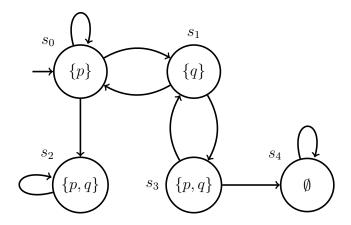
Model Checking – Exercise sheet 8

Exercise 8.1

Compute $[\![\mathbf{EG}q]\!]$, $[\![\mathbf{EXAG}(p \lor q)]\!]$ and $[\![\mathbf{EFAG}(p \land q)]\!]$ for the following Kripke structure:



Exercise 8.2

(Taken from Principles of Model Checking)

Provide two Kripke structures \mathcal{K}_1 and \mathcal{K}_2 (over the same set of atomic propositions) and a CTL formula ϕ such that $Traces(\mathcal{K}_1) = Traces(\mathcal{K}_2)$ and $\mathcal{K}_1 \models \phi$, but $\mathcal{K}_2 \not\models \phi$.

Exercise 8.3

Given two CTL formulas ϕ_1 and ϕ_2 , we write $\phi_1 \Rightarrow \phi_2$ iff for every Kripke structure \mathcal{K} we have $(\mathcal{K} \models \phi_1) \Rightarrow (\mathcal{K} \models \phi_2)$. Furthermore, we define an *implication graph* as a directed graph whose nodes are CTL formulas, and that contains an edge from ϕ_1 to ϕ_2 iff $\phi_1 \Rightarrow \phi_2$. Let $AP = \{p\}$.

- (a) Draw an implication graph with the nodes: **EFEF**p, **EGEG**p, **AFAF**p, **AGAG**p.
- (b) For each implication $\phi_1 \Rightarrow \phi_2$ obtained in (a), give a Kripke structure \mathcal{K} that satisfies ϕ_2 but not ϕ_1 , i.e. give a \mathcal{K} such that $\mathcal{K} \models \phi_2$ and $\mathcal{K} \not\models \phi_1$.
- (c) Add the following CTL formulas to the implication graph obtained in (a): $\mathbf{AFEF}p$, $\mathbf{EFAF}p$, $\mathbf{AGEG}p$, $\mathbf{EGAG}p$.