Einführung in die Theoretische Informatik

Sommersemester 2023 – Hausaufgabenblatt 7

- Bitte beachten Sie, dass in dieser Vorlesung generell Antworten mit Begründung gefordert werden, solange die Aufgabe nicht explizit das Gegenteil sagt.
- Zum Bestehen diese Blattes müssen Sie 50% der Punkte erreichen.
- Dr. Evilsparza genießt das StuStaCulum und erwartet euch erst nächste Woche wieder mit fiesen Automatenkonstruktionen.
- Update: Es werden die Aufgaben 3(a-b) korrigiert.

Auf der folgenden Website können Sie PDAs konstruieren, simuliereren, testen,... https://automatonsimulator.com/

Beachten Sie dabei: die PDAs auf der Website starten mit leerem Keller und akzeptieren mit Endzustand.

AT-Aufgabe H7.1. (*VerCYKendes KlapPDAch*)

0 Punkte

Bearbeiten Sie folgende Aufgabe mit Automata Tutor.

Bearbeiten Sie die Hausaufgaben H7.1 (a-f). Bei den PDA construction Aufgaben darf ihr konstruierter PDA nicht zu viele Zustände oder zu viele Stacksymbole haben (siehe Aufgabenstellung). Wenn Sie einen ε -Übergang angeben wollen, geben Sie statt ε bitte E ein (siehe Hinweisbox über Canvas). Die Simulation bei PDAs ist deaktiviert. Bitte wundern Sie sich nicht, dass bei einem Klick auf Start Simulation nichts passiert.

Lösungsskizze.

(a)

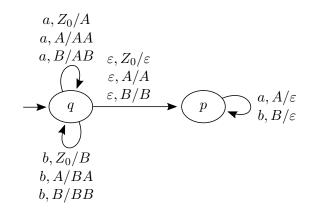
1,5 G,T				
$_{1,4}$ G	$_{2,5}$ T			
$\begin{bmatrix} 1,3 & S,T \end{bmatrix}$	$_{2,4}$ T,G	$_{3,5}$ T		
$\bigcup_{1,2} T$	$_{2,3}$ S,G	$_{3,4}$ G	$_{4,5}$ G	
1,1 G	$_{2,2}$ S	$_{3,3}$ S,L	4,4 S	5,5 S
y	t	u	t	t

(b)

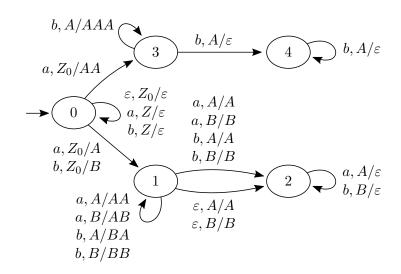
1,5 C, F, L, S				
1,4 C,L,S	$_{2,5}$ C, F, L, S			
1,3 C	$_{2,4}$ C,L,S	$_{3,5}$ C, L, S		
$_{1,2}$ S,C	2,3 C	$_{3,4}$ D,L	$_{4,5}$ C,S	
1,1 F,L	$_{2,2}$ C,D,L,S	$_{3,3}$ S	$\begin{vmatrix} 4,4 & F,L \end{vmatrix}$	$b_{5,5}$ C, D, L, S
d	e	n	d	e

- (c) ϵ , aabccb, $acbccb \in L$ und b, bb, $abb \notin L$
- (d) ϵ , aaabbaaa, $ababbaba \in L$ und bbb, aab, $aaabaaa \notin L$

(e)



(f)



Aufgabe H7.2. (Zuschnitt)

4 Punkte

Sei $\Sigma := \{a,b\}$, $G = (V,\Sigma,P,S)$ eine kontextfreie Grammatik in CNF und $M = (Q,\Sigma,\delta,q_0,F)$ ein DFA. Wir wollen nun eine kontextfreie Grammatik $G' = (V',\Sigma,P',S')$ für $L(G) \cap L(M)$ erzeugen, und damit beweisen, dass die kontextfreien Sprachen abgeschlossen unter Schnitt mit regulären Sprachen sind.

Dazu verwenden wir Variablen $V' := \{S'\} \cup \{X_{q,r} : X \in V, q, r \in Q\}$. Die Idee ist, dass $X_{q,r}$ genau die Wörter erzeugt, die sowohl von X erzeugt werden können, als auch im DFA von Zustand q nach r gehen. Formal soll also $L_{G'}(X_{q,r}) = \{w \in L_G(X) : \hat{\delta}(q,w) = r\}$ gelten. Zusätzlich ist S' ein besonderes Startsymbol.

Konstruieren Sie G'. Geben Sie also insbesondere die Produktionen P' an.

Hinweis: G' muss nicht in CNF sein.

Lösungsskizze. Wir erzeugen folgende Produktionen:

- $S' \to S_{q_0,r}$ für alle $r \in F$,
- $X_{q,r} \to Y_{q,s}Z_{s,r}$ für alle $(X \to YZ) \in P$ und $q,s,r \in Q$, und
- $X_{q,r} \to c$ für alle $(X \to c) \in P$, falls $\delta(q,c) = r$.

Aufgabe H7.3. ($W\ddot{u}rze \in K\ddot{u}rze$)

3 + 3 Punkte

Die Grammatik G sei über die folgenden Produktionen gegeben:

$$\begin{array}{lll} S \rightarrow SS \mid AD \mid DB \mid T & E \rightarrow aABb \mid bBAa \mid EabU \\ A \rightarrow aT \mid aaD & T \rightarrow S \mid ETb \mid aAU \mid \varepsilon \\ B \rightarrow Ub \mid BB & U \rightarrow WDW \mid aEb \mid aU \\ C \rightarrow aV \mid \varepsilon & W \rightarrow aB \mid bAUb \mid bWa \\ D \rightarrow Sb \mid b & V \rightarrow aSb \mid ab \end{array}$$

- (a) Eliminieren Sie alle unnützen Symbole aus G mit den aus der Vorlesung bekannten Verfahren. Geben Sie ihren Rechenweg an.
- (b) Leider ist G noch nicht klein genug. Geben Sie eine Grammatik G' mit L(G') = L(G) an, die höchstens zwei Produktionen enthält. Beschreiben Sie ihr Vorgehen.

Lösungsskizze. (a) Zuerst berechnen wir die Menge der erzeugenden Symbole. Jede Zeile entspricht hierbei einem Schritt der Induktion aus Satz 4.36.

$$\begin{aligned}
\{a,b\} \\
&\cup \{C,D,T,V\} \\
&\cup \{A,S\} \\
&\cup \emptyset
\end{aligned}$$

Hier ist der Fixpunktalgorithmus also abgeschlossen, und wir erhalten folgende Grammatik:

$$\begin{array}{lll} S \rightarrow SS \mid AD \mid T & & D \rightarrow Sb \mid b \\ A \rightarrow aT \mid aaD & & T \rightarrow S \mid \varepsilon \\ C \rightarrow aV \mid \varepsilon & & V \rightarrow aSb \mid ab \end{array}$$

Nun bestimmen wir die Symbole, die erreichbar sind, rekursiv nach Satz 4.39.

$$\{S\} \\ \cup \{A, D, T\} \\ \cup \emptyset$$

Schließlich ergibt sich die folgende Grammatik.

$$\begin{array}{ll} S \rightarrow SS \mid AD \mid T & \quad D \rightarrow Sb \mid b \\ A \rightarrow aT \mid aaD & \quad T \rightarrow S \mid \varepsilon \end{array}$$

(b) Zuerst eliminieren wir T, da offensichtlich T und S äquivalent sind.

$$\begin{split} S \rightarrow SS \mid AD \mid \varepsilon & D \rightarrow Sb \mid b \\ A \rightarrow aS \mid aaD \mid a \end{split}$$

Die Produktionen von D lassen sich einsetzen.

$$S \rightarrow SS \mid ASb \mid Ab \mid \varepsilon$$
$$A \rightarrow aS \mid aaSb \mid aab \mid a$$

Ebenso die von A.

$$S \rightarrow SS \mid aSSb \mid aaSbSb \mid aabSb \mid aaSb \mid aaSbb \mid aabb \mid ab \mid \varepsilon$$

Die Produktionen $S \to aSSb \mid aaSbSb \mid aabSb \mid aabSb \mid aabb \mid ab$ lassen sich nun entfernen, da man jeweils die rechte Seite auch in folgender Grammatik ableiten kann.

$$S \to SS \mid aSb \mid \varepsilon$$

Diese Grammatik erzeugt genau die balancierten Klammerwörter (mit a als öffnende und b als schließende Klammer), wie aus der Vorlesung (Beispiel 4.10) bekannt. Dafür können wir aber auch eine kleinere Grammatik angeben:

$$S \to aSbS \mid \varepsilon$$