Quantitative Verification

Chapter 3: Markov chains

Jan Kretinsky

Technical University of Munich

Winter 2021/22

1/83

Motivation

2/83

Example: Simulation of a die by coins

Knuth & Yao die

3/83

Example: Simulation of a die by coins

Knuth & Yao die

Question:

» What is the probability of obtaining 27

3/83

DTMC - Graph-based Definition

Definition:
A discrete-time Markov chain (DTMC) is a tuple (S, P, 7o) where

» S is the set of states,

> P:S5SxS—[0,1] with s P(s,s") = 1 is the transitions
matrix, and

> 7o € [0,1]° with > ses mo(s) = 1 is the initial distribution.

4/83

Example: Craps

Two dice game:
» First: > c{7,11} = win, > €{2,3,12} = lose, else s=)
> Next rolls: > =s= win, > =7 = lose, else iterate

5/83

Example: Craps

Two dice game:

» First: > {7,111} = win, > €{2,3,12} = lose, else s=>_
> Next rolls: > =s = win, > =7 = lose, else iterate

6/83

Example: Craps

Two dice game:

> First: > €{7,11} = win, > €{2,3,12} = lose, else s=)
» Next rolls: > = s = win,) =7 = lose, else iterate

7/83

Example: Zero Configuration Networking (Zeroconf)

» Previously: Manual assignment of IP addresses
» Zeroconf: Dynamic configuration of local IPv4 addresses

> Advantage: Simple devices able to communicate automatically

Automatic Private IP Addressing (APIPA) — RFC 3927

» Used when DHCP is configured but unavailable
» Pick randomly an address from 169.254.1.0 — 169.254.254.255

» Find out whether anybody else uses this address (by sending
several ARP requests)

Model:
» Randomly pick an address among the K (65024) addresses.
» With m hosts in the network, collision probability is g = 7.
> Send 4 ARP requests.

> In case of collision, the probability of no answer to the ARP
request is p (due to the lossy channel)

8/83

Example: Zero Configuration Networking (Zeroconf)

Y

Y
S8 error (Se)

For 100 hosts and p = 0.001, the probability of error is ~ 1.55 - 10 '°.

9/83

Probabilistic Model Checking

What is probabilistic model checking?

» Probabilistic specifications, e.g. probability of reaching bad
states shall be smaller than 0.01.

» Probabilistic model checking is an automatic verification
technique for this purpose.

Why quantities?

» Randomized algorithms
» Faults e.g. due to the environment, lossy channels

» Performance analysis, e.g. reliability, availability

10/83

Basics of Probability Theory
(Recap)

11/83

What are probabilities? - Intuition
Throwing a fair coin:

» The outcome head has a probability of 0.5.
» The outcome tail has a probability of 0.5.

12/83

What are probabilities? - Intuition

Throwing a fair coin:
» The outcome head has a probability of 0.5.

» The outcome tail has a probability of 0.5.

But ...[Bertrand’s Paradox]

Draw a random chord on the unit circle. What is the probability that
its length exceeds the length of a side of the equilateral triangle in

the circle?

12/83

What are probabilities? - Intuition

Throwing a fair coin:
» The outcome head has a probability of 0.5.

» The outcome tail has a probability of 0.5.

But ...[Bertrand’s Paradox]

Draw a random chord on the unit circle. What is the probability that
its length exceeds the length of a side of the equilateral triangle in

the circle?

12/83

What are probabilities? - Intuition

Throwing a fair coin:
» The outcome head has a probability of 0.5.

» The outcome tail has a probability of 0.5.

But ...[Bertrand’s Paradox]

Draw a random chord on the unit circle. What is the probability that
its length exceeds the length of a side of the equilateral triangle in

the circle?

12/83

Probability Theory - Probability Space

Definition: Probability Function
Given sample space Q2 and o-algebra F, a probability function
P F — [0, 1] satisfies:

> P(A)>0for Ac F,

> P(Q) =1, and

> P(U?;A,-) =7, P(A)) for pairwise disjoint A; € F
Definition: Probability Space
A probability space is a tuple (2, F, P) with a sample space ©,
o-algebra 7 C 2 and probability function P.
Example
A random real number taken uniformly from the interval [0, 1].

» Sample space: Q = [0, 1].

13/83

Probability Theory - Probability Space

Definition: Probability Function
Given sample space Q2 and o-algebra F, a probability function
P F — [0, 1] satisfies:

> P(A)>0for Ac F,

> P(Q) =1, and

> P(U:;A,—) =7, P(A)) for pairwise disjoint A; € F

i=

Definition: Probability Space
A probability space is a tuple (2, F, P) with a sample space ©,
o-algebra 7 C 2 and probability function P.
Example
A random real number taken uniformly from the interval [0, 1].
» Sample space: Q = [0, 1].
> o-algebra: F is the minimal superset of {[a,5] |0 < a < b <1}
closed under complementation and countable union.

» Probability function: P([a, b]) = (b — a), by Carathéodory’s extension
theorem there is a unique way how to extend it to all elements of 583

Random Variables

int getRandomNumber ()

return 4. 7/ chosen by foir dice roll.
V4 guuran‘teed to be random.

14/83

Random Variables - Introduction

Definition: Random Variable
A random variable X is a measurable function X : 2 — [to some /.

Elements of / are called random elements. Often / = RR:
X

Example (Bernoulli Trials)
Throwing a coin 3 times: Q3 = {hhh, hht, hth, htt, thh, tht, tth, ttt}.
We define 3 random variables X; : Q@ — {h,t}. For all x,y,z € {h, t},
> Xi(xyz) = x,
> Xao(xyz) =y,
> X3(xyz) = z.

15/83

Stochastic Processes and
Markov Chains

16/83

Stochastic Processes - Definition

Definition:
Given a probability space (2, F, P), a stochastic process is a family

of random variables
{X; | te T}

defined on (Q, 7, P). For each X; we assume
Xi:Q—S
where S = {s1,s,...} is a finite or countable set called state space.
A stochastic process {X; | t € T} is called
» discrete-time if T =N or

» continuous-time if T = R>o.

For the following lectures we focus on discrete time.

17/83

Discrete-time Stochastic Processes - Construction (1)

Example: Weather Forecast

» S = {sun, rain},
> we model time as discrete — a random variable for each day:

> Xy is the weather today,
> X; is the weather in / days.

» how can we set up the probability space to measure e.g.
P(X; = sun)?

18/83

Discrete-time Stochastic Processes - Construction (2)

Let us fix a state space S. How can we construct the probability
space (2, F,P)?

Definition: Sample Space Q
We define 2 = 5°°. Then, each X, maps a sample w = wow; ... onto
the respective state at time n, i.e,

(Xn)(w) =w, € S.

19/83

Discrete-time Stochastic Processes - Construction (3)

Definition: Cylinder Set

For sp---s, € S™1, we set the cylinder C(sq...s,) = {so---s,w € Q}.
S
Example: s1 s1 [\/S1—S1—S1—S1—
S ={s1,%,s3} and C(s153) o\ s X X X X
S3 S3 /83— S3——S3——S3——

Definition: o-algebra F

We define F to be the smallest o-Algebra that contains all cylinder

sets, Le.,

{C(Sol..

Check: Is each X; measurable?

sp) | neN,s;e S} CF.

(on the discrete set S we assume the full o-algebra 2°).

20/83

Discrete-time Stochastic Processes - Construction (4)

How to specify the probability Function P?

We only need to specify it for each s ---s, € 5"

P(C(sp---5sn))-

This amounts to specifying
1. P(C(sp)) for each sp € S, and
2. P(C(sp...si) | C(so---5i—1)) for each sp---s; € S

since

P(C(sp..-sn))=P(C(so---5n) | C(so---5n—1)) P(C(s0-..5n-1))

n

= P(C(s0)) - [P(C(s0---5) | Cso---5i-1))

i=1

21/83

Discrete-time Stochastic Processes - Construction (4)

How to specify the probability Function P?

We only need to specify it for each s ---s, € 5"

P(C(sp---5sn))-

This amounts to specifying

1. P(C(sp)) for each sp € S, and

2. P(C(sp...si) | C(so---5i—1)) for each sp---s; € S
since

P(C(sp..-sn))=P(C(so---5n) | C(so---5n—1)) P(C(s0-..5n-1))

n

= P(C(s0)) - [P(C(s0---5) | Cso---5i-1))

i=1

Still, lots of possibilities...

21/83

Discrete-time Stochastic Processes - Construction (5)

Weather Example: Option 1 - statistics of days of a year

» the forecast starts on Jan 01,

Cloudy Days

» a distribution p; over {sun, rain} for
each 1 < < 365,

» foreachieNandsy---s; € St

P(C(SO e Si) | C(SO e Si—l)) - pi%365(5f) o Jan Feb Mar Apr May Jun Jul AugSepOaNﬂvDBCWI

Weather Example: Option 2 - two past days

» a distribution py s over {sun, rain}
for each s’,s” € S, Fri Sat

» foreach/>2andsy---s €St [—

P(C(so...s1) | Cso...5i—1)) = ps_,s_,(5;) 2524 2972

28° 18°

22/83

Discrete-time Stochastic Processes - Construction (5)

Weather Example: Option 1 - statistics of days of a year

. aeneous.
» the forecast starts on Jan 01, Not tune—homo S|
» a distribution p; over {sun, rain} for ws oy e
each 1 < <365, =

0%

» for each i€ Nand sp---s;p € S b

0%

0%

10%

|
P(C(SO s Si) | C(SO s Si—l)) - pi%365(5f) o Jan Feb Mar Apr May Jun Jul AugSepOaNﬂvDecID’:y:wm

Weather Example: Option 2 - two past days "\«N’\an.
. a
» a distribution py s over {sun, rain} Not
for each s’,s” € S, Fri Sat Sun
» foreach/>2and sp---s; € S’ -—

P(C(so...5) | C(So...5i-1)) = ps_,s_,(s;) 224 20°22° 28°18°

Here: time-homogeneous Markovian stochastic processes

22/83

Stochastic Processes - Restrictions

Definition: Markov
A discrete-time stochastic process
{X, | n € N} is Markov if

P(Xn:Sn | anl:snflw-“,XO:SO)
- ’D(Xn = 5p ‘ Xno1 = 5nfl)

forall n > 1and sp,...,s, € S with
P(Xn,1 = 5,771) > 0.

Definition: Time-homogeneous

A discrete-time Markov process {X, | n € N}
is time-homogeneous if

P(Xpi1 =5 | Xp=5)=P(X1 =5 | Xo = 9)
forall n>1and s, s’ € S with P(Xy =s) > 0.

23/83

Stochastic Processes - Restrictions

Definition: Markov
A discrete-time stochastic process
{X, | n € N} is Markov if

P(Xn:Sn | Xn71:5n717~~-,X0=50)
- 'D(Xn = 5p ‘ Xno1 = 5n71)

forall n > 1 and sp,....,s, € S with
P(Xn,1 = 5,7,1) > 0.

Definition: Time-homogeneous

A discrete-time Markov process {X, | n € N}
is time-homogeneous if

P(Xpi1 =5 | Xp=5)=P(X1 =5 | Xo = 9)

forall n>1ands,s" € S with P(X; =s) > 0.

A A Mapron (1886).

23/83

Discrete-time Stochastic Processes - Construction (6)

Weather Example: Option 3 - one past day

> a distribution ps over {sun, rain} for

each s’ € S,
i Fri Sat S
» foreach/>1andsy---s; € St ri al un
—
P(C(SO...S,') ‘ C(So...S,',l)) = P, 1(51') " g0 500 03 15°

» a distribution 7 over {sun, rain} such
that P(C(sp)) = 7(s0)-

24/83

Discrete-time Stochastic Processes - Construction (6)

Weather Example: Option 3 - one past day

> a distribution ps over {sun, rain} for

each s’ € S,
i Fri Sat S
» foreach/>1andsy---s; € St ri al un
—
P(C(SO...S,') ‘ C(So...S,',l)) = P, 1(51') " g0 500 03 15°

» a distribution 7 over {sun, rain} such
that P(C(sp)) = 7(s0)-

Overly restrictive, isn't it?

24/83

Discrete-time Stochastic Processes - Construction (6)

Weather Example: Option 3 - one past day

> a distribution ps over {sun, rain} for

each s’ € S,
i Fri Sat S
» foreach/>1andsy---s; € St ri al un
——
P(C(SO...S,') ‘ C(So...S,',l)) = P, 1(51') " g0 500 03 15°

» a distribution 7 over {sun, rain} such
that P(C(sp)) = 7(s0)-

Overly restrictive, isn't it?

Not really — one only needs to extend the state space

» S={1,...,365} x {sun, rain} x {sun, rain},

» now each state encodes current day of the year, current
weather, and weather yesterday,

» we can define over S a time-homogeneous Markov process

based on both Options 1 & 2 given earlier. .

Discrete-time Markov Chains
DTMC

25/83

DTMC - Relation of Definitions

Stochastic process — Graph based
Given a discrete-time homogeneous Markov process {X(n) | n € N}
> with state space S,
» defined on a probability space (2, F, P)
we take over the state space S and define
> P(s,s') = P(X,=5s"| X,_1 =5s) for an arbitrary n € N and
» mo(s) = P(Xo =s).

Graph based — stochastic process

Given a DTMC (S, P, 7), we set Q to 5°°, F to the smallest
o-Algebra containing all cylinder sets and

P(C(so-.-5n)) = mo(s0) H P(si-1,si)

1<i<n
which uniquely defines the probability function P on 7.

26/83

DTMC - Conditional Probability and Expectation

Let (S5.P,m) be a DTMC. We denote by
» P, the probability function of DTMC (S, P,) where

5(s') = {1 ifs'=s

0 otherwise

> E. the expectation with respect to Ps

27/83

Analysis questions

> Transient analysis

» Steady-state analysis
> Rewards

» Reachability

» Probabilistic logics

28/83

DTMC - Transient Analysis

DTMC - Transient Analysis - Example (1)

Example: Gambling with a Limit

12 | 12 1/2 Q
T T T
ONOBOWC)
U 1/2 1/2 1/2
1

What is the probability of being in state 0 after 3 steps?

30/83

DTMC - Transient Analysis - n-step Probabilities

Definition:
Given a DTMC (S, P,), we assume w.lo.g. S ={0,1,...} and write
pij = P(i,j). Further, we have

» P() =P = (p;) is the 1-step transition matrix

> P = (pfj”)) denotes the n-step transition matrix with

pI(J”) — P(Xn :J ‘ XO = I') (: P(Xk+n :_/ ‘ Xk — I))

How can we compute these probabilities?

31/83

DTMC - Transient Analysis - Chapman-Kolmogorov

Definition: Chapman-Kolmogorov Equation
Application of the law of total probability to the n-step transition
(n)

probabilities p::

;i results in the Chapman-Kolmogorov Equation

pU Zp,h phj’ ™ W0<m<n,
hes

Consequently, we have P(") = Pp(n=1) — ... — pr,

32/83

DTMC - Transient Analysis - Chapman-Kolmogorov

Definition: Chapman-Kolmogorov Equation

Application of the law of total probability to the n-step transition

probabilities p!” r

;i results in the Chapman-Kolmogorov Equation

pU Zp,h phj’ ™ W0<m<n,
hes

Consequently, we have P(") = Pp(n=1) — ... — pr,

Definition: Transient Probability Distribution
The transient probability distribution at time n > 0 is defined by

Th = 7Tn,1P = ’/Topn.

32/83

DTMC - Transient Analysis - Example (2)

1

1/2 1/2 1/2
>
@vvv
1/2 1/2 1/2
1

Example:
1 0 0 0 0 1 0 0 0 0
05 0 05 O 0 05 025 0 025 O
P=|(0 05 0 05 0 P2=1025 0 05 0 025
0 0 05 0 05 0 025 0 025 05
0 0 0 0 1 0 0 0 0 1

» Formo=1[0 0 1 0 0], m=mP>=[025 0 05 0 0.25].

> For,mo=[04 0 0 0 06], m=mP>=[04 0 0 0 06].
Actually, 7, = [04 0 0 0 0.6 forall ne NI

33/83

DTMC - Transient Analysis - Example (2)

1

1/2 1/2 1/2
>
@vvv
1/2 1/2 1/2
1

Example:
1 0 0 0 0 1 0 0 0 0
05 0 05 O 0 05 025 0 025 O
P=|(0 05 0 05 0 P2=1025 0 05 0 025
0 0 05 0 05 0 025 0 025 05
0 0 0 0 1 0 0 0 0 1

» Formo=1[0 0 1 0 0], m=mP>=[025 0 05 0 0.25].

> For,mo=[04 0 0 0 06], m=mP>=[04 0 0 0 06].
Actually, 7, = [04 0 0 0 0.6 forall ne NI

Are there other “stable” distributions?
33/83

DTMC - Steady State Analysis

DTMC - Steady State Analysis - Definitions

Definition: Stationary Distribution
A distribution 7 is stationary if

T =7P.

Stationary distribution is generally not unique.

35/83

DTMC - Steady State Analysis - Definitions

Definition: Stationary Distribution
A distribution 7 is stationary if

T =7P.

Stationary distribution is generally not unique.

Definition: Limiting Distribution

7 = lim 7, = lim mP" = my lim P" = moP™.
n—oo n—oo n—o0

The limit can depend on 7y and does not need to exist.

35/83

DTMC - Steady State Analysis - Definitions

Definition: Stationary Distribution
A distribution 7 is stationary if

m=7P.

Stationary distribution is generally not unique.

Definition: Limiting Distribution

7 = lim 7, = lim mP" = my lim P" = moP™.
n—oo n—oo n—o00

The limit can depend on 7y and does not need to exist.

Connection between stationary and limiting?

35/83

DTMC - Steady-State Analysis - Periodicity

ExmnMe:Gambhngvﬂﬂ1$odal0umanums

1/2 1/2 1/2
@vvvv

1/2 1/2 1/2

What are the stationary and limiting distributions?

36/83

DTMC - Steady-State Analysis - Periodicity

Example: Gambling with Social Guarantees

1/2 1/2 1/2
@vvvv

1/2 1/2 1/2

What are the stationary and limiting distributions?
Definition: Periodicity
The period of a state / is defined as

di = ged{n | pjj > 0}.

A state i/ is called aperiodic if d; = 1 and periodic with period d;
otherwise. A Markov chain is aperiodic if all states are aperiodic.

Lemma
In a finite aperiodic Markov chain, the limiting distribution exists.

36/83

DTMC - Steady-State Analysis - Irreducibility (1)

Example
1/2 1/2 1/2

/N/—\/—\
®v
1/2 1/2

1/2

37/83

DTMC - Steady-State Analysis - Irreducibility (2)

Definition:
A DTMC is called irreducible if for all states 7,/ € 5 we have pj} > 0
for some n > 1.

Lemma
In an aperiodic and irreducible Markov chain, the limiting
distribution exists and does not depend on .

1

38/83

DTMC - Steady-State Analysis - Irreducibility (3)

1/2
1/2 1/2 1/2 1/2
S o R
@v @
1/2 1/2 1/2 1/2

1/2

What is the stationary / limiting distribution?

39/83

DTMC - Steady-State Analysis - Irreducibility (3)

1/2
1/2 1/2 1/2 1/2
S o R
@v @
1/2 1/2 1/2 1/2

1/2

What is the stationary / limiting distribution?

1/2 1/2 1/2 1/2
Y /\
@ (0Tl
1/2 1/2 1/2 1/2

1/2

39/83

DTMC - Steady-State Analysis - Irreducibility (3)

1/2
1/2 1/2 1/2 1/2
S o R
@v @
1/2 1/2 1/2 1/2

1/2

What is the stationary / limiting distribution?

1/2 1/2 1/2 1/2
Y /\
@ (0Tl
1/2 1/2 1/2 1/2

1 /2
Lemma
In a finite aperiodic and irreducible Markov chain, the limiting

distribution exists, does not depend on 7y, and equals the unique

stationary distribution.
39/83

DTMC - Steady-State Analysis - Recurrence (1)

Definition:
Let A" = P(X, = jAVL < k< n:Xe#]| Xo=1)for n>1be the
n-step hitting probability. The hitting probability is defined as

fi=>_f"
n=1

and a state / is called
» transient if f; < 1 and

» recurrent if f;; = 1.

40/83

DTMC - Steady-State Analysis - Recurrence (2)

Definition:

Denoting expectation m; = > * £

n=11" ij
» positive recurrent or recurrent non-null if m; < co and

,arecurrent state / is called

» recurrent null if m; = oc.

Lemma
The states of an irreducible DTMC are all of the same type, i.e.,

» all periodic or

» all aperiodic and transient or

» all aperiodic and recurrent null or
>

all aperiodic and recurrent non-null.

41/83

DTMC - Steady-State Analysis - Ergodicity

Definition: Ergodicity
A DTMC is ergodic if all its states are irreducible, aperiodic and
recurrent non-null.

Theorem
In an ergodic Markov chain, the limiting distribution exists, does not
depend on my, and equals the unique stationary distribution.

As a consequence, the steady-state distribution can be computed by
solving the equation system

T =P, E s = 1.
xXES

Note: The Lemma for finite DTMC follows from the theorem as every
irreducible finite DTMC is positive recurrent.

42/83

DTMC - Steady-State Analysis - Ergodicity

Example: Unbounded Gambling with House Edge

P P P 1
OsOBOBO
. .

" "~ e — ~
l)lfp 1-p 1-p 1-p
1-p

The DTMC is only ergodic for p € [0,0.5).

43/83

DTMC - Rewards

DTMC - Rewards - Definitions

Definition
A reward Markov chain is a tuple (S, P, o, r) where (5,P,) is a
Markov chain and r : S — Z is a reward function.

45/83

DTMC - Rewards - Definitions

Definition
A reward Markov chain is a tuple (S, P, o, r) where (5,P,) is a
Markov chain and r : S — Z is a reward function.

Every run p = sy, 51, ... induces a sequence of values r(sp), r(s1), ...

Value of the whole run can be defined as

45/83

DTMC - Rewards - Definitions

Definition
A reward Markov chain is a tuple (S, P, o, r) where (5,P,) is a
Markov chain and r : S — Z is a reward function.

Every run p = sy, 51, ... induces a sequence of values r(sp), r(s1), ...

Value of the whole run can be defined as

total reward
-
> iz r(si)

45/83

DTMC - Rewards - Definitions

Definition
A reward Markov chain is a tuple (S, P, o, r) where (5,P,) is a
Markov chain and r : S — Z is a reward function.

Every run p = sy, 51, ... induces a sequence of values r(sp), r(s1), ...

Value of the whole run can be defined as

total reward
Z,—T:o r(si) But what if T = 00?

45/83

DTMC - Rewards - Definitions

Definition
A reward Markov chain is a tuple (S, P, o, r) where (5,P,) is a
Markov chain and r : S — Z is a reward function.

Every run p = sy, 51, ... induces a sequence of values r(sp), r(s1), ...

Value of the whole run can be defined as
total reward

Z,T:O r(s;) But what if T = 00?
discounted reward

SN r(s) for some 0 < A < 1

45/83

DTMC - Rewards - Definitions

Definition

A reward Markov chain is a tuple (S, P, 7o, r) where (5,P,7) is a

Markov chain and r : S — Z is a reward function.

Every run p = 55,51, ...
Value of the whole run can be defined as

total reward
Z,—T:o r(si) But what if T = 00?

discounted reward
Yoo AN r(si) for some 0 < A < 1

average reward
. 1 n
limpoe = > o r(si)

also called long-run average or mean payoff

induces a sequence of values r(sp), r(s1), ...

45/83

DTMC - Rewards - Definitions

Definition
A reward Markov chain is a tuple (S, P, o, r) where (5,P,) is a
Markov chain and r : S — Z is a reward function.

Every run p = sy, 51, ... induces a sequence of values r(sp), r(s1), ...

Value of the whole run can be defined as
total reward
Z,T:O r(s;) But what if T = 00?
discounted reward
SN r(s) for some 0 <\ < 1
average reward
limp—yoo 2 30 o r(si)
also called long-run average or mean payoff

Definition

The expected average reward is

n—oo N 4

EAR := lim 1ZHIE[r(x,-)]
i=0

45/83

DTMC - Rewards - Solution Sketch

Definition: Time-average Distribution

i=0

7i(s) expresses the ratio of time spent in s on the long run.

"More details later for Markov decision processes.
46/83

DTMC - Rewards - Solution Sketch

Definition: Time-average Distribution

n

. o1
T= lim — E .
n—o00 N 4

i=0

7i(s) expresses the ratio of time spent in s on the long run.

Lemma
1. E[r(X)] = Y e mils) - r(s).
2. If 7 exists then EAR = 5 __s7(s) - r(s).

3. If limiting distribution exists, it coincides with 7.

"More details later for Markov decision processes.
46/83

DTMC - Rewards - Solution Sketch

Definition: Time-average Distribution

n

. o1
T= lim — E .
n—o00 N 4

i=0

7i(s) expresses the ratio of time spent in s on the long run.

Lemma

1. E[r(X)] = es mils) - r(s)
2. If 7 exists then EAR = 5 __s7(s) - r(s).

3. If limiting distribution exists, it coincides with 7.

Algortithm

1. Compute 7 (or limiting distribution if possible).!
2. Return) __s7(s) - r(s).

"More details later for Markov decision processes.
46/83

DTMC - Reachability

DTMC - Reachability

Definition: Reachability

Given a DTMC (S, P,), what is the probability of eventually
reaching a set of goal states B C 57

S

Let x(s) denote P;(OB) where OB = {sps1--- | 3i : s; € B}. Then
> sc b x(
> scS\B: x(s

48/83

DTMC - Reachability

Definition: Reachability

Given a DTMC (S, P,), what is the probability of eventually
reaching a set of goal states B C 57

S

Let x(s) denote P;(OB) where OB = {sps1--- | 3i : s; € B}. Then
> sc b x(s) =1
> seS\B: x(s)= > ,cq5P(s, t)x(t) + X, P(s, v).

48/83

DTMC - Reachability

Lemma (Reachability Matrix Form)

Given a DTMC (S, P,), the column vector x = (x(s))scs\ g of
probabilities x(s) = Ps(OB) satisfies the constraint

x = Ax+ b,

where matrix A is the submatrix of P for states S\ B and
b = (b(s))ses\ s is the column vector with b(s) =5 5 P(s, u).

49/83

DTMC - Reachability

Example:

1

The vector x = [xo X1 XQ} - [0.25 0.5 O} i satisfies the

0.5 1 A b
Q 0 05 05 |[0
0.25 yo{ 0.25 853 p=[005 025025
oo 1 |o
05 |05 oo o 1
S B =(s3)

equation system x = Ax + b.

50/83

DTMC - Reachability

Example:
1 0.5 1 A b
Q 0 05 05 |0
852 025} 0.25 833 p = [0 05 025025
oo 1 o
05 |05 oo o 1

@ B = {s3}

The vector x = [xo X1 XQ} - [0.25 0.5 O} i satisfies the
equation system x = Ax + b.

Is it the only solution?

50/83

DTMC - Reachability

Example:
1 0.5 1 A b
Q 0 05 05 |0
852 025} 0.25 833 p = [0 05 025025
oo 1 o
05 |05 oo o 1

@ B = {s3}

The vector x = [xo X1 XQ} - [0.25 0.5 0} i satisfies the
equation system x = Ax + b.

Is it the only solution?

> No! Consider, e.g, [0.55 0.7 0.4 or [1 1 I}T.

What is the equation system for these probabilities?

50/83

DTMC - Reachability - Solution

Let S.g = {s | Ps(0 B) =0} and S, = S\ (5—o U B).
Let =" B = {sys;-+- | Ji < n:s; € B} be the set of runs reaching B
from state s within n steps.

51/83

DTMC - Reachability - Solution

Let S.g = {s | Ps(0 B) =0} and S, = S\ (5—o U B).
Let =" B = {sys;-+- | Ji < n:s; € B} be the set of runs reaching B
from state s within n steps.

Theorem:
The column vector x = (x(s))scs, of probabilities x(s) = Ps(0 B) is
the unique solution of the equation system

x = Ax + b,

where A = (P(s, t))s tes,, b = (b(s))ses, with b(s) = > 5 P(s, u).

Furthermore, for xg = (0)secs, and x; = Ax;—1 + b for any / > 1,
1. x4(s) = Ps(0=" B) for s € S,
2. x; is increasing, and

3. x = limp_ 00 Xp.

51/83

DTMC - Conditional Reachability - Proof

Proof Sketch:

» (xs)xes, is a solution: by inserting into definition.

» Unique solution: By contradiction. Assume y is another solution,
then x —y = A(x —y). One can show that A — | is invertible, thus
(A—1)(x—y) =0 yields x —y = (A —1)"10 = 0 and finally x =y .

Furthermore,
1. From the definitions, by straightforward induction.
2. From 1. since =" B C {="t1 B,

3. Since ¢ B =], 0=" B.

2cf. page 766 of Principles of Model Checking
52/83

Algorithmic aspects

53/83

Algorithmic Aspects - Summary of Equation Systems

Equation Systems

» Transient analysis: 7, = moP" = 7,_1P
> Steady-state analysis: 7P =7, 7-1 =) __s7(s) =1 (ergodic)
» Reachability: x = Ax+b (with (x(s))ses,)

Solution Techniques
1. Analytic solution, e.g. by Gaussian elimination
2. lterative power method (7, — 7 and x, — x for n — o0)

3. lterative methods for solving large systems of linear equations,
e.g. Jacobi, Gauss-Seidel

Missing pieces

a. finding out whether a DTMC is ergodic,
b. computing S; = S\ {s | Ps(0 B) = 0},
c. efficient representation of P.

54/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (1)

Ergodicity = Irreducibility + Aperidocity + P. Recurrence

» A DTMC is called irreducible if for all states i,; € S we have
pjj > 0 for some n > 1.

> A state / is called aperiodic if gcd{n | p} > 0} = 1.

> A state / is called positive recurrent if f; = 1 and m; < oc.

How do we tell that a finite DTMC is ergodic?

55/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (1)

Ergodicity = Irreducibility + Aperidocity + P. Recurrence
» A DTMC is called irreducible if for all states i,; € S we have
pjj > 0 for some n > 1.
> A state / is called aperiodic if gcd{n | p} > 0} = 1.

> A state / is called positive recurrent if f; = 1 and m; < oc.

How do we tell that a finite DTMC is ergodic?

By analysis of the induced graph!

For a DTMC (S,P,7(0)) we define the induced directed graph (S, E)
with £ = {(s,s") | P(s,s") > 0}.

Recall:

> A directed graph is called strongly connected if there is a path
from each vertex to every other vertex.

» Strongly connected components (SCC) are its maximal strongly
connected subgraphs.

» A SCC T is bottom (BSCC) if no s ¢ T is reachable from T.

55/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = lrreducibility + Aperidocity + P. Recurrence

» A DTMC is called irreducible if for all states 7, € S we have
p; >0 for some n > 1.
> A state i is called aperiodic if gcd{n | p? > 0} = L.

> A state / is called positive recurrent if f; =1 and m; < oc.

Theorem:
For finite DTMCs, it holds that:

56/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = lrreducibility + Aperidocity + P. Recurrence
» A DTMC is called irreducible if for all states 7, € S we have
p; >0 for some n > 1.
> A state i is called aperiodic if gcd{n | p? > 0} = L.

> A state / is called positive recurrent if f; =1 and m; < oc.

Theorem:
For finite DTMCs, it holds that:

» The DTMC is irreducible iff the induced graph is strongly
connected.

56/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = lrreducibility + Aperidocity + P. Recurrence
» A DTMC is called irreducible if for all states 7, € S we have
p; >0 for some n > 1.
> A state i is called aperiodic if gcd{n | p? > 0} = L.

> A state / is called positive recurrent if f; =1 and m; < oc.

Theorem:
For finite DTMCs, it holds that:

» The DTMC is irreducible iff the induced graph is strongly
connected.

> A state in a BSCC is aperiodic iff the BSCC is aperiodic, i.e. the
greatest common divisor of the lengths of all its cycles is 1.

56/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = lrreducibility + Aperidocity + P. Recurrence
» A DTMC is called irreducible if for all states 7, € S we have
p; >0 for some n > 1.
> A state i is called aperiodic if gcd{n | p? > 0} = L.

> A state / is called positive recurrent if f; =1 and m; < oc.

Theorem:
For finite DTMCs, it holds that:

» The DTMC is irreducible iff the induced graph is strongly
connected.

> A state in a BSCC is aperiodic iff the BSCC is aperiodic, i.e. the
greatest common divisor of the lengths of all its cycles is 1.

> A state is positive recurrent iff it belongs to a BSCC otherwise it
is transient.

56/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is gcd of the lengths of all cycles of a strongly
connected graph 17

57/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is gcd of the lengths of all cycles of a strongly
connected graph 17
» gcd{n>1|3s:P"(s,s) >0} =1

57/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is gcd of the lengths of all cycles of a strongly
connected graph 17

» gcd{n>1|3s:P"(s,s) >0} =1

> in time O(n+ m)?

57/83

Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

© © N o O H w N =

- a a2 A
w N = o

How to check: is gcd of the lengths of all cycles of a strongly
connected graph 17

» gcd{n>1|3s:P"(s,s) >0} =1

» in time O(n+ m)? By the following DFS-based procedure:

Algorithm: PERIOD(vertex v, unsigned level : init 0)

global period : init O;
if period = 1 then
| return
end
if v is unmarked then
mark v;
Vievel = level;
for v/ € out(v) do
‘ PERIOD(v/,/level + 1)
end
else
‘ period = gcd(period, level — Vieyer);
end

57/83

Algorithmic Aspects: b. Computing the set 5;

We have S; = S\ (B U 5-¢) where 5_¢g = {s | Ps(0 B) = 0}.
Hence,

seSo iff pl, =0 foralln>1ands’ €B.

58/83

Algorithmic Aspects: b. Computing the set 5;

We have S; = S\ (BU S5_) where S_g = {s | Ps(0 B) =0}.
Hence,

seSo iff pl, =0 foralln>1ands’ €B.

This can be again easily checked from the induced graph:

Lemma
We have s ¢ S iff there is no path from s to any state from B.

Proof.
Easy from the fact that pZ, > 0 iff there is a path of length nto s’. O

58/83

Algorithmic Aspects: c. Efficient Representations

59/83

Algorithmic Aspects: c. Efficient Representations

1. There are many 0 entries in the transition matrix.

Sparse matrices offer a more concise storage.

59/83

Algorithmic Aspects: c. Efficient Representations

1. There are many 0 entries in the transition matrix.

Sparse matrices offer a more concise storage.

2. There are many similar entries in the transition matrix.

Multi-terminal binary decision diagrams offer a more concise
storage, using automata theory.

59/83

DTMC - Probabilistic Temporal
Logics for Specifying Complex
Properties

60/83

Logics - Adding Labels to DTMC

Definition:
A labeled DTMC is a tuple D = (S, P, 7, L) with L : S — 247 where

> AP is a set of atomic propositions and

» [is a labeling function, where L(s) specifies which properties
hold in state s € S.

61/83

Logics - Examples of Properties

3 .. States and transitions

H o state = configuration of the game;

H transition = rolling the dice and acting
H (randomly) based on the result.

H State labels

. » init, rwin, bwin, rkicked, bkicked, ...
H > 130,121, ...,

o
o0 > b30, b21,. .,

Examples of Properties
» the game cannot return back to start
> at any time, the game eventually ends with prob. 1
> at any time, the game ends within 100 dice rolls with prob. > 0.5
>

the probability of winning without ever being kicked out is < 0.3

How to specify them formally?

62/83

Logics - Temporal Logics - non-probabilistic (1)

Linear-time view
» corresponds to our (human) perception of time

» can specify properties of one concrete linear execution of the
system

Example: eventually red player is kicked out followed immediately
by blue player being kicked out.

Branching-time view

> views future as a set of all possibilities

» can specify properties of all executions from a given state —
specifies execution trees

Example: in every computation it is always possible to return to the
initial state.

63/83

Logics - Temporal Logics - non-probabilistic (2)

Linear Temporal Logic (LTL)

Syntax for formulae specifying executions:

YUY | F |Gy
Example: eventually red player is kicked out followed immediately

by blue player being kicked out: F (rkicked N X bkicked)
Question: do all executions satisfy the given LTL formula?

b=true|a|YAY || XY

Computation Tree Logic (CTL)

Syntax for specifying states: Syntax for specifying executions:

p=true|a|dNd| - |AY|E Y vV=Xo|loU|FP|Go

Example: in all computations it is always possible to return to initial
state: AG E F init
Question: does the given state satisfy the given CTL state formula?

64/83

Logics - LTL
Syntax b=truelaly AP |y | XY [P U Y.

Semantics (for a path w = sps1 -+)

> w = true (always),
> wia iff a < L(so),
> wEYIAY ifw Y and w =,
> ol iffw ey,
> wEX Y iff 515+ =),
v
> w ‘: 1/)1 u 1»/)2 lﬁ Eli Z O : SISH»I P ‘: Q,/j2 and VJ < I' : Sij+1 e 1‘)1
wl ’ ’ : "Ul \UQ

Syntactic sugar
> Fp=

65/83

Logics - LTL

Syntax

Semantics (for a path w = sps1 -+)

|

>
>
>
>

w = true

wkEa

(always),

iff a

S L(So),

w1 Ay iff w =y and w = 1y,
iff w % ?;‘),
iff 515 - l: ’Q‘),

wE
whkE XY

w=true|lal VA | | X Y|y UP.

v

wEPL U Y

iff 4/ > 0: SiSi+1 "

= 1 and V)

<i:

5jSj

SR

L

vy

L2

Syntactic sugar
Fy= trueld 1

>

> G = —(true U —)

(= ~F)

= L“b1~

65/83

Logics - CTL

Syntax
State formulae: Path formulae:
p=true|lalpNp|-d|AY|EY V=X¢|oU ¢
where 1 is a path formula. where ¢ is a state formula.
Semantics
For a path w = sps; -+ -:
For a state s: X0 iff
> s = true (always), 515, - - - satisfies ¢,
> sk a iff a € L(s),
> sk o1 Aoy iff s = oy and HOEEEEEEEEE
s = ¢2, > w1 U ¢ iff Ti
> sE o iff s}~ o, SiSit1- -+ = ¢ and
> s = Ay iff w = o for all Vj <i:sisjpicc ¢
paths w = sps; - -+ with 55 =5,
> sk Ey iff w =1 for some ol [[fefe] [TT1]
path w = sps; - -+ with 55 = s.

66/83

Logics - Temporal Logics - non-probabilistic (2)

Linear Temporal Logic (LTL)

Syntax for formulae specifying executions:

YUY | F |Gy
Example: eventually red player is kicked out followed immediately

by blue player being kicked out: F (rkicked N X bkicked)
Question: do all executions satisfy the given LTL formula?

b=true|a|YAY || XY

Computation Tree Logic (CTL)

Syntax for specifying states: Syntax for specifying executions:

p=true|a|dNd| - |AY|E Y vV=Xo|loU|FP|Go

Example: in all computations it is always possible to return to initial
state: AG E F init
Question: does the given state satisfy the given CTL state formula?

67/83

Logics - Temporal Logics - probabilistic

Linear Temporal Logic (LTL) + probabilities
Syntax for formulae specifying executions:

Y| XY | YUY | Fp|Gap
Example: with prob. > 0.8, eventually red player is kicked out

followed immediately by blue player being kicked out:

Y =true|al Y A

P(F (rkicked N X bkicked)) > 0.8

Question: is the formula satisfied by executions of given probability?

68/83

Logics - Temporal Logics - probabilistic

Linear Temporal Logic (LTL) + probabilities

Syntax for formulae specifying executions:

p=true|a| YAy || XY |VvUY|FU|Gy
Example: with prob. > 0.8, eventually red player is kicked out
followed immediately by blue player being kicked out:

P(F (rkicked N X bkicked)) > 0.8

Question: is the formula satisfied by executions of given probability?

Probabilitic Computation Tree Logic (PCTL)

Syntax for specifying states: Syntax for specifying executions:

p=true|aloNo| ¢ | Py V=X¢|oUS|dU K| F |G ¢

Example: with prob. at least 0.5 the probability to return to initial

state is always at least 0.1: P~o5 G P>q.1 F init
Question: does the given state satisfy the given PCTL state formula?

68/83

Logics - PCTL - Examples

Syntactic sugar:

>)V = ﬁ(ﬁ@l N ﬁ@2), O1 = P = 1 V 0o, etc.

» < 0.5 denotes the interval [0,0.5], = 1 denotes [1, 1], etc.

Examples:

> A fair die:

» The probability of winning "Who wants to be a millionaire”
without using any joker should be negligible:

,P<18710(_‘(JSO% V Jaudience V Jte/ephone) u W’n)

69/83

Logics - PCTL - Semantics

Semantics
For a state s:

> s | true (always),

> ska iff a € L(s),

> sk ¢ Aoy iff s = ¢y and
s = ¢o,

>skoo s

>

[s|=Py(v) iff Po(Paths(v)) € J|

For

>

>

a path w = sps; - -:
wEX o iff 515, - -+ satisfies ¢,

Llol [[[[[T []]
w \:@11/{@2 iff 37 :

SiSi+1° " ‘: (]52 and
Vj<i:sisiy1--- = ér.

(D [-[-[-[ood [[]
w‘:¢1u§n®2 lﬂﬂlgl‘l
SiSit1- -+ = ¢ and
Vj<i:sjsiy1--- = ér.

(D [[[[ood [[]

70/83

Logics - Examples of Properties

+ .z Examples of Properties

1. the game cannot return back to start

2. at any time, the game eventually
ends with prob. 1

3. at any time, the game ends within
100 dice rolls with prob. > 0.5

000 ===z

4. the probability of winning without
.. . ever being kicked out is < 0.3

Formally

71/83

Logics - Examples of Properties

+ .z Examples of Properties

1. the game cannot return back to start

2. at any time, the game eventually
ends with prob. 1

3. at any time, the game ends within
100 dice rolls with prob. > 0.5

000 ===z

4. the probability of winning without
.. . ever being kicked out is < 0.3

Formally

1. P(X G —init) =1 (LTL 4 prob.)
P_1(X P_o(G —init)) (PCTL)

71/83

Logics - Examples of Properties

+ .: Examples of Properties

1. the game cannot return back to start

2. at any time, the game eventually
ends with prob. 1

3. at any time, the game ends within
100 dice rolls with prob. > 0.5

000 ===z

4. the probability of winning without
.. . ever being kicked out is < 0.3

Formally

1. P(X G —init) =1 (LTL 4 prob.)
P_1(X P_o(G —init)) (PCTL)
2. P_1(G P=1(F (rwinV bwin))) (PCTL)

71/83

Logics - Examples of Properties

+ .: Examples of Properties

1. the game cannot return back to start

2. at any time, the game eventually
ends with prob. 1

3. at any time, the game ends within
100 dice rolls with prob. > 0.5

000 ===z

4. the probability of winning without
.. . ever being kicked out is < 0.3

Formally
1. P(X G —init) =1 (LTL 4 prob.)
P_1(X P_o(G —init)) (PCTL)
2. P_y(G P_y(F (rwinV bwin))) (PCTL)
3. P_y(G Pso.5(F <1%(rwin v bwin))) (PCTL)

71/83

Logics - Examples of Properties

+ .: Examples of Properties

1. the game cannot return back to start

2. at any time, the game eventually
ends with prob. 1

3. at any time, the game ends within
100 dice rolls with prob. > 0.5

000 ===z

4. the probability of winning without
.. . ever being kicked out is < 0.3

Formally
1. P(X G —init) =1 (LTL 4 prob.)
P_1(X P_o(G —init)) (PCTL)
2. P_1(G P—1(F (rwinV bwin))) (PCTL)
3. P_1(G Pso.5(F =%(rwin Vv bwin))) (PCTL)
4. P((—rkicked N —bkicked) U (rwin\/ bwin)) < 0.3 (LTL + prob.)

71/83

PCTL Model Checking Algorithm

PCTL Model Checking

Definition: PCTL Model Checking
Let D = (5,P, 7, L) be a DTMC, ® a PCTL state formula and s € S.
The model checking problem is to decide whether s = ®.

Theorem
The PCTL model checking problem can be decided in time polynomial

in |D|, linear in |®|, and linear in the maximum step bound n.

73/83

PCTL Model Checking - Algorithm - Outline (1)

Algorithm:
Consider the bottom-up traversal of the parse tree of ®:
» The leaves are a € AP or true and

» the inner nodes are:

» unary — labelled with the operator = or P,(X");
> binary — labelled with an operator A, P;(U), or Py(U =").

Example: =a A P<go(=b U Px0.0(0 ¢))

A
a "' Psoo(U)
b true c

Compute Sat(V) = {s e S| s = V} for each node W of the tree in a
bottom-up fashion. Then s = ¢ iff s € Sat(®).

74/83

PCTL Model Checking - Algorithm - Outline (2)

“Base” of the algorithm:
We need a procedure to compute Sat(V) for W of the form a or true:

75/83

PCTL Model Checking - Algorithm - Outline (2)

“Base” of the algorithm:
We need a procedure to compute Sat(V) for W of the form a or true:

Lemma
» Sat(true) =S,
» Sat(a) ={s|ac L(s)}

75/83

PCTL Model Checking - Algorithm - Outline (2)

“Base” of the algorithm:
We need a procedure to compute Sat(V) for W of the form a or true:
Lemma

» Sat(true) =S,

» Sat(a) ={s|ac L(s)}

“Induction” step of the algorithm:

We need a procedure to compute Sat(W) for W given the sets Sat(W’)
for all state sub-formulas W’ of W:

Lemma
> Sat(¢'1 A\ ¢2) =
> Sat(—d) =

75/83

PCTL Model Checking - Algorithm - Outline (2)

“Base” of the algorithm:
We need a procedure to compute Sat(V) for W of the form a or true:
Lemma

» Sat(true) =S,

» Sat(a) ={s|ac L(s)}

“Induction” step of the algorithm:

We need a procedure to compute Sat(W) for W given the sets Sat(W’)
for all state sub-formulas W’ of W:

Lemma
> Sat(Py A Py) = Sat(Pq) N Sat(Py)
» Sat(—P) =S\ Sat(d)

Sat(Py(®)) = {s | Ps(Paths(®)) € J} discussed on the next slide.

75/83

PCTL Model Checking - Algorithm - Path Operator

Lemma

> Next:
Ps(Paths(X ®)) =

» Bounded Until:

Ps(Paths(®1 U =" &,)) =

» Unbounded Until:

P,(Paths(®y U ®,)) =

76/83

PCTL Model Checking - Algorithm - Path Operator

Lemma
» Next:

Ps(Paths(X ®))= Y P(s,s)
s’ eSat(P)

» Bounded Until:

P.(Paths(®; U =" &;)) = Py(Sat(®1) U =" Sat(d,))

» Unbounded Until:

Ps(Paths(®y U $,)) = Pg(Sat(Py) U Sat(d,))

76/83

PCTL Model Checking - Algorithm - Path Operator

Lemma
» Next:

Ps(Paths(X ®))= Y P(s,s)
s’ eSat(P)

» Bounded Until:

P,(Paths(®1 U =" &,)) = Ps(Sat(1) U =" Sat(dy))

» Unbounded Until:

PS(Paths(<1>1 u ¢2)):PS(531§(¢1) u Sat(d>2))

As before:
can be reduced to transient analysis and to unbounded reachability.

76/83

PCTL Model Checking - Algorithm - Complexity

Precise algorithm

Computation for every node in the parse tree and for every state:
> All node types except for path operator — trivial.
> Next: Trivial.

» Until: Solving equation systems can be done by polynomially
many elementary arithmetic operations.

» Bounded until: Matrix vector multiplications can be done by
polynomial many elementary arithmetic operations as well.

Overall complexity:
Polynomial in |D|, linear in |®| and the maximum step bound n.

In practice
The until and bounded until probabilities computed approximatively:
» rounding off probabilities in matrix-vector multiplication,

» using approximative iterative methods (error guarantees?!).

77/83

pLTL Model Checking Algorithm

LTL Model Checking - Overview

Definition: LTL Model Checking

Let D = (5,P,m, L) be a DTMC, ¥ a LTL formula, s € S, and
p € [0,1]. The model checking problem is to decide whether
s = PP(Paths(V)) > p.

Theorem
The LTL model checking can be decided in time O(|D[-2/")).

79/83

LTL Model Checking - Overview

Definition: LTL Model Checking

Let D = (5,P,m, L) be a DTMC, ¥ a LTL formula, s € S, and
p € [0,1]. The model checking problem is to decide whether
s = PP(Paths(V)) > p.

Theorem
The LTL model checking can be decided in time O(|D[-2/")).
Algorithm Outline

1. Construct from W a deterministic Rabin automaton A recognizing
words satisfying V, i.e. Paths(V) = {L(w) € (247)>* | w = V}

79/83

LTL Model Checking - Overview

Definition: LTL Model Checking

Let D = (5,P,m, L) be a DTMC, ¥ a LTL formula, s € S, and
p € [0,1]. The model checking problem is to decide whether
s = PP(Paths(V)) > p.

Theorem
The LTL model checking can be decided in time O(|D[-2/")).

Algorithm Outline

1. Construct from W a deterministic Rabin automaton A recognizing
words satisfying V, i.e. Paths(V) = {L(w) € (247)>* | w = V}

2. Construct a product DTMC D x A that “embeds” the
deterministic execution of A into the Markov chain.

79/83

LTL Model Checking - Overview

Definition: LTL Model Checking

Let D = (5,P,m, L) be a DTMC, ¥ a LTL formula, s € S, and
p € [0,1]. The model checking problem is to decide whether
s = PP(Paths(V)) > p.

Theorem
The LTL model checking can be decided in time O(|D[-2/")).

Algorithm Outline
1. Construct from W a deterministic Rabin automaton A recognizing
words satisfying V, i.e. Paths(V) = {L(w) € (247)>* | w = V}
2. Construct a product DTMC D x A that “embeds” the
deterministic execution of A into the Markov chain.

3. Compute in D x A the probability of paths where A satisfies the
acceptance condition.

79/83

LTL Model Checking - w-Automata (1.)

Deterministic Rabin automaton (DRA): (Q, %, 4, g0, Acc)
> a DFA with a different acceptance condition,
> ACC:{(E,‘,F,') ‘ 1 Slf k}
» each accepting infinite path must visit for some /
> all states of £; at most finitely often and
> some state of F; infinitely often.

80/83

LTL Model Checking - w-Automata (1.)

Deterministic Rabin automaton (DRA): (Q, %, 4, g0, Acc)
> a DFA with a different acceptance condition,
> ACC:{(E,‘,F,') ‘ 1 Slf k}
» each accepting infinite path must visit for some /
> all states of £; at most finitely often and
> some state of F; infinitely often.

Example
Give some automata recognizing the language of formulas
» (aAX b)ValUc

» fGa

» GFa

80/83

LTL Model Checking - w-Automata (1.)

Deterministic Rabin automaton (DRA): (Q, %, 4, g0, Acc)
> a DFA with a different acceptance condition,
> ACC:{(E,‘,F,') ‘ 1 SIS k}
» each accepting infinite path must visit for some /
> all states of £; at most finitely often and
> some state of F; infinitely often.

Example
Give some automata recognizing the language of formulas
» (aAX b)ValUc

» fGa

» GFa

Lemma (Vardi&Wolper'86, Safra’'88)

For any LTL formula V there is a DRA A recognizing Paths(V) with

Al € 2277,

80/83

LTL Model Checking - Product DTMC (2.)

For a labelled DTMC D = (S5,P,m, L) and a DRA
A= (Q.,2% 5,q0, {(Ei,F;) | 1 < i< k}) we define
1. aDTMC D x A= (S x Q,P. mp):

» P'((s,q),(s',q")) = P(s,s") if 6(q, L(s")) = ¢" and 0, otherwise;

> 710((s,9s)) = mo(s) if 5(qo, L(s)) = gs and 0, otherwise; and

81/83

LTL Model Checking - Product DTMC (2.)

For a labelled DTMC D = (S5,P,m, L) and a DRA
A= (Q.,2% 5,q0, {(Ei,F;) | 1 < i< k}) we define
1. aDTMC D x A= (S x Q,P. mp):

» P'((s,q),(s',q")) = P(s,s") if 6(q, L(s")) = ¢" and 0, otherwise;

> 710((s,9s)) = mo(s) if 5(qo, L(s)) = gs and 0, otherwise; and
2. {(E/,F!)| 1 < i< k} where for each i

» E/ ={(s,q)| g € Ei,s € S},

> F={(s.q) | g€ Fi,s €S},

81/83

LTL Model Checking - Product DTMC (2.)

For a labelled DTMC D = (S5,P,m, L) and a DRA
A= (Q.,2% 5,q0, {(Ei,F;) | 1 < i< k}) we define
1. aDTMC D x A= (S x Q,P. mp):
» P'((s,q),(s',q")) = P(s,s") if 6(q, L(s")) = ¢" and 0, otherwise;
> 710((s,9s)) = mo(s) if 5(qo, L(s)) = gs and 0, otherwise; and
2. {(E/,F!)| 1 < i< k} where for each i
» E/ ={(s,q)| g € Ei,s € S},
» F ={(s.,q)|q€ Fi,s €S},

Lemma
The construction preserves probability of accepting as

PP(Lang(A)) = P ({w | 3i :inf(w) N E] = 0,inf(w) N F/ # 0})
where inf(w) is the set of states visited in w infinitely often.

Proof sketch.

We have a one-to-one correspondence between executions of D and
D x A (as A is deterministic), mapping Lang(A) to {---}, and
preserving probabilities. O

81/83

LTL Model Checking - Computing Acceptance Pr. (3.)

How to check the probability of accepting in D x A?

82/83

LTL Model Checking - Computing Acceptance Pr. (3.)

How to check the probability of accepting in D x A?
Identify the BSCCs ((;); of D x A that for some 1 </ < k,
1. contain no state from £/ and

2. contain some state from F/.

Lemma
Plawy{w [3i tinf(w) N Ef = 0,inf(w) N F} # 0}) = PA(0U; G).

82/83

LTL Model Checking - Computing Acceptance Pr. (3.)

How to check the probability of accepting in D x A?
Identify the BSCCs ((;); of D x A that for some 1 </ < k,
1. contain no state from £/ and

2. contain some state from F/.

Lemma
Plaah({w | 3itinf(w) NEf = 0,inf(w) N F} # 0}) = PH(0U; G)-

Proof sketch.
» Note that some BSCC of each finite DTMC is reached with
probability 1 (short paths with prob. bounded from below),
» Rabin acceptance condition does not depend on any finite prefix
of the infinite word,

> every state of a finite irreducible DTMC is visited infinitely often
with probability 1 regardless of the choice of initial state.

82/83

LTL Model Checking - Computing Acceptance Pr. (3.)

How to check the probability of accepting in D x A?
Identify the BSCCs ((;); of D x A that for some 1 </ < k,
1. contain no state from £/ and

2. contain some state from F/.

Lemma
Plaah({w | 3itinf(w) NEf = 0,inf(w) N F} # 0}) = PH(0U; G)-

Proof sketch.
» Note that some BSCC of each finite DTMC is reached with
probability 1 (short paths with prob. bounded from below),
» Rabin acceptance condition does not depend on any finite prefix
of the infinite word,
> every state of a finite irreducible DTMC is visited infinitely often
with probability 1 regardless of the choice of initial state.

Corollary

PP(Lang(A)) = P2XA(OU; G).

82/83

LTL Model Checking - Algorithm - Complexity

Doubly exponential in ¥ and polynomial in D
(for the algorithm presented here):
1. |A| and hence also |D x Al is of size 02V
2. BSCC computation: Tarjan algorithm - linear in |D x A|
(number of states + transitions)
3. Unbounded reachability: system of linear equations (< |D x Al):

> exact solution: ~ cubic in the size of the system
> approximative solution: efficient in practice

83/83

