Model Checking – Exercise sheet 12

Exercise 12.1
Consider the following program with a Boolean variable x. Initially, the value of x is \texttt{false}. The question mark stands for a nondeterministic value.

1. $x = \$;
2. while (x)
 3. $x = \$;
4. while (true) {}

Let $AP = \{x\}$, where x is true only in states where the variable x is \texttt{true}.

(a) Construct a Kripke structure $K = (S, \rightarrow, r, AP, \nu)$ for the above program.

(b) Let \approx be an equivalence relation on S such that for all $s \approx t$ we have $\nu(s) = \nu(t)$. Construct from K the abstracted Kripke structure K' w.r.t. \approx.

(c) Model check the following formulas with K'. Refine the abstraction if necessary.

(i) $\neg x W x$
(ii) $G(\neg x \rightarrow X \neg x)$
(iii) $X(\neg x \rightarrow G \neg x)$

Exercise 12.2
We consider the following program, over the integer variables x and y:

1. if (x >= 0) x = -x;
2. if (y >= 0) y = -y;
3. if (x + y > 0) error;
end

1. Give the set of configurations of the program (some may not be reachable).
2. Draw the abstract transition system with the predicates l_1, l_2, l_3, l_4 and “error”.
3. Give a path ρ in the abstract transition system reaching a state where “error” holds.
4. What is the longest prefix (denoted ρ') of ρ that can be concretized?
5. Denote q the state in the abstract transition system reached by ρ'. Give a predicate that separates configurations reachable by ρ' from configurations that admit a successor.
6. Draw the abstract transition system with that additional predicate.
7. How many times does we have to repeat the abstraction refinement technique to exhibit an abstract transition system that does not reach the error state? Draw that transition system, how many predicates have we introduced?
Solution 12.1

(a) Each state of the following Kripke structure \(K \) is a pair of a program location and a valuation of \(x \).

\[
\begin{align*}
\text{s}_0 &\rightarrow (1, \text{false}) \\
\text{s}_1 &\rightarrow (2, \text{false}) \\
\text{s}_2 &\rightarrow (2, \text{true}) \\
\text{s}_3 &\rightarrow (4, \text{false}) \\
\text{s}_4 &\rightarrow (3, \text{true})
\end{align*}
\]

(b) Let \(t_0 = [s_0] = \{s_0, s_1, s_3\} \) and \(t_1 = [s_1] = \{s_2, s_4\} \). The abstraction \(K' \) is as follows:

\[
\begin{align*}
t_0 &\rightarrow \{\} \\
t_1 &\rightarrow \{x\}
\end{align*}
\]

(c) (i) \(K' \models \neg x W x \)

(ii) \(K' \not\models G(\neg x \rightarrow X \neg x) \). A counterexample in \(K' \) is \(t_0 t_1^\omega \), which corresponds to the run \(s_0 s_2(s_4 s_2)^\omega \) in \(K \). So, \(K \not\models G(\neg x \rightarrow X \neg x) \).

(iii) \(K' \not\models X(\neg x \rightarrow G \neg x) \). A counterexample in \(K' \) is \(t_0 t_0 t_1^\omega \). However, there are no corresponding runs in \(K \) because such paths must start with \(s_0 s_1 \), but no successors of \(s_1 \) are in \(t_1 \). Since \(s_0 \in t_0 \) and \(s_0 \) has a successor in \(t_1 \), we can refine the abstraction to distinguish \(s_0 \) from \(s_1 \). \(t'_0 = \{s_0\} \) and \(t_0 = \{s_2, s_3\} \), and construct a new Kripke structure \(K'' \) as follows:

\[
\begin{align*}
t'_0 &\rightarrow \{\} \\
t_1 &\rightarrow \{x\}
\end{align*}
\]

We have \(K'' \models X(\neg x \rightarrow G \neg x) \).
Solution 12.2

1. \(\{l_1, l_2, l_3, l_4, \text{error}\} \times \mathbb{N} \times \mathbb{N} \)

2. The states of the abstract TS are \(\{l_1, l_2, l_3, l_4, \text{error}\} \) and the transition relation is \(\{(l_1, l_2), (l_2, l_3), (l_3, \text{error}), (l_3, l_4)\} \).

3. \(\rho = l_1 \ l_2 \ l_3 \ \text{error} \)

4. \(\rho' = l_1 \ l_2 \ l_3 \)

5. \(q = l_3 \). Configurations reachable by \(\rho' \) will satisfy the predicate \((x \leq 0) \land (y \leq 0) \) because if either of \(x \) or \(y \) are positive, \(l_1 \) and \(l_2 \) will make them non-positive. However, all configurations in \(l_3 \) admit a successor.

6. New states will be \(\{l_1, l_2, l_3, l_4, \text{error}\} \times \{p_1, \neg p_1\} \) where \(p_1 \) is the predicate \((x \leq 0) \land (y \leq 0) \). The transition relation would be
 \[
 \{(l_1, p_1), (l_2, p_1), (l_3, p_1), (l_4, p_1)\} \cup
 \{(l_1, \neg p_1), (l_2, \neg p_1), (l_3, \neg p_1), (l_4, \neg p_1)\} \cup
 \{(l_2, \neg p_1), (l_3, \neg p_1), (l_4, \neg p_1)\} \cup
 \{(l_3, \neg p_1), (\text{error}, \neg p_1), (l_4, \neg p_1)\}.
 \]

7. From the above refinement, we realize that there is a state \((l_3, \neg p_1) \), which admits a successor to an error state; however there is no concrete path which leads to \((l_3, \neg p_1) \). So we try to find a predicate which separates the configuration that can be reached by the path \((l_1, \neg p_1)(l_2, \neg p_1) \) from the configurations in \((l_2, \neg p_1) \) which have a successor to \((l_3, \neg p_1) \)...