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Example I: Simulation of a die by coins

Knuth & Yao die

Simulating a Fair Die by a Fair Coin
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Quiz

Is the probability of obtaining 3 equal to 1
6?
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Question:
I What is the probability of obtaining 2?
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Example II: Zero Configuration Networking (Zeroconf)
I Previously: Manual assignment of IP addresses
I Zeroconf: Dynamic configuration of local IPv4 addresses
I Advantage: Simple devices able to communicate automatically

Automatic Private IP Addressing (APIPA) – RFC 3927
I Used when DHCP is configured but unavailable
I Pick randomly an address from 169.254.1.0 – 169.254.254.255
I Find out whether anybody else uses this address (by sending

several ARP requests)

Model:
I Randomly pick an address among the K (65024) addresses.
I With m hosts in the network, collision probability is q = m

K .
I Send 4 ARP requests.
I In case of collision, the probability of no answer to the ARP

request is p (due to the lossy channel)
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Example II: Zero Configuration Networking (Zeroconf)

Zeroconf as a Markov chain
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For 100 hosts and p = 0.001, the probability of error is ≈ 1.55 · 10−15.
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Application I – Non-deterministic Systems

I Verification of non-deterministic systems
I Controller synthesis for under-specified systems

Given a model S of a system and formula φ, the model checking
problem is to decide whether K |= φ (for all/some resolutions of
choices).

Solution: Combine K and φ into a “product game graph” K × φ
with a “winning condition” such that

K |= φ

iff

from a designated vertex of K × φ player 0 has “winning
strategy”.
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Aplication II – Synthesis

Alonzo Church, 1957 “Given a requirement which a circuit is to
satisfy, we may suppose the requirement
expressed in some suitable logistic system
which is an extension of restricted recur-
sive arithmetic. The synthesis problem is
then to find recursion equivalences repre-
senting a circuit that satisfies the given
requirement (or alternatively, to determine
that there is no such circuit).”

Given a requirement on a bit stream transformation

input
...1011

output
...0100

fill the box by a machine with output, satisfying the requirement (or
state that the requirement is not satisfiable).
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Discrete-time
Markov Decision Processes

MDP
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MDP
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Markov chains – purely
probabilistic
Possible successor states are chosen
based on probabilities but not on
decisions.

We want decisions
to model both
I controllable setting (game theory,

operations theory, control theory);
I uncontrollable setting (interleaving

in concurrent systems, abstractions
of models, open systems)
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MDP: Definition

Definition:
A (labelled) Markov Decision Process (MDP) is a tuple

M = (S ,Act,P, π0)

where
I S is a countable set of states,
I Act is a finite set of actions,
I P : S × Act × S → [0, 1] is the transition probability function,

such that for each state s and action α,
I

∑
s′∈S P(s, α, s

′) = 1, then we say that α is enabled in s; or
I P(s, α, s ′) = 0 for all s ′, then we say that α is not enabled in s .

I π0 is the initial distribution.

The set of actions enabled in s is denoted by Act(s). We assume that
for each s , we have Act(s) 6= ∅.
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MDP – Schedulers

Problem:
How is the non-determinism resolved?
(Possibly allowing also for memory and randomness)

Definition (Scheduler):
A scheduler (also called strategy or policy) on an MDP
M = (S ,Act,P, π0) is a function Θ assigning to each state s ∈ S an
action α that is enabled in s .

Definition (Induced DTMC):
LetM = (S ,Act,P, π0) be a MDP and scheduler Θ onM. The
induced DTMC is given by

MΘ = (S ,PΘ, π0),

where
PΘ(s, s ′) = P(s,Θ(s), s ′)
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MDP – General Schedulers

Definition (Scheduler):
A scheduler (also called strategy or policy) on an MDP
M = (S ,Act,P, π0) is a function Θ assigning to each history
s0 · · · sn ∈ S+ a probability distribution over Act such that α is
enabled in sn whenever Θ(s0 · · · sn)(α) > 0.

Definition (Induced DTMC):
LetM = (S ,Act,P, π0) be a MDP and scheduler Θ onM. The
induced DTMC is given by

MΘ = (S+,PΘ, π0),

where for any h = s0s1 . . . sn, we define

PΘ(h, hsn+1) =
∑
α∈Act

Θ(h)(α) · P(sn, α, sn+1)
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MDP – Reachability
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MDP - Reachability

Min
When playing “Mensch Ärgere dich nicht” against a fixed opponent
strategy, what is the minimal probability of having all pieces kicked
out into the outside area?

Max
What is the maximal probability of winning the game?
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MDP - Reachability
Min
I Best case for reaching undesirable states when controlled
I Worst case for reaching desirable states when not controlled

The minimum probability to reach a set of states B from a state s
(within n steps) is

inf
Θ

PΘ
s (♦B), inf

Θ
PΘ
s (♦≤nB)

Max
I Best case for reaching desirable states when controlled
I Worst case for reaching undesirable states when not controlled

The maximum probability to reach a set of states B from a state s
(within n steps) is

sup
Θ

PΘ
s (♦B), sup

Θ
PΘ
s (♦≤nB)

Focus on maximum; minimum is similar
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MDP - Reachability

Recall for Markov chains
Let (S ,P, π0) be a finite DTMC and B ⊆ S . The vector x with
x(s) = Ps(♦B) is the unique solution of the equation system

x(s) =


1 if s ∈ B,

0 if s ∈ S0 = {s | Ps(♦B) = 0},∑
s′∈S

P(s, s ′) · x(s ′) otherwise.
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Theorem (Maximum Reachability Probability):
Let (S ,Act,P, π0) be a finite MDP and B ⊆ S . The vector x with
x(s) = supΘ PΘ

s (♦B) is the least solution of the equation system

x(s) =


1 if s ∈ B,

0 if s ∈ Smax
0 = {s | supΘ PΘ

s (♦B) = 0},
max

α∈Act(s)

∑
s′∈S

P(s, α, s ′) · x(s ′) otherwise.
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MDP - Reachability - Linear Programming

Linear Program:
Let (S ,Act,P, π0) be a finite MDP and B ⊆ S . The vector x with
x(s) = maxΘ PΘ

s (♦B) is the unique solution of the linear program

minimize
∑
s∈S

x(s)

satisfying x(s) = 1 ∀s ∈ B,

x(s) = 0 ∀s ∈ Smax
0 ,

x(s) ≥
∑
u∈S

P(s, α, u) · x(u) ∀s ∈ S \ (B ∪ Smax
0 ),∀α ∈ Act.
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MDP - Reachability - Value Iteration

Value Iteration Algorithm:
LetM be a finite MDP with state space S , and B ⊆ S .
I Initialize x0(s) to 1 if s ∈ B and to 0, otherwise.
I Iterate

xn+1(s) =


1 if s ∈ B,

0 if s ∈ Smax
0 ,

max
α∈Act(s)

∑
s′∈S

P(s, α, s ′) · xn(s ′) otherwise

until convergence.
I.e., until maxs∈S |xn+1(s)− xn(s)| < ε for a small ε > 0?

Theorem
I xn(s) = sup

Θ
PΘ
s (♦≤nB).

I xn+1 ≥ xn.
I lim

n→∞
xn(s) = sup

Θ
PΘ
s (♦B).
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MDP - Reachability - Computing Smax
0

We rather compute the set

Smax
>0 = {s | sup

Θ
PΘ
s (♦B) > 0}

and return
Smax

0 = S \ Smax
>0

Smax
>0 :

Initialize the set to B and in every iteration add states that reach
the set in one step with positive probability for some enabled action.
Repeat until fix-point is reached.

(Similarly for Smin
>0 : replace “some” by ”every”)

19 / 20
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General MDP with end components
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