?
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DTMC - Reachability - Solution

Let S=0 = {s | Ps(♦ B) = 0} and S? = S \ (S=0 ∪ B).
Let ♦≤n B = {s0s1 · · · | ∃i ≤ n : si ∈ B} be the set of runs reaching B
from state s within n steps.

Theorem:
The column vector x = (x(s))s∈S?

of probabilities x(s) = Ps(♦ B) is
the unique solution of the equation system

x = Ax + b,

where A = (P(s, t))s,t∈S?
, b = (b(s))s∈S?

with b(s) =
∑

u∈B P(s, u).

Furthermore, for x0 = (0)s∈S?
and xi = Axi−1 + b for any i ≥ 1,

1. xn(s) = Ps(♦≤n B) for s ∈ S?,
2. xi is increasing, and
3. x = limn→∞ xn.
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DTMC - Conditional Reachability - Proof

Proof Sketch:
I (xs)x∈S?

is a solution: by inserting into definition.
I Unique solution: By contradiction. Assume y is another solution,

then x− y = A(x− y). One can show that A− I is invertible, thus
(A− I)(x− y) = 0 yields x− y = (A− I)−10 = 0 and finally x = y 2.

Furthermore,
1. From the definitions, by straightforward induction.
2. From 1. since ♦≤n B ⊆ ♦≤n+1 B .
3. Since ♦ B =

⋃
n∈N ♦

≤n B .

2cf. page 766 of Principles of Model Checking
52 / 83



Algorithmic aspects

53 / 83



Algorithmic Aspects - Summary of Equation Systems

Equation Systems
I Transient analysis: πn = π0Pn = πn−1P

I Steady-state analysis: πP = π, π · 1 =
∑

s∈S π(s) = 1 (ergodic)
I Reachability: x = Ax + b (with (x(s))s∈S?

)

Solution Techniques
1. Analytic solution, e.g. by Gaussian elimination
2. Iterative power method (πn → π and xn → x for n→∞)
3. Iterative methods for solving large systems of linear equations,

e.g. Jacobi, Gauss-Seidel

Missing pieces
a. finding out whether a DTMC is ergodic,
b. computing S? = S \ {s | Ps(♦ B) = 0},
c. efficient representation of P.
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Algorithmic Aspects: a. Ergodicity of finite DTMC (1)

Ergodicity = Irreducibility + Aperidocity + P. Recurrence
I A DTMC is called irreducible if for all states i , j ∈ S we have

pnij > 0 for some n ≥ 1.
I A state i is called aperiodic if gcd{n | pnii > 0} = 1.
I A state i is called positive recurrent if fii = 1 and mii <∞.

How do we tell that a finite DTMC is ergodic?

By analysis of the induced graph!
For a DTMC (S ,P, π(0)) we define the induced directed graph (S ,E )
with E = {(s, s ′) | P(s, s ′) > 0}.
Recall:
I A directed graph is called strongly connected if there is a path

from each vertex to every other vertex.
I Strongly connected components (SCC) are its maximal strongly

connected subgraphs.
I A SCC T is bottom (BSCC) if no s 6∈ T is reachable from T .
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Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = Irreducibility + Aperidocity + P. Recurrence
I A DTMC is called irreducible if for all states i , j ∈ S we have

pnij > 0 for some n ≥ 1.
I A state i is called aperiodic if gcd{n | pnii > 0} = 1.
I A state i is called positive recurrent if fii = 1 and mii <∞.

Theorem:
For finite DTMCs, it holds that:

I The DTMC is irreducible iff the induced graph is strongly
connected.

I A state in a BSCC is aperiodic iff the BSCC is aperiodic, i.e. the
greatest common divisor of the lengths of all its cycles is 1.

I A state is positive recurrent iff it belongs to a BSCC otherwise it
is transient.
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Algorithmic Aspects: a. Ergodicity of finite DTMC (3)
How to check: is gcd of the lengths of all cycles of a strongly
connected graph 1?

I gcd{n ≥ 1 | ∃s : Pn(s, s) > 0} = 1
I in time O(n + m)? By the following DFS-based procedure:

Algorithm: PERIOD(vertex v , unsigned level : init 0)
1 global period : init 0;
2 if period = 1 then
3 return
4 end
5 if v is unmarked then
6 mark v ;
7 vlevel = level ;
8 for v ′ ∈ out(v) do
9 PERIOD(v ′,level + 1)

10 end
11 else
12 period = gcd(period , level − vlevel);
13 end
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Algorithmic Aspects: b. Computing the set S?

We have S? = S \ (B ∪ S=0) where S=0 = {s | Ps(♦ B) = 0}.
Hence,

s ∈ S=0 iff pnss′ = 0 for all n ≥ 1 and s ′ ∈ B.

This can be again easily checked from the induced graph:

Lemma
We have s ∈ S=0 iff there is no path from s to any state from B .

Proof.
Easy from the fact that pnss′ > 0 iff there is a path of length n to s ′.
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Algorithmic Aspects: c. Efficient Representations

Zeroconf as a Markov chain

s0 s1 s2 s3 s4

s5

s6

s7

s8

q p p p

p

1

1 − q

1

1 − p
1 − p

1 − p

1 − p

start

error

Zhang (Saarland University, Germany) Quantitative Model Checking August 24th , 2009 19 / 35

1. There are many 0 entries in the transition matrix.
Sparse matrices offer a more concise storage.

2. There are many similar entries in the transition matrix.
Multi-terminal binary decision diagrams offer a more concise
storage, using automata theory.
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DTMC - Probabilistic Temporal
Logics for Specifying Complex

Properties
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Logics - Adding Labels to DTMC

Definition:
A labeled DTMC is a tuple D = (S ,P, π0, L) with L : S → 2AP , where
I AP is a set of atomic propositions and
I L is a labeling function, where L(s) specifies which properties

hold in state s ∈ S .
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Logics - Examples of Properties

H
H
H

O
O

O

OO
OH

H
H

↑

↓ States and transitions
state = configuration of the game;
transition = rolling the dice and acting
(randomly) based on the result.

State labels
I init, rwin, bwin, rkicked, bkicked, . . .
I r30, r21, . . . ,
I b30, b21,. . . ,

Examples of Properties
I the game cannot return back to start
I at any time, the game eventually ends with prob. 1

I at any time, the game ends within 100 dice rolls with prob. ≥ 0.5

I the probability of winning without ever being kicked out is ≤ 0.3

How to specify them formally?
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Logics - Temporal Logics - non-probabilistic (1)

Linear-time view
I corresponds to our (human) perception of time
I can specify properties of one concrete linear execution of the

system
Example: eventually red player is kicked out followed immediately
by blue player being kicked out.

Branching-time view
I views future as a set of all possibilities
I can specify properties of all executions from a given state –

specifies execution trees
Example: in every computation it is always possible to return to the
initial state.
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Logics - Temporal Logics - non-probabilistic (2)

Linear Temporal Logic (LTL)
Syntax for formulae specifying executions:

ψ = true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ
Example: eventually red player is kicked out followed immediately
by blue player being kicked out: F (rkicked ∧ X bkicked)
Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)
Syntax for specifying states:

φ = true | a | φ ∧ φ | ¬φ | A ψ | E ψ

Syntax for specifying executions:

ψ = X φ | φ U φ | F φ | G φ
Example: in all computations it is always possible to return to initial
state: A G E F init
Question: does the given state satisfy the given CTL state formula?
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Logics - LTL

Syntax ψ = true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ.

Semantics (for a path ω = s0s1 · · · )
I ω |= true (always),
I ω |= a iff a ∈ L(s0),
I ω |= ψ1 ∧ ψ2 iff ω |= ψ1 and ω |= ψ2,
I ω |= ¬ψ iff ω 6|= ψ,
I ω |= X ψ iff s1s2 · · · |= ψ,

Ψ

I ω |= ψ1 U ψ2 iff ∃i ≥ 0 : si si+1 · · · |= ψ2 and ∀j < i : sjsj+1 · · · |= ψ1.

Ψ1 · · · Ψ1 Ψ2

Syntactic sugar
I F ψ ≡

true U ψ

I G ψ ≡

¬(true U ¬ψ) (≡ ¬F ¬ψ)
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Logics - CTL

Syntax
State formulae:

φ = true | a | φ ∧ φ | ¬φ | A ψ | E ψ

where ψ is a path formula.

Path formulae:

ψ = X φ | φ U φ

where φ is a state formula.

Semantics
For a state s :
I s |= true (always),
I s |= a iff a ∈ L(s),
I s |= φ1 ∧ φ2 iff s |= φ1 and

s |= φ2,
I s |= ¬φ iff s 6|= φ,
I s |= Aψ iff ω |= ψ for all

paths ω = s0s1 · · · with s0 = s ,
I s |= Eψ iff ω |= ψ for some

path ω = s0s1 · · · with s0 = s .

For a path ω = s0s1 · · · :
I ω |= X φ iff

s1s2 · · · satisfies φ,

Φ

I ω |= φ1 U φ2 iff ∃i :
si si+1 · · · |= φ2 and
∀j < i : sjsj+1 · · · |= φ1.

Φ1 · · · Φ1 Φ2
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Logics - Temporal Logics - non-probabilistic (2)

Linear Temporal Logic (LTL)
Syntax for formulae specifying executions:

ψ = true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ
Example: eventually red player is kicked out followed immediately
by blue player being kicked out: F (rkicked ∧ X bkicked)
Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)
Syntax for specifying states:

φ = true | a | φ ∧ φ | ¬φ | A ψ | E ψ

Syntax for specifying executions:

ψ = X φ | φ U φ | F φ | G φ
Example: in all computations it is always possible to return to initial
state: A G E F init
Question: does the given state satisfy the given CTL state formula?
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Logics - Temporal Logics - probabilistic

Linear Temporal Logic (LTL) + probabilities
Syntax for formulae specifying executions:

ψ = true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ
Example: with prob. ≥ 0.8, eventually red player is kicked out
followed immediately by blue player being kicked out:

P(F (rkicked ∧ X bkicked)) ≥ 0.8

Question: is the formula satisfied by executions of given probability?

Probabilitic Computation Tree Logic (PCTL)
Syntax for specifying states:

φ = true | a | φ ∧ φ | ¬φ | PJ ψ

Syntax for specifying executions:

ψ = X φ | φ U φ | φ U ≤kφ | F φ | G φ
Example: with prob. at least 0.5 the probability to return to initial
state is always at least 0.1: P≥0.5 G P≥0.1 F init
Question: does the given state satisfy the given PCTL state formula?
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Logics - PCTL - Examples

Syntactic sugar:
I φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2, etc.
I ≤ 0.5 denotes the interval [0, 0.5], = 1 denotes [1, 1], etc.

Examples:
I A fair die: ∧

i∈{1,...,6}

P= 1
6
(F i).

I The probability of winning ”Who wants to be a millionaire”
without using any joker should be negligible:

P<1e−10(¬(J50% ∨ Jaudience ∨ Jtelephone) U win).
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Logics - PCTL - Semantics

Semantics
For a state s :
I s |= true (always),
I s |= a iff a ∈ L(s),
I s |= φ1 ∧ φ2 iff s |= φ1 and

s |= φ2,
I s |= ¬φ iff s 6|= φ,
I

s |= PJ(ψ) iff Ps(Paths(ψ)) ∈ J

For a path ω = s0s1 · · · :
I ω |= X φ iff s1s2 · · · satisfies φ,

!

!1 !1 !2. . . .

I ω |= φ1 U φ2 iff ∃i :
si si+1 · · · |= φ2 and
∀j < i : sjsj+1 · · · |= φ1.

!

!1 !1 !2. . . .

I ω |= φ1 U ≤nφ2 iff ∃i ≤ n :
si si+1 · · · |= φ2 and
∀j < i : sjsj+1 · · · |= φ1.

!

!1 !1 !2. . . .
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Logics - Examples of Properties

H
H
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H
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↑

↓ Examples of Properties
1. the game cannot return back to start
2. at any time, the game eventually

ends with prob. 1

3. at any time, the game ends within
100 dice rolls with prob. ≥ 0.5

4. the probability of winning without
ever being kicked out is ≤ 0.3

Formally

1. P(X G ¬init) = 1 (LTL + prob.)
P=1(X P=0(G ¬init)) (PCTL)

2. P=1(G P=1(F (rwin ∨ bwin))) (PCTL)
3. P=1(G P≥0.5(F ≤100(rwin ∨ bwin))) (PCTL)
4. P((¬rkicked ∧ ¬bkicked) U (rwin ∨ bwin)) ≤ 0.3 (LTL + prob.)
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PCTL Model Checking Algorithm
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PCTL Model Checking

Definition: PCTL Model Checking
Let D = (S ,P, π0, L) be a DTMC, Φ a PCTL state formula and s ∈ S .
The model checking problem is to decide whether s |= Φ.

Theorem
The PCTL model checking problem can be decided in time polynomial
in |D|, linear in |Φ|, and linear in the maximum step bound n.
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PCTL Model Checking - Algorithm - Outline (1)

Algorithm:
Consider the bottom-up traversal of the parse tree of Φ:
I The leaves are a ∈ AP or true and
I the inner nodes are:

I unary – labelled with the operator ¬ or PJ(X );
I binary – labelled with an operator ∧, PJ( U ), or PJ( U ≤n).

Example: ¬a ∧ P≤0.2(¬b U P≥0.9(♦ c))

∧

a
P!0.2(   U   )

¬

b

P"0.9(  U   )

true c

¬

Compute Sat(Ψ) = {s ∈ S | s |= Ψ} for each node Ψ of the tree in a
bottom-up fashion. Then s |= Φ iff s ∈ Sat(Φ).
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PCTL Model Checking - Algorithm - Outline (2)

“Base” of the algorithm:
We need a procedure to compute Sat(Ψ) for Ψ of the form a or true:

Lemma
I Sat(true) = S ,
I Sat(a) = {s | a ∈ L(s)}

“Induction” step of the algorithm:
We need a procedure to compute Sat(Ψ) for Ψ given the sets Sat(Ψ′)
for all state sub-formulas Ψ′ of Ψ:

Lemma
I Sat(Φ1 ∧ Φ2) =

I Sat(¬Φ) =

Sat(PJ(Φ)) = {s | Ps(Paths(Φ)) ∈ J} discussed on the next slide.
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PCTL Model Checking - Algorithm - Path Operator

Lemma
I Next:

Ps(Paths(X Φ)) =

∑
s′∈Sat(Φ)

P(s, s ′)

I Bounded Until:

Ps(Paths(Φ1 U ≤n Φ2)) =

Ps(Sat(Φ1) U ≤n Sat(Φ2))

I Unbounded Until:

Ps(Paths(Φ1 U Φ2)) =

Ps(Sat(Φ1) U Sat(Φ2))

As before:
can be reduced to transient analysis and to unbounded reachability.
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PCTL Model Checking - Algorithm - Complexity

Precise algorithm
Computation for every node in the parse tree and for every state:
I All node types except for path operator – trivial.
I Next: Trivial.
I Until: Solving equation systems can be done by polynomially

many elementary arithmetic operations.
I Bounded until: Matrix vector multiplications can be done by

polynomial many elementary arithmetic operations as well.
Overall complexity:
Polynomial in |D|, linear in |Φ| and the maximum step bound n.

In practice
The until and bounded until probabilities computed approximatively:
I rounding off probabilities in matrix-vector multiplication,
I using approximative iterative methods (error guarantees?!).
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LTL Model Checking - Overview

Definition: LTL Model Checking
Let D = (S ,P, π0, L) be a DTMC, Ψ a LTL formula, s ∈ S , and
p ∈ [0, 1]. The model checking problem is to decide whether
s |= PDs (Paths(Ψ)) ≥ p.

Theorem
The LTL model checking can be decided in time O(|D| · 2|Ψ|).

Algorithm Outline

1. Construct from Ψ a deterministic Rabin automaton A recognizing
words satisfying Ψ, i.e. Paths(Ψ) := {L(ω) ∈ (2Ap)∞ | ω |= Ψ}

2. Construct a product DTMC D × A that “embeds” the
deterministic execution of A into the Markov chain.

3. Compute in D × A the probability of paths where A satisfies the
acceptance condition.
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LTL Model Checking - ω-Automata (1.)
Deterministic Rabin automaton (DRA): (Q,Σ, δ, q0,Acc)
I a DFA with a different acceptance condition,
I Acc = {(Ei ,Fi ) | 1 ≤ i ≤ k}
I each accepting infinite path must visit for some i

I all states of Ei at most finitely often and
I some state of Fi infinitely often.

Example
Give some automata recognizing the language of formulas
I (a ∧ X b) ∨ aUc

I FGa

I GFa

Lemma (Vardi&Wolper’86, Safra’88)
For any LTL formula Ψ there is a DRA A recognizing Paths(Ψ) with
|A| ∈ 22O(|Ψ|) .
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Lemma (Vardi&Wolper’86, Safra’88)
For any LTL formula Ψ there is a DRA A recognizing Paths(Ψ) with
|A| ∈ 22O(|Ψ|) .
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LTL Model Checking - Product DTMC (2.)
For a labelled DTMC D = (S ,P, π0, L) and a DRA
A = (Q, 2Ap, δ, q0, {(Ei ,Fi ) | 1 ≤ i ≤ k}) we define

1. a DTMC D × A = (S × Q,P′, π′0):
I P′((s, q), (s ′, q′)) = P(s, s ′) if δ(q, L(s ′)) = q′ and 0, otherwise;
I π′0((s, qs)) = π0(s) if δ(q0, L(s)) = qs and 0, otherwise; and

2. {(E ′i ,F ′i ) | 1 ≤ i ≤ k} where for each i :
I E ′i = {(s, q) | q ∈ Ei , s ∈ S},
I F ′i = {(s, q) | q ∈ Fi , s ∈ S},

Lemma
The construction preserves probability of accepting as

PDs (Lang(A)) = PD×A(s,qs )({ω | ∃i : inf(ω) ∩ E ′i = ∅, inf(ω) ∩ F ′i 6= ∅})

where inf(ω) is the set of states visited in ω infinitely often.

Proof sketch.
We have a one-to-one correspondence between executions of D and
D × A (as A is deterministic), mapping Lang(A) to {· · · }, and
preserving probabilities.
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LTL Model Checking - Computing Acceptance Pr. (3.)

How to check the probability of accepting in D × A?

Identify the BSCCs (Cj)j of D × A that for some 1 ≤ i ≤ k ,
1. contain no state from E ′i and
2. contain some state from F ′i .

Lemma
PD×A(s,qs )({ω | ∃i : inf(ω) ∩ E ′i = ∅, inf(ω) ∩ F ′i 6= ∅}) = PD×A(s,qs )(♦

⋃
j Cj).

Proof sketch.
I Note that some BSCC of each finite DTMC is reached with

probability 1 (short paths with prob. bounded from below),
I Rabin acceptance condition does not depend on any finite prefix

of the infinite word,
I every state of a finite irreducible DTMC is visited infinitely often

with probability 1 regardless of the choice of initial state.
Corollary
PDs (Lang(A)) = PD×A(s,qs )(♦

⋃
j Cj).
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LTL Model Checking - Algorithm - Complexity

Doubly exponential in Ψ and polynomial in D
(for the algorithm presented here):

1. |A| and hence also |D × A| is of size 22O(|Ψ|)

2. BSCC computation: Tarjan algorithm - linear in |D × A|
(number of states + transitions)

3. Unbounded reachability: system of linear equations (≤ |D×A|):
I exact solution: ≈ cubic in the size of the system
I approximative solution: efficient in practice
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