Quantitative Verification Chapter 3: Markov chains

Jan Křetínský

Technical University of Munich

Winter 2021/22

Motivation

Example: Simulation of a die by coins

Knuth & Yao die

Example: Simulation of a die by coins

Knuth & Yao die

Question:

What is the probability of obtaining 2?

Definition:

A discrete-time Markov chain (DTMC) is a tuple (S, P, π_0) where

- S is the set of states,
- ▶ $P: S \times S \rightarrow [0,1]$ with $\sum_{s' \in S} P(s,s') = 1$ is the transitions matrix, and
- $\pi_0 \in [0,1]^{|S|}$ with $\sum_{s \in S} \pi_0(s) = 1$ is the initial distribution.

Example: Craps

Two dice game:

- ▶ First: $\sum \in \{7, 11\} \Rightarrow$ win, $\sum \in \{2, 3, 12\} \Rightarrow$ lose, else $s = \sum$
- ▶ Next rolls: $\sum = s \Rightarrow$ win, $\sum = 7 \Rightarrow$ lose, else iterate

Two dice game:

- First: $\sum \in \{7, 11\} \Rightarrow$ win, $\sum \in \{2, 3, 12\} \Rightarrow$ lose, else $s = \sum$
- ▶ Next rolls: $\sum = s \Rightarrow$ win, $\sum = 7 \Rightarrow$ lose, else iterate

Example: Craps

Two dice game:

- ▶ First: $\sum \in \{7, 11\} \Rightarrow$ win, $\sum \in \{2, 3, 12\} \Rightarrow$ lose, else $s = \sum$
- Next rolls: $\sum = s \Rightarrow$ win, $\sum = 7 \Rightarrow$ lose, else iterate

Example: Zero Configuration Networking (Zeroconf)

- Previously: Manual assignment of IP addresses
- Zeroconf: Dynamic configuration of local IPv4 addresses
- Advantage: Simple devices able to communicate automatically

Automatic Private IP Addressing (APIPA) – RFC 3927

- Used when DHCP is configured but unavailable
- Pick randomly an address from 169.254.1.0 169.254.254.255
- Find out whether anybody else uses this address (by sending several ARP requests)

Model:

- Randomly pick an address among the K (65024) addresses.
- With *m* hosts in the network, collision probability is $q = \frac{m}{K}$.
- Send 4 ARP requests.
- In case of collision, the probability of no answer to the ARP request is p (due to the lossy channel)

Example: Zero Configuration Networking (Zeroconf)

For 100 hosts and p = 0.001, the probability of error is $\approx 1.55 \cdot 10^{-15}$.

What is probabilistic model checking?

- Probabilistic specifications, e.g. probability of reaching bad states shall be smaller than 0.01.
- Probabilistic model checking is an automatic verification technique for this purpose.

Why quantities?

- Randomized algorithms
- Faults e.g. due to the environment, lossy channels
- Performance analysis, e.g. reliability, availability

Basics of Probability Theory (Recap)

What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But ... [Bertrand's Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But ... [Bertrand's Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But ... [Bertrand's Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?

Probability Theory - Probability Space

Definition: Probability Function

Given sample space Ω and σ -algebra \mathcal{F} , a probability function $P: \mathcal{F} \to [0, 1]$ satisfies:

- ▶ $P(A) \ge 0$ for $A \in \mathcal{F}$,
- $P(\Omega) = 1$, and
- $P(\bigcup_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty}P(A_i)$ for pairwise disjoint $A_i \in \mathcal{F}$

Definition: Probability Space

A probability space is a tuple (Ω, \mathcal{F}, P) with a sample space Ω , σ -algebra $\mathcal{F} \subseteq 2^{\Omega}$ and probability function P.

Example

A random real number taken uniformly from the interval [0, 1].

Sample space: $\Omega = [0, 1]$.

Probability Theory - Probability Space

Definition: Probability Function

Given sample space Ω and σ -algebra \mathcal{F} , a probability function $P: \mathcal{F} \to [0, 1]$ satisfies:

- ▶ $P(A) \ge 0$ for $A \in \mathcal{F}$,
- $P(\Omega) = 1$, and
- $P(\bigcup_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty}P(A_i)$ for pairwise disjoint $A_i \in \mathcal{F}$

Definition: Probability Space

A probability space is a tuple (Ω, \mathcal{F}, P) with a sample space Ω , σ -algebra $\mathcal{F} \subseteq 2^{\Omega}$ and probability function P.

Example

A random real number taken uniformly from the interval [0, 1].

- Sample space: $\Omega = [0, 1]$.
- σ -algebra: \mathcal{F} is the minimal superset of $\{[a, b] \mid 0 \le a \le b \le 1\}$ closed under complementation and countable union.
- ▶ Probability function: P([a, b]) = (b a), by Carathéodory's extension theorem there is a unique way how to extend it to all elements of $\mathcal{F}_{L^{(B)}}$

Random Variables

int getRandomNumber() { return 4; // chosen by fair dice roll. // guaranteed to be random. }

Random Variables - Introduction

Definition: Random Variable A random variable X is a measurable function $X : \Omega \to I$ to some I. Elements of I are called random elements. Often $I = \mathbb{R}$:

Example (Bernoulli Trials)

Throwing a coin 3 times: $\Omega_3 = \{hhh, hht, hth, htt, thh, tht, tth, ttt\}$. We define 3 random variables $X_i : \Omega \to \{h, t\}$. For all $x, y, z \in \{h, t\}$,

$$\blacktriangleright X_1(xyz) = x,$$

$$\blacktriangleright X_2(xyz) = y,$$

$$\blacktriangleright X_3(xyz) = z.$$

Stochastic Processes and Markov Chains

Definition:

Given a probability space (Ω, \mathcal{F}, P) , a stochastic process is a family of random variables

 $\{X_t \mid t \in T\}$

defined on (Ω, \mathcal{F}, P) . For each X_t we assume

 $X_t:\Omega \to S$

where $S = \{s_1, s_2, ...\}$ is a finite or countable set called state space.

A stochastic process $\{X_t \mid t \in T\}$ is called

- discrete-time if $T = \mathbb{N}$ or
- continuous-time if $T = \mathbb{R}_{\geq 0}$.

For the following lectures we focus on discrete time.

Example: Weather Forecast

- $S = \{sun, rain\},\$
- we model time as discrete a random variable for each day:
 - X₀ is the weather today,
 - X_i is the weather in i days.
- how can we set up the probability space to measure e.g. $P(X_i = sun)$?

- Let us fix a state space *S*. How can we construct the probability space (Ω, \mathcal{F}, P) ?
- Definition: Sample Space Ω

We define $\Omega = S^{\infty}$. Then, each X_n maps a sample $\omega = \omega_0 \omega_1 \dots$ onto the respective state at time *n*, i.e.,

 $(X_n)(\omega) = \omega_n \in S.$

Discrete-time Stochastic Processes - Construction (3)

Definition: σ -algebra \mathcal{F}

We define \mathcal{F} to be the smallest σ -Algebra that contains all cylinder sets, i.e.,

 $\{C(s_0\ldots s_n)\mid n\in\mathbb{N}, s_i\in S\}\subseteq\mathcal{F}.$

Check: Is each X_i measurable? (on the discrete set *S* we assume the full σ -algebra 2^{*S*}).

Discrete-time Stochastic Processes - Construction (4)

How to specify the probability Function *P*? We only need to specify it for each $s_0 \cdots s_n \in S^n$

 $P(C(s_0\ldots s_n)).$

This amounts to specifying

- 1. $P(C(s_0))$ for each $s_0 \in S$, and
- 2. $P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1}))$ for each $s_0 \cdots s_i \in S^i$

since

$$P(C(s_0 \dots s_n)) = P(C(s_0 \dots s_n) \mid C(s_0 \dots s_{n-1})) \cdot P(C(s_0 \dots s_{n-1}))$$
$$= P(C(s_0)) \cdot \prod_{i=1}^n P(C(s_0 \dots s_i) \mid C(s_0 \dots s_{i-1}))$$

Discrete-time Stochastic Processes - Construction (4)

How to specify the probability Function *P*? We only need to specify it for each $s_0 \cdots s_n \in S^n$

 $P(C(s_0\ldots s_n)).$

This amounts to specifying

- 1. $P(C(s_0))$ for each $s_0 \in S$, and
- 2. $P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1}))$ for each $s_0 \cdots s_i \in S^i$

since

$$P(C(s_0 \dots s_n)) = P(C(s_0 \dots s_n) \mid C(s_0 \dots s_{n-1})) \cdot P(C(s_0 \dots s_{n-1}))$$
$$= P(C(s_0)) \cdot \prod_{i=1}^n P(C(s_0 \dots s_i) \mid C(s_0 \dots s_{i-1}))$$

Still, lots of possibilities...

Discrete-time Stochastic Processes - Construction (5)

Weather Example: Option 1 - statistics of days of a year

- the forecast starts on Jan 01,
- a distribution p_j over $\{sun, rain\}$ for each $1 \le j \le 365$,
- ▶ for each $i \in \mathbb{N}$ and $s_0 \cdots s_i \in S^{i+1}$

 $P(C(s_0\ldots s_i) \mid C(s_0\ldots s_{i-1})) = p_{i\% 365}(s_i)$

Weather Example: Option 2 - two past days

- a distribution $p_{s's''}$ over $\{sun, rain\}$ for each $s', s'' \in S$,
- for each $i \geq 2$ and $s_0 \cdots s_i \in S^{i+1}$

 $P(C(s_0...s_i) | C(s_0...s_{i-1})) = p_{s_{i-2}s_{i-1}}(s_i)$

Discrete-time Stochastic Processes - Construction (5)

Weather Example: Option 1 – statistics of days of a year Not time-homogéneous.

- the forecast starts on Jan 01,
- a distribution p_i over {sun, rain} for each 1 < i < 365,
- ▶ for each $i \in \mathbb{N}$ and $s_0 \cdots s_i \in S^{i+1}$

 $P(C(s_0 \dots s_i) \mid C(s_0 \dots s_{i-1})) = p_{i \% 365}(s_i)$

Weather Example: Option 2 – two past days

- a distribution $p_{s's''}$ over $\{sun, rain\}$ for each $s', s'' \in S$,
- for each $i \ge 2$ and $s_0 \cdots s_i \in S^{i+1}$

$$P(C(s_0...s_i) | C(s_0...s_{i-1})) = p_{s_{i-2}s_{i-1}}(s_i)$$

Here: time-homogeneous Markovian stochastic processes

Definition: Markov A discrete-time stochastic process $\{X_n \mid n \in \mathbb{N}\}$ is Markov if

$$P(X_n = s_n \mid X_{n-1} = s_{n-1}, \dots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1})$$

for all n > 1 and $s_0, ..., s_n \in S$ with $P(X_{n-1} = s_{n-1}) > 0$.

Definition: Time-homogeneous

A discrete-time Markov process $\{X_n \mid n \in \mathbb{N}\}$ is time-homogeneous if

$$P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)$$

for all n > 1 and $s, s' \in S$ with $P(X_0 = s) > 0$.

Definition: Markov A discrete-time stochastic process $\{X_n \mid n \in \mathbb{N}\}$ is Markov if

$$P(X_n = s_n \mid X_{n-1} = s_{n-1}, \dots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1})$$

for all n > 1 and $s_0, ..., s_n \in S$ with $P(X_{n-1} = s_{n-1}) > 0$.

Definition: Time-homogeneous A discrete-time Markov process $\{X_n \mid n \in \mathbb{N}\}$ is time-homogeneous if

$$P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)$$

for all n > 1 and $s, s' \in S$ with $P(X_0 = s) > 0$.

A. A. Maokon (1886).

Discrete-time Stochastic Processes - Construction (6)

Weather Example: Option 3 - one past day

- a distribution $p_{s'}$ over $\{sun, rain\}$ for each $s' \in S$,
- for each $i \ge 1$ and $s_0 \cdots s_i \in S^{i+1}$

 $P(C(s_0\ldots s_i) \mid C(s_0\ldots s_{i-1})) = p_{s_{i-1}}(s_i)$

• a distribution π over {*sun*, *rain*} such that $P(C(s_0)) = \pi(s_0)$.

Discrete-time Stochastic Processes - Construction (6)

Weather Example: Option 3 - one past day

- a distribution $p_{s'}$ over $\{sun, rain\}$ for each $s' \in S$,
- for each $i \ge 1$ and $s_0 \cdots s_i \in S^{i+1}$

 $P(C(s_0\ldots s_i) \mid C(s_0\ldots s_{i-1})) = p_{s_{i-1}}(s_i)$

• a distribution π over {*sun*, *rain*} such that $P(C(s_0)) = \pi(s_0)$.

Overly restrictive, isn't it?

Discrete-time Stochastic Processes - Construction (6)

Weather Example: Option 3 - one past day

- a distribution $p_{s'}$ over $\{sun, rain\}$ for each $s' \in S$,
- for each $i \ge 1$ and $s_0 \cdots s_i \in S^{i+1}$

$$P(C(s_0\ldots s_i) \mid C(s_0\ldots s_{i-1})) = p_{s_{i-1}}(s_i)$$

• a distribution π over {*sun*, *rain*} such that $P(C(s_0)) = \pi(s_0)$.

Overly restrictive, isn't it?

Not really – one only needs to extend the state space

- $S = \{1, \ldots, 365\} \times \{sun, rain\} \times \{sun, rain\},\$
- now each state encodes current day of the year, current weather, and weather yesterday,
- we can define over S a time-homogeneous Markov process based on both Options 1 & 2 given earlier.

Discrete-time Markov Chains DTMC

DTMC - Relation of Definitions

Stochastic process \rightarrow Graph based

Given a discrete-time homogeneous Markov process $\{X(n) \mid n \in \mathbb{N}\}$

- with state space S,
- defined on a probability space (Ω, \mathcal{F}, P)

we take over the state space *S* and define

▶ $P(s,s') = P(X_n = s' | X_{n-1} = s)$ for an arbitrary $n \in \mathbb{N}$ and

$$\blacktriangleright \pi_0(s) = P(X_0 = s).$$

Graph based \rightarrow stochastic process Given a DTMC (*S*, P, π_0), we set Ω to S^{∞} , \mathcal{F} to the smallest σ -Algebra containing all cylinder sets and

$$P(C(s_0\ldots s_n)) = \pi_0(s_0) \cdot \prod_{1 \le i \le n} \mathsf{P}(s_{i-1}, s_i)$$

which uniquely defines the probability function P on \mathcal{F} .
Let (S, P, π_0) be a DTMC. We denote by

▶ P_s the probability function of DTMC (S, P, δ_s) where

$$\delta_{s}(s') = \begin{cases} 1 & \text{if } s' = s \\ 0 & \text{otherwise} \end{cases}$$

• E_s the expectation with respect to P_s

- Transient analysis
- Steady-state analysis
- Rewards
- Reachability
- Probabilistic logics

DTMC - Transient Analysis

DTMC - Transient Analysis - Example (1)

Example: Gambling with a Limit

What is the probability of being in state 0 after 3 steps?

Definition:

Given a DTMC (S, P, π_0) , we assume w.l.o.g. $S = \{0, 1, ...\}$ and write $p_{ij} = P(i, j)$. Further, we have

- $P^{(1)} = P = (p_{ij})$ is the 1-step transition matrix
- ▶ $P^{(n)} = (p_{ij}^{(n)})$ denotes the *n*-step transition matrix with

$$p_{ij}^{(n)} = P(X_n = j \mid X_0 = i) \quad (= P(X_{k+n} = j \mid X_k = i)).$$

How can we compute these probabilities?

DTMC - Transient Analysis - Chapman-Kolmogorov

Definition: Chapman-Kolmogorov Equation Application of the law of total probability to the *n*-step transition probabilities $p_{ii}^{(n)}$ results in the Chapman-Kolmogorov Equation

$$p_{ij}^{(n)} = \sum_{h \in S} p_{ih}^{(m)} p_{hj}^{(n-m)} \qquad \forall 0 < m < n.$$

Consequently, we have $P^{(n)} = PP^{(n-1)} = \cdots = P^n$.

Definition: Chapman-Kolmogorov Equation Application of the law of total probability to the *n*-step transition probabilities $p_{ii}^{(n)}$ results in the Chapman-Kolmogorov Equation

$$p_{ij}^{(n)} = \sum_{h \in S} p_{ih}^{(m)} p_{hj}^{(n-m)} \qquad \forall 0 < m < n.$$

Consequently, we have $P^{(n)} = PP^{(n-1)} = \cdots = P^n$.

Definition: Transient Probability Distribution The transient probability distribution at time n > 0 is defined by

$$\pi_n = \pi_{n-1} \mathsf{P} = \pi_0 \mathsf{P}^n.$$

DTMC - Transient Analysis - Example (2)

Example:

	[1	0	0	0	0		[1	0	0	0	0]
	0.5	0	0.5	0	0		0.5	0.25	0	0.25	0
P =	0	0.5	0	0.5	0	$P^2 =$	0.25	0	0.5	0	0.25
	0	0	0.5	0	0.5		0	0.25	0	0.25	0.5
	0	0	0	0	1		0	0	0	0	1

For $\pi_0 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$, $\pi_2 = \pi_0 P^2 = \begin{bmatrix} 0.25 & 0 & 0.5 & 0 & 0.25 \end{bmatrix}$.

► For, $\pi_0 = \begin{bmatrix} 0.4 & 0 & 0 & 0.6 \end{bmatrix}$, $\pi_2 = \pi_0 \mathsf{P}^2 = \begin{bmatrix} 0.4 & 0 & 0 & 0.6 \end{bmatrix}$. Actually, $\pi_n = \begin{bmatrix} 0.4 & 0 & 0 & 0.6 \end{bmatrix}$ for all $n \in \mathbb{N}!$

DTMC - Transient Analysis - Example (2)

Example:

	[1	0	0	0	0		[1	0	0	0	0]
	0.5	0	0.5	0	0		0.5	0.25	0	0.25	0
P =	0	0.5	0	0.5	0	$P^2 =$	0.25	0	0.5	0	0.25
	0	0	0.5	0	0.5		0	0.25	0	0.25	0.5
	0	0	0	0	1		0	0	0	0	1

► For $\pi_0 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$, $\pi_2 = \pi_0 \mathsf{P}^2 = \begin{bmatrix} 0.25 & 0 & 0.5 & 0 & 0.25 \end{bmatrix}$. ► For, $\pi_0 = \begin{bmatrix} 0.4 & 0 & 0 & 0.6 \end{bmatrix}$, $\pi_2 = \pi_0 \mathsf{P}^2 = \begin{bmatrix} 0.4 & 0 & 0 & 0 & 0.6 \end{bmatrix}$. Actually, $\pi_n = \begin{bmatrix} 0.4 & 0 & 0 & 0 & 0.6 \end{bmatrix}$ for all $n \in \mathbb{N}!$

Are there other "stable" distributions?

DTMC - Steady State Analysis

DTMC - Steady State Analysis - Definitions

Definition: Stationary Distribution A distribution π is stationary if

 $\pi = \pi \mathsf{P}.$

Stationary distribution is generally not unique.

DTMC - Steady State Analysis - Definitions

Definition: Stationary Distribution A distribution π is stationary if

 $\pi = \pi \mathsf{P}.$

Stationary distribution is generally not unique.

Definition: Limiting Distribution

$$\pi^* := \lim_{n \to \infty} \pi_n = \lim_{n \to \infty} \pi_0 \mathsf{P}^n = \pi_0 \lim_{n \to \infty} P^n = \pi_0 \mathsf{P}^*.$$

The limit can depend on π_0 and does not need to exist.

DTMC - Steady State Analysis - Definitions

Definition: Stationary Distribution A distribution π is stationary if

 $\pi = \pi \mathsf{P}.$

Stationary distribution is generally not unique.

Definition: Limiting Distribution

$$\pi^* := \lim_{n \to \infty} \pi_n = \lim_{n \to \infty} \pi_0 \mathsf{P}^n = \pi_0 \lim_{n \to \infty} P^n = \pi_0 \mathsf{P}^*.$$

The limit can depend on π_0 and does not need to exist.

Connection between stationary and limiting?

DTMC - Steady-State Analysis - Periodicity

Example: Gambling with Social Guarantees

What are the stationary and limiting distributions?

DTMC - Steady-State Analysis - Periodicity

Example: Gambling with Social Guarantees

What are the stationary and limiting distributions?

Definition: Periodicity The period of a state *i* is defined as

 $d_i = \gcd\{n \mid p_{ii}^n > 0\}.$

A state *i* is called aperiodic if $d_i = 1$ and periodic with period d_i otherwise. A Markov chain is aperiodic if all states are aperiodic.

Lemma

In a finite aperiodic Markov chain, the limiting distribution exists.

DTMC - Steady-State Analysis - Irreducibility (1)

Example

Definition:

A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \ge 1$.

Lemma

In an aperiodic and irreducible Markov chain, the limiting distribution exists and does not depend on π_0 .

DTMC - Steady-State Analysis - Irreducibility (3)

What is the stationary / limiting distribution?

DTMC - Steady-State Analysis - Irreducibility (3)

What is the stationary / limiting distribution?

DTMC - Steady-State Analysis - Irreducibility (3)

What is the stationary / limiting distribution?

Lemma

In a finite aperiodic and irreducible Markov chain, the limiting distribution exists, does not depend on π_0 , and equals the unique stationary distribution.

Definition: Let $f_{ij}^{(n)} = P(X_n = j \land \forall 1 \le k < n : X_k \ne j \mid X_0 = i)$ for $n \ge 1$ be the *n*-step hitting probability. The hitting probability is defined as

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)}$$

and a state *i* is called

- **•** transient if $f_{ii} < 1$ and
- recurrent if $f_{ii} = 1$.

DTMC - Steady-State Analysis - Recurrence (2)

Definition:

Denoting expectation $m_{ij} = \sum_{n=1}^{\infty} n \cdot f_{ij}^{(n)}$, a recurrent state *i* is called

- **•** positive recurrent or recurrent non-null if $m_{ii} < \infty$ and
- recurrent null if $m_{ii} = \infty$.

Lemma

The states of an irreducible DTMC are all of the same type, i.e.,

- all periodic or
- all aperiodic and transient or
- all aperiodic and recurrent null or
- all aperiodic and recurrent non-null.

Definition: Ergodicity

A DTMC is **ergodic** if all its states are **irreducible**, **aperiodic** and **recurrent non-null**.

Theorem

In an ergodic Markov chain, the limiting distribution exists, does not depend on π_0 , and equals the unique stationary distribution.

As a consequence, the steady-state distribution can be computed by solving the equation system

$$\pi = \pi \mathsf{P}, \sum_{x \in S} \pi_s = 1.$$

Note: The Lemma for finite DTMC follows from the theorem as every irreducible finite DTMC is positive recurrent.

Example: Unbounded Gambling with House Edge

The DTMC is only ergodic for $p \in [0, 0.5)$.

DTMC - Rewards

Definition A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \to \mathbb{Z}$ is a reward function.

Definition

A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \to \mathbb{Z}$ is a reward function.

Every run $\rho = s_0, s_1, \ldots$ induces a sequence of values $r(s_0), r(s_1), \ldots$ Value of the whole run can be defined as

Definition

A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \to \mathbb{Z}$ is a reward function.

Every run $\rho = s_0, s_1, ...$ induces a sequence of values $r(s_0), r(s_1), ...$ Value of the whole run can be defined as total reward $\sum_{i=0}^{T} r(s_i)$

Definition

A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \to \mathbb{Z}$ is a reward function.

Every run $\rho = s_0, s_1, \dots$ induces a sequence of values $r(s_0), r(s_1), \dots$ Value of the whole run can be defined as total reward

 $\sum_{i=0}^{T} r(s_i)$ But what if $T = \infty$?

Definition

A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \to \mathbb{Z}$ is a reward function.

Every run $\rho = s_0, s_1, ...$ induces a sequence of values $r(s_0), r(s_1), ...$ Value of the whole run can be defined as total reward $\sum_{i=0}^{T} r(s_i) \qquad \text{But what if } T = \infty?$ discounted reward $\sum_{i=0}^{\infty} \lambda^i r(s_i) \qquad \text{for some } 0 < \lambda < 1$

Definition

A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \to \mathbb{Z}$ is a reward function.

Every run $\rho = s_0, s_1, \dots$ induces a sequence of values $r(s_0), r(s_1), \dots$ Value of the whole run can be defined as total reward $\sum_{i=0}^{T} r(s_i) \qquad \text{But what if } T = \infty?$ discounted reward $\sum_{i=0}^{\infty} \lambda^i r(s_i) \qquad \text{for some } 0 < \lambda < 1$ average reward $\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)$ also called long-run average or mean payoff

Definition

A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \to \mathbb{Z}$ is a reward function.

Every run $\rho = s_0, s_1, \dots$ induces a sequence of values $r(s_0), r(s_1), \dots$ Value of the whole run can be defined as total reward $\sum_{i=0}^{T} r(s_i)$ But what if $T = \infty$? discounted reward $\sum_{i=0}^{\infty} \lambda^i r(s_i)$ for some $0 < \lambda < 1$ average reward $\lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)$ also called long-run average or mean payoff

Definition The expected average reward is

$$EAR := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \mathbb{E}[r(X_i)]$$

DTMC - Rewards - Solution Sketch

Definition: Time-average Distribution

$$\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^n \pi_i.$$

 $\hat{\pi}(s)$ expresses the ratio of time spent in s on the long run.

¹More details later for Markov decision processes.

DTMC - Rewards - Solution Sketch

Definition: Time-average Distribution

$$\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^n \pi_i.$$

 $\hat{\pi}(s)$ expresses the ratio of time spent in s on the long run.

Lemma

- 1. $\mathbb{E}[r(X_i)] = \sum_{s \in S} \pi_i(s) \cdot r(s).$
- 2. If $\hat{\pi}$ exists then $EAR = \sum_{s \in S} \hat{\pi}(s) \cdot r(s)$.
- 3. If limiting distribution exists, it coincides with $\hat{\pi}$.

¹More details later for Markov decision processes.

DTMC - Rewards - Solution Sketch

Definition: Time-average Distribution

$$\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^n \pi_i.$$

 $\hat{\pi}(s)$ expresses the ratio of time spent in s on the long run.

Lemma

1.
$$\mathbb{E}[r(X_i)] = \sum_{s \in S} \pi_i(s) \cdot r(s).$$

- 2. If $\hat{\pi}$ exists then $EAR = \sum_{s \in S} \hat{\pi}(s) \cdot r(s)$.
- 3. If limiting distribution exists, it coincides with $\hat{\pi}$.

Algortithm

- 1. Compute $\hat{\pi}$ (or limiting distribution if possible).¹
- 2. Return $\sum_{s \in S} \hat{\pi}(s) \cdot r(s)$.

¹More details later for Markov decision processes.

DTMC - Reachability
Definition: Reachability

Given a DTMC (S, P, π_0) , what is the probability of eventually reaching a set of goal states $B \subseteq S$?

Let x(s) denote $P_s(\Diamond B)$ where $\Diamond B = \{s_0 s_1 \cdots | \exists i : s_i \in B\}$. Then $s \in B$: x(s) = $s \in S \setminus B$: x(s) = Definition: Reachability

Given a DTMC (S, P, π_0) , what is the probability of eventually reaching a set of goal states $B \subseteq S$?

Let x(s) denote $P_s(\Diamond B)$ where $\Diamond B = \{s_0 s_1 \cdots | \exists i : s_i \in B\}$. Then $s \in B$: x(s) = 1 $s \in S \setminus B$: $x(s) = \sum_{t \in S \setminus B} P(s, t) x(t) + \sum_{u \in B} P(s, u)$.

Lemma (Reachability Matrix Form)

Given a DTMC (S, P, π_0) , the column vector $x = (x(s))_{s \in S \setminus B}$ of probabilities $x(s) = P_s(\Diamond B)$ satisfies the constraint

x = Ax + b,

where matrix A is the submatrix of P for states $S \setminus B$ and $b = (b(s))_{s \in S \setminus B}$ is the column vector with $b(s) = \sum_{u \in B} P(s, u)$.

DTMC - Reachability

Example:

The vector $\mathbf{x} = \begin{bmatrix} x_0 & x_1 & x_2 \end{bmatrix}^T = \begin{bmatrix} 0.25 & 0.5 & 0 \end{bmatrix}^T$ satisfies the equation system $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$.

DTMC - Reachability

Example:

The vector $\mathbf{x} = \begin{bmatrix} x_0 & x_1 & x_2 \end{bmatrix}^T = \begin{bmatrix} 0.25 & 0.5 & 0 \end{bmatrix}^T$ satisfies the equation system $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$.

Is it the only solution?

DTMC - Reachability

Example:

The vector $\mathbf{x} = \begin{bmatrix} x_0 & x_1 & x_2 \end{bmatrix}^T = \begin{bmatrix} 0.25 & 0.5 & 0 \end{bmatrix}^T$ satisfies the equation system $\mathbf{x} = A\mathbf{x} + \mathbf{b}$.

Is it the only solution?

▶ No! Consider, e.g., $\begin{bmatrix} 0.55 & 0.7 & 0.4 \end{bmatrix}$ or $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

What is the equation system for these probabilities?

DTMC - Reachability - Solution

Let $S_{=0} = \{s \mid P_s(\Diamond B) = 0\}$ and $S_? = S \setminus (S_{=0} \cup B)$. Let $\Diamond^{\leq n} B = \{s_0 s_1 \cdots \mid \exists i \leq n : s_i \in B\}$ be the set of runs reaching *B* from state *s* within *n* steps.

DTMC - Reachability - Solution

Let $S_{=0} = \{s \mid P_s(\Diamond B) = 0\}$ and $S_? = S \setminus (S_{=0} \cup B)$. Let $\Diamond^{\leq n} B = \{s_0 s_1 \cdots \mid \exists i \leq n : s_i \in B\}$ be the set of runs reaching *B* from state *s* within *n* steps.

Theorem:

The column vector $x = (x(s))_{s \in S_7}$ of probabilities $x(s) = P_s(\Diamond B)$ is the unique solution of the equation system

x = Ax + b,

where $A = (P(s, t))_{s,t \in S_{?}}$, $b = (b(s))_{s \in S_{?}}$ with $b(s) = \sum_{u \in B} P(s, u)$.

Furthermore, for $x_0 = (0)_{s \in S_7}$ and $x_i = Ax_{i-1} + b$ for any $i \ge 1$,

- 1. $x_n(s) = P_s(\Diamond^{\leq n} B)$ for $s \in S_?$,
- 2. x_i is increasing, and
- 3. $x = \lim_{n \to \infty} x_n$.

Proof Sketch:

- $(x_s)_{x \in S_7}$ is a solution: by inserting into definition.
- ▶ Unique solution: By contradiction. Assume y is another solution, then x y = A(x y). One can show that A I is invertible, thus (A I)(x y) = 0 yields $x y = (A I)^{-1}0 = 0$ and finally $x = y^2$.

Furthermore,

- 1. From the definitions, by straightforward induction.
- 2. From 1. since $\Diamond^{\leq n} B \subseteq \Diamond^{\leq n+1} B$.
- 3. Since $\Diamond B = \bigcup_{n \in \mathbb{N}} \Diamond^{\leq n} B$.

²cf. page 766 of Principles of Model Checking

Algorithmic aspects

Algorithmic Aspects - Summary of Equation Systems

Equation Systems

- Transient analysis: $\pi_n = \pi_0 P^n = \pi_{n-1} P$
- Steady-state analysis: $\pi P = \pi, \pi \cdot 1 = \sum_{s \in S} \pi(s) = 1$ (ergodic)
- Reachability: x = Ax + b (with $(x(s))_{s \in S_{?}}$)

Solution Techniques

- 1. Analytic solution, e.g. by Gaussian elimination
- 2. Iterative power method $(\pi_n \to \pi \text{ and } x_n \to x \text{ for } n \to \infty)$
- 3. Iterative methods for solving large systems of linear equations, e.g. Jacobi, Gauss-Seidel

Missing pieces

- a. finding out whether a DTMC is ergodic,
- b. computing $S_? = S \setminus \{s \mid P_s(\Diamond B) = 0\}$,
- c. efficient representation of P.

Ergodicity = Irreducibility + Aperidocity + P. Recurrence

- ▶ A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \ge 1$.
- A state *i* is called aperiodic if $gcd\{n \mid p_{ii}^n > 0\} = 1$.
- A state *i* is called **positive recurrent** if $f_{ii} = 1$ and $m_{ii} < \infty$.

How do we tell that a finite DTMC is ergodic?

Ergodicity = Irreducibility + Aperidocity + P. Recurrence

- ▶ A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \ge 1$.
- A state *i* is called aperiodic if $gcd\{n \mid p_{ii}^n > 0\} = 1$.
- A state *i* is called positive recurrent if $f_{ii} = 1$ and $m_{ii} < \infty$.

How do we tell that a finite DTMC is ergodic?

By analysis of the induced graph! For a DTMC $(S, P, \pi(0))$ we define the induced directed graph (S, E) with $E = \{(s, s') | P(s, s') > 0\}$.

Recall:

- A directed graph is called strongly connected if there is a path from each vertex to every other vertex.
- Strongly connected components (SCC) are its maximal strongly connected subgraphs.
- ▶ A SCC *T* is bottom (BSCC) if no $s \notin T$ is reachable from *T*.

Ergodicity = Irreducibility + Aperidocity + P. Recurrence

- ▶ A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \ge 1$.
- A state *i* is called aperiodic if $gcd\{n \mid p_{ii}^n > 0\} = 1$.
- A state *i* is called positive recurrent if $f_{ii} = 1$ and $m_{ii} < \infty$.

Theorem: For finite DTMCs, it holds that:

Ergodicity = Irreducibility + Aperidocity + P. Recurrence

- ▶ A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \ge 1$.
- A state *i* is called aperiodic if $gcd\{n \mid p_{ii}^n > 0\} = 1$.
- A state *i* is called positive recurrent if $f_{ii} = 1$ and $m_{ii} < \infty$.

Theorem:

For finite DTMCs, it holds that:

The DTMC is irreducible iff the induced graph is strongly connected.

Ergodicity = Irreducibility + Aperidocity + P. Recurrence

- ▶ A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \ge 1$.
- A state *i* is called aperiodic if $gcd\{n \mid p_{ii}^n > 0\} = 1$.
- A state *i* is called **positive recurrent** if $f_{ii} = 1$ and $m_{ii} < \infty$.

Theorem:

For finite DTMCs, it holds that:

- The DTMC is irreducible iff the induced graph is strongly connected.
- A state in a BSCC is aperiodic iff the BSCC is aperiodic, i.e. the greatest common divisor of the lengths of all its cycles is 1.

Ergodicity = Irreducibility + Aperidocity + P. Recurrence

- ▶ A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \ge 1$.
- A state *i* is called aperiodic if $gcd\{n \mid p_{ii}^n > 0\} = 1$.
- A state *i* is called **positive recurrent** if $f_{ii} = 1$ and $m_{ii} < \infty$.

Theorem:

For finite DTMCs, it holds that:

- The DTMC is irreducible iff the induced graph is strongly connected.
- A state in a BSCC is aperiodic iff the BSCC is aperiodic, i.e. the greatest common divisor of the lengths of all its cycles is 1.
- A state is positive recurrent iff it belongs to a BSCC otherwise it is transient.

How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?

How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?

• $gcd\{n \ge 1 \mid \exists s : P^n(s,s) > 0\} = 1$

How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?

- ▶ $gcd\{n \ge 1 \mid \exists s : P^n(s,s) > 0\} = 1$
- ▶ in time $\mathcal{O}(n+m)$?

How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?

- $gcd\{n \ge 1 \mid \exists s : P^n(s,s) > 0\} = 1$
- in time O(n + m)? By the following DFS-based procedure:

```
Algorithm: PERIOD(vertex v, unsigned level : init 0)
```

- 1 global *period* : init 0;
- 2 if period = 1 then
- 3 return
- 4 end
- 5 if v is unmarked then

```
6 mark v;

7 v_{level} = level;

8 for \underline{v' \in out(v)} do

9 | PERIOD(v', level + 1)

10 end

11 else

12 | period = gcd(period, level - v_{level});

13 end
```

Algorithmic Aspects: b. Computing the set $S_{?}$

We have $S_? = S \setminus (B \cup S_{=0})$ where $S_{=0} = \{s \mid P_s(\Diamond B) = 0\}$. Hence,

 $s \in S_{=0}$ iff $p_{ss'}^n = 0$ for all $n \ge 1$ and $s' \in B$.

We have $S_? = S \setminus (B \cup S_{=0})$ where $S_{=0} = \{s \mid P_s(\Diamond B) = 0\}$. Hence,

 $s \in S_{=0}$ iff $p_{ss'}^n = 0$ for all $n \ge 1$ and $s' \in B$.

This can be again easily checked from the induced graph:

Lemma

We have $s \in S_{=0}$ iff there is no path from s to any state from B.

Proof.

Easy from the fact that $p_{ss'}^n > 0$ iff there is a path of length *n* to *s'*.

Algorithmic Aspects: c. Efficient Representations

Algorithmic Aspects: c. Efficient Representations

1. There are many 0 entries in the transition matrix. Sparse matrices offer a more concise storage.

Algorithmic Aspects: c. Efficient Representations

1. There are many 0 entries in the transition matrix. Sparse matrices offer a more concise storage.

2. There are many similar entries in the transition matrix. Multi-terminal binary decision diagrams offer a more concise storage, using automata theory. DTMC – Probabilistic Temporal Logics for Specifying Complex Properties

Definition:

A labeled DTMC is a tuple $\mathcal{D} = (S, P, \pi_0, L)$ with $L : S \to 2^{AP}$, where

- AP is a set of atomic propositions and
- ▶ *L* is a labeling function, where L(s) specifies which properties hold in state $s \in S$.

Logics - Examples of Properties

States and transitions

state = configuration of the game; transition = rolling the dice and acting (randomly) based on the result.

State labels

- init, rwin, bwin, rkicked, bkicked, ...
- ▶ r30, r21, ...,

► b30, b21,...,

Examples of Properties

- the game cannot return back to start
- at any time, the game eventually ends with prob. 1
- at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
- the probability of winning without ever being kicked out is ≤ 0.3

How to specify them formally?

Linear-time view

- corresponds to our (human) perception of time
- can specify properties of one concrete linear execution of the system

Example: eventually red player is kicked out followed immediately by blue player being kicked out.

Branching-time view

- views future as a set of all possibilities
- can specify properties of all executions from a given state specifies execution trees

Example: in every computation it is always possible to return to the initial state.

Linear Temporal Logic (LTL)

Syntax for formulae specifying executions:

 $\psi = \textit{true} \mid \textit{a} \mid \psi \land \psi \mid \neg \psi \mid \mathcal{X} \ \psi \mid \psi \ \mathcal{U} \ \psi \mid \mathcal{F} \ \psi \mid \mathcal{G} \ \psi$

Example: eventually red player is kicked out followed immediately by blue player being kicked out: \mathcal{F} (*rkicked* $\land \mathcal{X}$ *bkicked*) Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)

Syntax for specifying states: Syntax for specifying executions:

 $\phi = true \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi \qquad \qquad \psi = \mathcal{X} \phi \mid \phi \mathcal{U} \phi \mid \mathcal{F} \phi \mid \mathcal{G} \phi$

Example: in all computations it is always possible to return to initial state: $A \mathcal{G} \in \mathcal{F}$ init

Question: does the given state satisfy the given CTL state formula?

Logics – LTL

Syntax $\psi = true \mid a \mid \psi \land \psi \mid \neg \psi \mid \mathcal{X} \psi \mid \psi \ \mathcal{U} \psi.$

Semantics (for a path $\omega = s_0 s_1 \cdots$)

Syntactic sugar $\blacktriangleright \mathcal{F} \psi \equiv$

 $\blacktriangleright \mathcal{G} \psi \equiv$

Logics – LTL

Syntax $\psi = true \mid a \mid \psi \land \psi \mid \neg \psi \mid \mathcal{X} \psi \mid \psi \ \mathcal{U} \psi.$

Semantics (for a path $\omega = s_0 s_1 \cdots$)

|--|--|

Syntactic sugar $F \psi \equiv true \mathcal{U} \psi$ $G \psi \equiv \neg(true \mathcal{U} \neg \psi) \quad (\equiv \neg \mathcal{F} \neg \psi)$

Logics - CTL

Syntax State formulae:

 $\phi = \textit{true} \mid \textit{a} \mid \phi \land \phi \mid \neg \phi \mid \textit{A} \; \psi \mid \textit{E} \; \psi$

where ψ is a path formula.

Semantics

For a state s:

- ▶ *s* |= *true* (always),
- ▶ $s \models a$ iff $a \in L(s)$,
- $s \models \phi_1 \land \phi_2$ iff $s \models \phi_1$ and $s \models \phi_2$,
- $\blacktriangleright \ s \models \neg \phi \qquad \text{iff } s \not\models \phi,$
- ► $s \models A\psi$ iff $\omega \models \psi$ for all paths $\omega = s_0 s_1 \cdots$ with $s_0 = s$,
- $s \models E\psi$ iff $\omega \models \psi$ for some path $\omega = s_0 s_1 \cdots$ with $s_0 = s$.

Path formulae:

 $\psi = \mathcal{X} \ \phi \mid \phi \ \mathcal{U} \ \phi$

where ϕ is a state formula.

For a path $\omega = s_0 s_1 \cdots$:

• $\omega \models \mathcal{X} \phi$ iff $s_1 s_2 \cdots$ satisfies ϕ ,

• $\omega \models \phi_1 \ \mathcal{U} \ \phi_2 \text{ iff } \exists i :$ $s_i s_{i+1} \cdots \models \phi_2 \text{ and}$ $\forall j < i : s_j s_{j+1} \cdots \models \phi_1.$

Linear Temporal Logic (LTL)

Syntax for formulae specifying executions:

 $\psi = \textit{true} \mid \textit{a} \mid \psi \land \psi \mid \neg \psi \mid \mathcal{X} \ \psi \mid \psi \ \mathcal{U} \ \psi \mid \mathcal{F} \ \psi \mid \mathcal{G} \ \psi$

Example: eventually red player is kicked out followed immediately by blue player being kicked out: \mathcal{F} (*rkicked* $\land \mathcal{X}$ *bkicked*) Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)

Syntax for specifying states: Syntax for specifying executions:

 $\phi = true \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi \qquad \qquad \psi = \mathcal{X} \phi \mid \phi \mathcal{U} \phi \mid \mathcal{F} \phi \mid \mathcal{G} \phi$

Example: in all computations it is always possible to return to initial state: $A \mathcal{G} \in \mathcal{F}$ init

Question: does the given state satisfy the given CTL state formula?

Logics - Temporal Logics - probabilistic

Linear Temporal Logic (LTL) + probabilities Syntax for formulae specifying executions:

 $\psi = true \mid a \mid \psi \land \psi \mid \neg \psi \mid \mathcal{X} \psi \mid \psi \mid \mathcal{U} \psi \mid \mathcal{F} \psi \mid \mathcal{G} \psi$ Example: with prob. ≥ 0.8 , eventually red player is kicked out followed immediately by blue player being kicked out:

 $P(\mathcal{F} (\textit{rkicked} \land \mathcal{X} \textit{bkicked})) \ge 0.8$

Question: is the formula satisfied by executions of given probability?
Logics - Temporal Logics - probabilistic

Linear Temporal Logic (LTL) + probabilities Syntax for formulae specifying executions:

 $\psi = true \mid a \mid \psi \land \psi \mid \neg \psi \mid \mathcal{X} \psi \mid \psi \cup \mathcal{U} \psi \mid \mathcal{F} \psi \mid \mathcal{G} \psi$ Example: with prob. ≥ 0.8 , eventually red player is kicked out followed immediately by blue player being kicked out:

 $P(\mathcal{F} (rkicked \land \mathcal{X} \ bkicked)) \ge 0.8$

Question: is the formula satisfied by executions of given probability?

Probabilitic Computation Tree Logic (PCTL)Syntax for specifying states:Syntax for specifying executions:

$$\begin{split} \phi &= true \mid a \mid \phi \land \phi \mid \neg \phi \mid \mathcal{P}_J \psi \qquad \psi = \mathcal{X} \phi \mid \phi \mathcal{U} \phi \mid \phi \mathcal{U} \stackrel{\leq k}{=} \phi \mid \mathcal{F} \phi \mid \mathcal{G} \phi \\ \text{Example: with prob. at least 0.5 the probability to return to initial state is always at least 0.1: $P_{\geq 0.5} \mathcal{G} \mid P_{\geq 0.1} \mathcal{F}$ init $Question: does the given state satisfy the given PCTL state formula? } \end{split}$$

Syntactic sugar:

- $\phi_1 \lor \phi_2 \equiv \neg (\neg \phi_1 \land \neg \phi_2), \quad \phi_1 \Rightarrow \phi_2 \equiv \neg \phi_1 \lor \phi_2, \text{ etc.}$
- \blacktriangleright \leq 0.5 denotes the interval [0, 0.5], = 1 denotes [1, 1], etc.

Examples:

A fair die:

$$\bigwedge_{i\in\{1,\ldots,6\}}\mathcal{P}_{=\frac{1}{6}}(\mathcal{F}\ i).$$

The probability of winning "Who wants to be a millionaire" without using any joker should be negligible:

 $\mathcal{P}_{<1e-10}(\neg(J_{50\%} \lor J_{audience} \lor J_{telephone}) \ \mathcal{U} \ win).$

Semantics

For a state s:

s = true (always),
s = a iff a ∈ L(s),
s = $\phi_1 \land \phi_2$ iff s = ϕ_1 and s = ϕ_2 ,
s = $\neg \phi$ iff s ≠ ϕ ,
s = $\mathcal{P}_J(\psi)$ iff $\mathcal{P}_s(Paths(\psi)) \in J$

For a path $\omega = s_0 s_1 \cdots$:

 $\Phi_1 \cdot \cdot \cdot \cdot \Phi_1 \Phi_2$

•
$$\omega \models \phi_1 \ \mathcal{U} \stackrel{\leq n}{=} \phi_2 \text{ iff } \exists i \leq n :$$

 $s_i s_{i+1} \cdots \models \phi_2 \text{ and}$
 $\forall j < i : s_j s_{j+1} \cdots \models \phi_1.$

$$\Phi_1 \cdot \cdot \cdot \cdot \Phi_1 \Phi_2$$

Examples of Properties

- 1. the game cannot return back to start
- 2. at any time, the game eventually ends with prob. **1**
- 3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
- 4. the probability of winning without ever being kicked out is ≤ 0.3

Examples of Properties

- 1. the game cannot return back to start
- 2. at any time, the game eventually ends with prob. **1**
- 3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
- 4. the probability of winning without ever being kicked out is ≤ 0.3

Formally

1. $P(\mathcal{X} \mathcal{G} \neg init) = 1$ (LTL + prob.) $P_{=1}(\mathcal{X} P_{=0}(\mathcal{G} \neg init))$ (PCTL)

Examples of Properties

- 1. the game cannot return back to start
- 2. at any time, the game eventually ends with prob. **1**
- 3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
- 4. the probability of winning without ever being kicked out is ≤ 0.3

Formally

1. $P(\mathcal{X} \ \mathcal{G} \ \neg init) = 1$ (LTL + prob.) $P_{=1}(\mathcal{X} \ P_{=0}(\mathcal{G} \ \neg init))$ (PCTL) 2. $P_{=1}(\mathcal{G} \ P_{=1}(\mathcal{F} \ (rwin \lor bwin)))$ (PCTL)

Examples of Properties

- 1. the game cannot return back to start
- 2. at any time, the game eventually ends with prob. **1**
- 3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
- 4. the probability of winning without ever being kicked out is ≤ 0.3

Formally

- 1. $P(\mathcal{X} \mathcal{G} \neg init) = 1$ (LTL + prob.) $P_{=1}(\mathcal{X} P_{=0}(\mathcal{G} \neg init))$ (PCTL)
- 2. $P_{=1}(\mathcal{G} P_{=1}(\mathcal{F} (rwin \lor bwin)))$ (PCTL)
- 3. $P_{=1}(\mathcal{G} P_{\geq 0.5}(\mathcal{F} \leq 100(\mathit{rwin} \lor \mathit{bwin})))$ (PCTL)

Examples of Properties

- 1. the game cannot return back to start
- 2. at any time, the game eventually ends with prob. **1**
- 3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
- 4. the probability of winning without ever being kicked out is ≤ 0.3

Formally

- 1. $P(\mathcal{X} \mathcal{G} \neg init) = 1$ (LTL + prob.) $P_{=1}(\mathcal{X} P_{=0}(\mathcal{G} \neg init))$ (PCTL)
- 2. $P_{=1}(\mathcal{G} P_{=1}(\mathcal{F} (\mathit{rwin} \lor \mathit{bwin})))$ (PCTL)
- 3. $P_{=1}(\mathcal{G} P_{\geq 0.5}(\mathcal{F} \leq 100(\mathit{rwin} \lor \mathit{bwin})))$ (PCTL)
- 4. $P((\neg rkicked \land \neg bkicked) U (rwin \lor bwin)) \le 0.3 (LTL + prob.)$

PCTL Model Checking Algorithm

Let $\mathcal{D} = (S, \mathsf{P}, \pi_0, L)$ be a DTMC, Φ a PCTL state formula and $s \in S$. The model checking problem is to decide whether $s \models \Phi$.

Theorem

The PCTL model checking problem can be decided in time polynomial in $|\mathcal{D}|$, linear in $|\Phi|$, and linear in the maximum step bound *n*.

Algorithm:

Consider the **bottom-up traversal** of the **parse tree** of Φ :

- The leaves are $a \in AP$ or *true* and
- the inner nodes are:
 - unary labelled with the operator \neg or $\mathcal{P}_J(\mathcal{X})$;
 - ▶ binary labelled with an operator \land , $\mathcal{P}_J(\mathcal{U})$, or $\mathcal{P}_J(\mathcal{U}^{\leq n})$.

Example: $\neg a \land \mathcal{P}_{\leq 0.2}(\neg b \ \mathcal{U} \ \mathcal{P}_{\geq 0.9}(\Diamond \ c))$

Compute $Sat(\Psi) = \{s \in S \mid s \models \Psi\}$ for each node Ψ of the tree in a bottom-up fashion. Then $s \models \Phi$ iff $s \in Sat(\Phi)$.

PCTL Model Checking - Algorithm - Outline (2)

"Base" of the algorithm:

We need a procedure to compute $Sat(\Psi)$ for Ψ of the form *a* or *true*:

PCTL Model Checking - Algorithm - Outline (2)

"Base" of the algorithm:

We need a procedure to compute $Sat(\Psi)$ for Ψ of the form *a* or *true*:

Lemma

- Sat(true) = S,
- $\blacktriangleright Sat(a) = \{s \mid a \in L(s)\}$

"Base" of the algorithm:

We need a procedure to compute $Sat(\Psi)$ for Ψ of the form *a* or *true*:

Lemma

- Sat(true) = S,
- $\blacktriangleright Sat(a) = \{s \mid a \in L(s)\}$

"Induction" step of the algorithm:

We need a procedure to compute $Sat(\Psi)$ for Ψ given the sets $Sat(\Psi')$ for all state sub-formulas Ψ' of Ψ :

Lemma

- $Sat(\Phi_1 \land \Phi_2) =$
- Sat(¬Φ) =

"Base" of the algorithm:

We need a procedure to compute $Sat(\Psi)$ for Ψ of the form *a* or *true*:

Lemma

- Sat(true) = S,
- $\blacktriangleright Sat(a) = \{s \mid a \in L(s)\}$

"Induction" step of the algorithm:

We need a procedure to compute $Sat(\Psi)$ for Ψ given the sets $Sat(\Psi')$ for all state sub-formulas Ψ' of Ψ :

Lemma

- $\blacktriangleright Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)$
- $Sat(\neg \Phi) = S \setminus Sat(\Phi)$

 $Sat(\mathcal{P}_{J}(\Phi)) = \{ s \mid P_{s}(Paths(\Phi)) \in J \}$ discussed on the next slide.

PCTL Model Checking - Algorithm - Path Operator

Lemma

Next:

 $P_s(Paths(\mathcal{X} \ \Phi)) =$

Bounded Until:

 $P_s(Paths(\Phi_1 \ \mathcal{U} \stackrel{\leq n}{=} \Phi_2)) =$

Unbounded Until:

 $\textit{P}_{\textit{s}}(\textit{Paths}(\Phi_1 \ \mathcal{U} \ \Phi_2)) =$

PCTL Model Checking - Algorithm - Path Operator

Lemma

Next:

$$P_{s}(Paths(\mathcal{X} \ \Phi)) = \sum_{s' \in Sat(\Phi)} \mathsf{P}(s, s')$$

Bounded Until:

 $P_{s}(Paths(\Phi_{1} \ \mathcal{U} \stackrel{\leq n}{=} \Phi_{2})) = P_{s}(Sat(\Phi_{1}) \ \mathcal{U} \stackrel{\leq n}{=} Sat(\Phi_{2}))$

Unbounded Until:

 $P_s(Paths(\Phi_1 \ U \ \Phi_2)) = P_s(Sat(\Phi_1) \ U \ Sat(\Phi_2))$

PCTL Model Checking - Algorithm - Path Operator

Lemma

Next:

$$P_{s}(Paths(\mathcal{X} \Phi)) = \sum_{s' \in Sat(\Phi)} P(s, s')$$

Bounded Until:

 $P_{s}(Paths(\Phi_{1} \ \mathcal{U} \stackrel{\leq n}{=} \Phi_{2})) = P_{s}(Sat(\Phi_{1}) \ \mathcal{U} \stackrel{\leq n}{=} Sat(\Phi_{2}))$

Unbounded Until:

 $P_s(Paths(\Phi_1 \ U \ \Phi_2)) = P_s(Sat(\Phi_1) \ U \ Sat(\Phi_2))$

As before:

can be reduced to transient analysis and to unbounded reachability.

Precise algorithm

Computation for every node in the parse tree and for every state:

- All node types except for path operator trivial.
- ► Next: Trivial.
- Until: Solving equation systems can be done by polynomially many elementary arithmetic operations.
- Bounded until: Matrix vector multiplications can be done by polynomial many elementary arithmetic operations as well.

Overall complexity:

Polynomial in $|\mathcal{D}|$, linear in $|\Phi|$ and the maximum step bound *n*.

In practice

The until and bounded until probabilities computed approximatively:

- rounding off probabilities in matrix-vector multiplication,
- using approximative iterative methods (error guarantees?!).

pLTL Model Checking Algorithm

Let $\mathcal{D} = (S, \mathsf{P}, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P_s^{\mathcal{D}}(Paths(\Psi)) \ge p$.

Theorem

The LTL model checking can be decided in time $\mathcal{O}(|\mathcal{D}| \cdot 2^{|\Psi|})$.

Let $\mathcal{D} = (S, \mathsf{P}, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P_s^{\mathcal{D}}(Paths(\Psi)) \ge p$.

Theorem

The LTL model checking can be decided in time $\mathcal{O}(|\mathcal{D}| \cdot 2^{|\Psi|})$.

Algorithm Outline

1. Construct from Ψ a deterministic Rabin automaton *A* recognizing words satisfying Ψ , i.e. $Paths(\Psi) := \{L(\omega) \in (2^{Ap})^{\infty} \mid \omega \models \Psi\}$

Let $\mathcal{D} = (S, \mathsf{P}, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P_s^{\mathcal{D}}(Paths(\Psi)) \ge p$.

Theorem

The LTL model checking can be decided in time $\mathcal{O}(|\mathcal{D}| \cdot 2^{|\Psi|})$.

Algorithm Outline

- 1. Construct from Ψ a deterministic Rabin automaton *A* recognizing words satisfying Ψ , i.e. $Paths(\Psi) := \{L(\omega) \in (2^{Ap})^{\infty} \mid \omega \models \Psi\}$
- 2. Construct a product DTMC $\mathcal{D} \times A$ that "embeds" the deterministic execution of A into the Markov chain.

Let $\mathcal{D} = (S, \mathsf{P}, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P_s^{\mathcal{D}}(Paths(\Psi)) \ge p$.

Theorem

The LTL model checking can be decided in time $\mathcal{O}(|\mathcal{D}| \cdot 2^{|\Psi|})$.

Algorithm Outline

- 1. Construct from Ψ a deterministic Rabin automaton *A* recognizing words satisfying Ψ , i.e. $Paths(\Psi) := \{L(\omega) \in (2^{Ap})^{\infty} \mid \omega \models \Psi\}$
- 2. Construct a product DTMC $\mathcal{D} \times A$ that "embeds" the deterministic execution of A into the Markov chain.
- 3. Compute in $\mathcal{D} \times A$ the probability of paths where A satisfies the acceptance condition.

LTL Model Checking – ω -Automata (1.)

Deterministic Rabin automaton (DRA): $(Q, \Sigma, \delta, q_0, Acc)$

- a DFA with a different acceptance condition,
- $Acc = \{(E_i, F_i) \mid 1 \le i \le k\}$
- each accepting infinite path must visit for some i
 - all states of *E_i* at most finitely often and
 - some state of *F_i* infinitely often.

LTL Model Checking – ω -Automata (1.)

Deterministic Rabin automaton (DRA): $(Q, \Sigma, \delta, q_0, Acc)$

- a DFA with a different acceptance condition,
- $Acc = \{(E_i, F_i) \mid 1 \le i \le k\}$
- each accepting infinite path must visit for some i
 - all states of *E_i* at most finitely often and
 - some state of F_i infinitely often.

Example

Give some automata recognizing the language of formulas

 $\blacktriangleright (a \land \mathcal{X} b) \lor aUc$

► GFa

LTL Model Checking – ω -Automata (1.)

Deterministic Rabin automaton (DRA): $(Q, \Sigma, \delta, q_0, Acc)$

- a DFA with a different acceptance condition,
- $Acc = \{(E_i, F_i) \mid 1 \le i \le k\}$
- each accepting infinite path must visit for some i
 - all states of *E_i* at most finitely often and
 - some state of F_i infinitely often.

Example

Give some automata recognizing the language of formulas

 $\blacktriangleright (a \land \mathcal{X} b) \lor aUc$

► FGa

GFa

Lemma (Vardi&Wolper'86, Safra'88) For any LTL formula Ψ there is a DRA A recognizing Paths(Ψ) with $|A| \in 2^{2^{O(|\Psi|)}}$.

LTL Model Checking - Product DTMC (2.)

For a labelled DTMC $\mathcal{D} = (S, \mathsf{P}, \pi_0, L)$ and a DRA $A = (Q, 2^{Ap}, \delta, q_0, \{(E_i, F_i) \mid 1 \le i \le k\})$ we define 1. a DTMC $\mathcal{D} \times A = (S \times Q, \mathsf{P}', \pi_0')$: $\blacktriangleright \mathsf{P}'((s, q), (s', q')) = \mathsf{P}(s, s')$ if $\delta(q, L(s')) = q'$ and 0, otherwise; $\bigstar \pi_0'((s, q_s)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and

LTL Model Checking - Product DTMC (2.)

For a labelled DTMC $\mathcal{D} = (S, P, \pi_0, L)$ and a DRA $A = (Q, 2^{A_P}, \delta, q_0, \{(E_i, F_i) \mid 1 \le i \le k\})$ we define 1. a DTMC $\mathcal{D} \times A = (S \times Q, P', \pi'_0)$: P'((s, q), (s', q')) = P(s, s') if $\delta(q, L(s')) = q'$ and 0, otherwise; $\pi'_0((s, q_s)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and 2. $\{(E'_i, F'_i) \mid 1 \le i \le k\}$ where for each *i*: $E'_i = \{(s, q) \mid q \in E_i, s \in S\},$ $F'_i = \{(s, q) \mid q \in F_i, s \in S\},$

LTL Model Checking - Product DTMC (2.)

For a labelled DTMC $\mathcal{D} = (S, P, \pi_0, L)$ and a DRA $A = (Q, 2^{A_P}, \delta, q_0, \{(E_i, F_i) \mid 1 \le i \le k\})$ we define 1. a DTMC $\mathcal{D} \times A = (S \times Q, P', \pi'_0)$: P'((s, q), (s', q')) = P(s, s') if $\delta(q, L(s')) = q'$ and 0, otherwise; $\pi'_0((s, q_s)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and 2. $\{(E'_i, F'_i) \mid 1 \le i \le k\}$ where for each *i*: $P'_i = \{(s, q) \mid q \in E_i, s \in S\},$ $P'_i = \{(s, q) \mid q \in F_i, s \in S\},$

Lemma

The construction preserves probability of accepting as

 $P_s^{\mathcal{D}}(\text{Lang}(A)) = P_{(s,q_s)}^{\mathcal{D} \times A}(\{\omega \mid \exists i : \inf(\omega) \cap E_i' = \emptyset, \inf(\omega) \cap F_i' \neq \emptyset\})$

where $inf(\omega)$ is the set of states visited in ω infinitely often.

Proof sketch.

We have a one-to-one correspondence between executions of \mathcal{D} and $\mathcal{D} \times A$ (as A is deterministic), mapping Lang(A) to {…}, and preserving probabilities.

How to check the probability of accepting in $\mathcal{D} \times A$?

How to check the probability of accepting in $\mathcal{D} \times A$? Identify the BSCCs $(C_i)_i$ of $\mathcal{D} \times A$ that for some $1 \le i \le k$,

- 1. contain no state from E'_i and
- 2. contain some state from F'_i .

Lemma $P_{(s,q_s)}^{\mathcal{D}\times\mathcal{A}}(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\}) = P_{(s,q_s)}^{\mathcal{D}\times\mathcal{A}}(\Diamond \bigcup_j C_j).$

How to check the probability of accepting in $\mathcal{D} \times A$? Identify the BSCCs $(C_i)_i$ of $\mathcal{D} \times A$ that for some $1 \le i \le k$,

- 1. contain no state from E'_i and
- 2. contain some state from F'_i .

Lemma $P_{(s,q_s)}^{\mathcal{D}\times \mathcal{A}}(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\}) = P_{(s,q_s)}^{\mathcal{D}\times \mathcal{A}}(\Diamond \bigcup_j C_j).$

Proof sketch.

- Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below),
- Rabin acceptance condition does not depend on any finite prefix of the infinite word,
- every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.

How to check the probability of accepting in $\mathcal{D} \times A$? Identify the BSCCs $(C_i)_i$ of $\mathcal{D} \times A$ that for some $1 \le i \le k$,

- 1. contain no state from E'_i and
- 2. contain some state from F'_i .

Lemma $P_{(s,q_s)}^{\mathcal{D}\times \mathcal{A}}(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\}) = P_{(s,q_s)}^{\mathcal{D}\times \mathcal{A}}(\Diamond \bigcup_j C_j).$

Proof sketch.

- Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below),
- Rabin acceptance condition does not depend on any finite prefix of the infinite word,

every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.

Corollary

 $P^{\mathcal{D}}_{s}(\mathsf{Lang}(A)) = P^{\mathcal{D} \times A}_{(s,q_{s})}(\Diamond \bigcup_{j} C_{j}).$

Doubly exponential in Ψ and polynomial in \mathcal{D} (for the algorithm presented here):

- 1. |A| and hence also $|\mathcal{D} \times A|$ is of size $2^{2^{\mathcal{O}(|\Psi|)}}$
- 2. BSCC computation: Tarjan algorithm linear in $|\mathcal{D} \times A|$ (number of states + transitions)
- 3. Unbounded reachability: system of linear equations ($\leq |\mathcal{D} \times A|$):
 - ▶ exact solution: ≈ cubic in the size of the system
 - approximative solution: efficient in practice