Propositional Logic Basics

Syntax of propositional logic

Definition

An atomic formula (or atom) has the form A_{i} where $i=1,2,3, \ldots$. Formulas are defined inductively:

- \perp ("False") and T ("True") are formulas
- All atomic formulas are formulas
- For all formulas $F, \neg F$ is a formula.
- For all formulas F und $G,(F \circ G)$ is a formula, where $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$
\neg is called negation
\wedge is called conjunction
\checkmark is called disjunction
\rightarrow is called implication
$\leftrightarrow \quad$ is called bi-implication

Parentheses

Precedence of logical operators in decreasing order:

$$
\neg \wedge \vee \rightarrow \leftrightarrow
$$

Operators with higher precedence bind more strongly.
Example
Instead of $(A \rightarrow((B \wedge \neg(C \vee D)) \vee E))$
we can write $A \rightarrow B \wedge \neg(C \vee D) \vee E$.
Outermost parentheses can be dropped.

Syntax tree of a formula

Every formula can be represented by a syntax tree.
Example
$F=\neg\left(\left(\neg A_{4} \vee A_{1}\right) \wedge A_{3}\right)$

Subformulas

The subformulas of a formula are the formulas corresponding to the subtrees of its syntax tree.

$$
\left(\neg A_{4} \vee A_{1}\right)
$$

$\left(\left(\neg A_{4} \vee A_{1}\right) \wedge A_{3}\right)$

$$
\neg\left(\left(\neg A_{4} \vee A_{1}\right) \wedge A_{3}\right)
$$

Induction on formulas

Proof by induction on the structure of a formula:
In order to prove some property $\mathcal{P}(F)$ for all formulas F
it suffices to prove the following:

- Base cases: prove $\mathcal{P}(\perp)$, prove $\mathcal{P}(\top)$, and prove $\mathcal{P}\left(A_{i}\right)$ for all atoms A_{i}
- Induction step for \neg : prove $\mathcal{P}(\neg F)$ under the induction hypothesis $\mathcal{P}(F)$
- Induction step for all $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$: prove $\mathcal{P}(F \circ G)$ under the induction hypotheses $\mathcal{P}(F)$ and $\mathcal{P}(G)$

Operators that are merely abbreviations need not be considered!

Semantics of propositional logic (I)

The elements of the set $\{0,1\}$ are called truth values. (You may call 0 "false" and 1 "true")

An assignment is a function $\mathcal{A}:$ Atoms $\rightarrow\{0,1\}$ where Atoms is the set of all atoms.
We extend \mathcal{A} to a function $\hat{\mathcal{A}}$: Formulas $\rightarrow\{0,1\}$

Semantics of propositional logic (II)

$$
\begin{aligned}
\hat{\mathcal{A}}\left(A_{i}\right) & =\mathcal{A}\left(A_{i}\right) \\
\hat{\mathcal{A}}(\neg F) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=0 \\
0 & \text { otherwise }\end{cases} \\
\hat{\mathcal{A}}(F \wedge G) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=1 \text { and } \hat{\mathcal{A}}(G)=1 \\
0 & \text { otherwise }\end{cases} \\
\hat{\mathcal{A}}(F \vee G) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=1 \text { or } \hat{\mathcal{A}}(G)=1 \\
0 & \text { otherwise }\end{cases} \\
\hat{\mathcal{A}}(F \rightarrow G) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=0 \text { or } \hat{\mathcal{A}}(G)=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Instead of $\hat{\mathcal{A}}$ we simply write \mathcal{A}
Using arithmetic: $\quad \mathcal{A}(F \wedge G)=\min (\mathcal{A}(F), \mathcal{A}(G))$

$$
\mathcal{A}(F \vee G)=\max (\mathcal{A}(F), \mathcal{A}(G))
$$

Truth tables (I)

We can compute $\hat{\mathcal{A}}$ with the help of truth tables.

\neg	A	A	V	B	A	\wedge	B	A	\rightarrow	B
1	0	0	0	0	0	0	0	0	1	0
0	1	0	1	1	0	0	1	0	1	1
		1	1	0	1	0	0	1	0	0
		1	1	1	1	1	1	1	1	1

Abbreviations

A, B, C,
P, Q, R, or \ldots instead of $A_{1}, A_{2}, A_{3} \ldots$

$$
\begin{array}{cll}
F_{1} \leftrightarrow F_{2} & \text { abbreviates } & \left(F_{1} \wedge F_{2}\right) \vee\left(\neg F_{1} \wedge \neg F_{2}\right) \\
\bigvee_{i=1}^{n} F_{i} & \text { abbreviates } & \left(\ldots\left(\left(F_{1} \vee F_{2}\right) \vee F_{3}\right) \vee \ldots \vee F_{n}\right) \\
& \bigwedge_{i=1}^{n} F_{i} & \text { abbreviates }
\end{array} \quad\left(\ldots\left(\left(F_{1} \wedge F_{2}\right) \wedge F_{3}\right) \wedge \ldots \wedge F_{n}\right) .
$$

Special cases:

$$
\bigvee_{i=1}^{0} F_{i}=\bigvee \emptyset=\perp \quad \bigwedge_{i=1}^{0} F_{i}=\bigwedge \emptyset=\top
$$

Truth tables (II)

	\leftrightarrow	B
0	1	0
0	0	1
1	0	0
1	1	1

Coincidence Lemma

Lemma
Let \mathcal{A}_{1} and \mathcal{A}_{2} be two assignments.
If $\mathcal{A}_{1}\left(A_{i}\right)=\mathcal{A}_{2}\left(A_{i}\right)$ for all atoms A_{i} in some formula F, then $\mathcal{A}_{1}(F)=\mathcal{A}_{2}(F)$.

Proof.
Exercise.

Models

If $\mathcal{A}(F)=1 \quad$ then we write $\quad \mathcal{A} \models F$ and say $\quad F$ is true under \mathcal{A}
or
\mathcal{A} is a model of F

If $\mathcal{A}(F)=0$ then we write $\mathcal{A} \not \vDash F$
and say $\quad F$ is false under \mathcal{A}
or

Validity and satisfiability

Definition (Validity)
A formula F is valid (or a tautology)
if every assignment is a model of F.
We write $\models F$ if F is valid, and $\not \models F$ otherwise.

Definition (Satisfiability)

A formula F is satisfiable if it has at least one model; otherwise F is unsatisfiable.
A (finite or infinite!) set of formulas S is satisfiable if there is an assigment that is a model of every formula in S.

Exercise

	Valid	Satisfiable	Unsatisfiable
A			
$A \vee B$			
$A \vee \neg A$			
$A \wedge \neg A$			
$A \rightarrow \neg A$			
$A \rightarrow(B \rightarrow A)$			
$A \rightarrow(A \rightarrow B)$			
$A \leftrightarrow \neg A$			

Exercise

Which of the following statements are true?

		Y	C.ex.
If F is valid,	then F is satisfiable		
If F is satisfiable, \quad then $\neg F$ is satisfiable			
If F is valid,	then $\neg F$ is unsatisfiable		
If F is unsatisfiable,	then $\neg F$ is unsatisfiable		

Mirroring principle

all propositional formulas
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { valid } \\ \text { formulas }\end{array} & \begin{array}{c}\text { satisfiable } \\ \text { but nqt valid } \\ \text { formulas }\end{array} & \begin{array}{c}\text { unsatisfiable } \\ \text { formulas }\end{array} \\ & \text { I } & \\ & F \begin{array}{l}1 \\ 1 \\ \\ \end{array} & \neg F\end{array}\right]$

Consequence

Definition

A formula G is a (semantic) consequence of a set of formulas M if every model \mathcal{A} of all $F \in M$ is also a model of G. Then we write $M \vDash G$.
In a nutshell:
"Every model of M is a model of G."

Example
$A \vee B, A \rightarrow B, B \wedge R \rightarrow \neg A, R \models(R \wedge \neg A) \wedge B$

Consequence

Example

$$
\underbrace{A \vee B, A \rightarrow B, B \wedge R \rightarrow \neg A, R}_{M} \models(R \wedge \neg A) \wedge B
$$

Proof:
Assume $\mathcal{A} \models F$ for all $F \in M$.
We need to prove $\mathcal{A} \vDash(R \wedge \neg A) \wedge B$.
From $\mathcal{A} \models A \vee B$ and $\mathcal{A} \models A \rightarrow B$ follows $\mathcal{A} \models B$:
Proof by cases:
If $\mathcal{A}(A)=0$ then $\mathcal{A}(B)=1$ because $\mathcal{A} \models A \vee B$
If $\mathcal{A}(A)=1$ then $\mathcal{A}(B)=1$ because $\mathcal{A} \models A \rightarrow B$
From $\mathcal{A} \models B$ and $\mathcal{A} \models R$ follows $\mathcal{A} \models \neg A$ because \ldots
From $\mathcal{A} \models B, \mathcal{A} \models R$, and $\mathcal{A} \models \neg A$ follows $\mathcal{A} \models(R \wedge \neg A) \wedge B$

Exercise

M	F	$M \models F ?$
A	$A \vee B$	
A	$A \wedge B$	
A, B	$A \vee B$	
A, B	$A \wedge B$	
$A \wedge B$	A	
$A \vee B$	A	
$A, A \rightarrow B$	B	

Consequence

Exercise

The following statements are equivalent:

1. $F_{1}, \ldots, F_{k} \mid=G$
2. $\models\left(\bigwedge_{i=1}^{k} F_{i}\right) \rightarrow G$

Proof of "if $F_{1}, \ldots, F_{k} \models G$ then $\vDash \underbrace{\left(\bigwedge_{i=1}^{k} F_{i}\right) \rightarrow G}_{H}$ ".
Assume $F_{1}, \ldots, F_{k} \models G$.
We need to prove $\models H$, i.e. $\mathcal{A}(H)=1$ for all \mathcal{A}.
We pick an arbitrary \mathcal{A} and show $\mathcal{A}(H)=1$.
Proof by cases.
If $\mathcal{A}\left(\bigwedge F_{i}\right)=0$ then $\mathcal{A}(H)=1$ because $H=\bigwedge F_{i} \rightarrow G$
If $\mathcal{A}\left(\bigwedge F_{i}\right)=1$ then $\mathcal{A}\left(F_{i}\right)=1$ for all i.
Therefore \mathcal{A} is a model of F_{1}, \ldots, F_{k}.
Therefore $\mathcal{A} \models G$ because $F_{1}, \ldots, F_{k} \models G$.
Therefore $A(H)=1$

Validity and satisfiability

Exercise

The following statements are equivalent:

1. $F \rightarrow G$ is valid.
2. $F \wedge \neg G$ is unsatisfiable.

Exercise

Let M be a set of formulas, and let F and G be formulas. Which of the following statements hold?

	Y / N	C.ex.
If F satisfiable then $M \models F$.		
If F valid then $M \models F$.		
If $F \in M$ then $M \models F$.		
If $F \models G$ then $\neg F \models \neg G$.		

Notation

Warning: The symbol \vDash is overloaded:

$$
\begin{aligned}
\mathcal{A} & \models F \\
& \models F \\
M & \models F
\end{aligned}
$$

Convenient variations for set of formulas S :
$\mathcal{A} \models S$ means that for all $F \in S, \mathcal{A} \models F$
$\vDash S$ means that for all $F \in S, \quad \models F$
$M \models S$ means that for all $F \in S, M \models F$

Propositional Logic Equivalences

Equivalence

Definition (Equivalence)

Two formulas F and G are (semantically) equivalent if $\mathcal{A}(F)=\mathcal{A}(G)$ for every assignment \mathcal{A}.

We write $F \equiv G$ to denote that F and G are equivalent.

Exercise

Which of the following equivalences hold?

$$
\begin{aligned}
(A \wedge(A \vee B)) & \equiv A \\
(A \wedge(B \vee C)) & \equiv((A \wedge B) \vee C) \\
(A \rightarrow(B \rightarrow C)) & \equiv((A \rightarrow B) \rightarrow C) \\
(A \rightarrow(B \rightarrow C)) & \equiv((A \wedge B) \rightarrow C)
\end{aligned}
$$

Observation

The following connections hold:

$$
\begin{array}{lll}
\models F \rightarrow G & \text { iff } & F \models G \\
\models F \leftrightarrow G & \text { iff } & F \equiv G
\end{array}
$$

NB: "iff" means "if and only if"

Reductions between problems (I)

- Validity to Unsatisfiabilty (and back):

$$
\begin{array}{rll}
F \text { valid } & \text { iff } & \neg F \text { unsatisfiable } \\
F \text { unsatisfiable } & \text { iff } & \neg F \text { valid }
\end{array}
$$

- Validity to Consequence:

$$
F \text { valid } \quad \text { iff } \quad T \models F
$$

- Consequence to Validity:

$$
F \models G \quad \text { iff } \quad F \rightarrow G \text { valid }
$$

Reductions between problems (II)

- Validity to Equivalence:

$$
F \text { valid } \quad \text { iff } \quad F \equiv T
$$

- Equivalence to Validity:

$$
F \equiv G \quad \text { iff } \quad F \leftrightarrow G \text { valid }
$$

Properties of semantic equivalence

- Semantic equivalence is an equivalence relation between formulas.
- Semantic equivalence is closed under operators:

$$
\begin{aligned}
& \text { If } F_{1} \equiv F_{2} \text { and } G_{1} \equiv G_{2} \\
& \text { then } \begin{aligned}
& \left(F_{1} \wedge G_{1}\right) \equiv\left(F_{2} \wedge G_{2}\right), \\
& \left(F_{1} \vee G_{1}\right) \equiv\left(F_{2} \vee G_{2}\right) \text { and } \\
& \neg F_{1} \equiv \neg F_{2}
\end{aligned}
\end{aligned}
$$

Equivalence relation + Closure under Operations
$=$
Congruence relation

Replacement theorem

Theorem
Let $F \equiv G$. Let H be a formula with an occurrence of F as a subformula. Let H^{\prime} be the result of replacing an arbitrary occurrence of F in H by G. Then $H \equiv H^{\prime}$.
Proof by induction on the structure of H.
We consider only the case $H=\neg H_{0}$.
We analyse where F occurs in H.
If $F=H$ then $H^{\prime}=G$ and thus $H=F \equiv G=H^{\prime}$.
Otherwise F is a subformula of H_{0}.
Let H_{0}^{\prime} be the result of replacing F by G in H_{0}.
IH: $H_{0} \equiv H_{0}^{\prime}$
Thus $H=\neg H_{0} \equiv \neg H_{0}^{\prime}=H^{\prime}$

Equivalences (I)

Theorem

$$
(F \wedge F) \equiv F
$$

$$
(F \vee F) \equiv F
$$

$$
(F \wedge G) \equiv(G \wedge F)
$$

$$
(F \vee G) \equiv(G \vee F)
$$

$$
((F \wedge G) \wedge H) \equiv(F \wedge(G \wedge H))
$$

$$
((F \vee G) \vee H) \equiv(F \vee(G \vee H))
$$

$$
(F \wedge(F \vee G)) \equiv F
$$

$$
(F \vee(F \wedge G)) \equiv F
$$

(Idempotence)
(Commutativity)
(Associativity)
(Absorption)

Equivalences (II)

$$
\begin{array}{rlr}
(F \wedge(G \vee H)) & \equiv((F \wedge G) \vee(F \wedge H)) & \\
(F \vee(G \wedge H)) & \equiv((F \vee G) \wedge(F \vee H)) & \text { (Distributivity) } \\
\neg \neg F & \equiv F & \\
\neg(F \wedge G) & \equiv(\neg F \vee \neg G) & \\
\neg(F \vee G) & \equiv(\neg F \wedge \neg G) & \\
\neg \top & \equiv \perp & \\
\neg \perp & \equiv \top & \\
(\top \vee G) & \equiv \top & \\
(\top \wedge G) & \equiv G & \\
(\perp \vee G) & \equiv G & \\
(\perp \wedge G) & \equiv \perp &
\end{array}
$$

Warning

The symbols \models and \equiv are not operators in the language of propositional logic but part of the meta-language for talking about logic.

Examples:

$\mathcal{A} \vDash F$ and $F \equiv G$ are not propositional formulas.
$(\mathcal{A} \models F) \equiv G$ and $(F \equiv G) \leftrightarrow(G \equiv F)$ are nonsense.

Propositional Logic Normal Forms

Abbreviations

Until further notice:
$\begin{array}{rlr}F_{1} \rightarrow F_{2} & \text { abbreviates } & \neg F_{1} \vee F_{2} \\ \top & \text { abbreviates } & A_{1} \vee \neg A_{1} \\ \perp & \text { abbreviates } & A_{1} \wedge \neg A_{1}\end{array}$

Literals

Definition
A literal is an atom or the negation of an atom.
In the former case the literal is positive, in the latter case it is negative.

Negation Normal Form (NNF)

Definition

A formula is in negation formal form (NNF)
if negation (\neg) occurs only directly in front of atoms.
Example
In NNF: $\neg A \wedge \neg B$
Not in NNF: $\quad \neg(A \vee B)$

Transformation into NNF

Any formula can be transformed into an equivalent formula in NNF by pushing \neg inwards. Apply the following equivalences from left to right as long as possible:

$$
\begin{aligned}
\neg \neg F & \equiv F \\
\neg(F \wedge G) & \equiv(\neg F \vee \neg G) \\
\neg(F \vee G) & \equiv(\neg F \wedge \neg G)
\end{aligned}
$$

Example

$$
(\neg(A \wedge \neg B) \wedge C) \equiv((\neg A \vee \neg \neg B) \wedge C) \equiv((\neg A \vee B) \wedge C)
$$

Warning: " $F \equiv G \equiv H$ " is merely an abbreviation for

$$
" F \equiv G \text { and } G \equiv H "
$$

Does this process always terminate? Is the result unique?

CNF and DNF

Definition

A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals:

$$
F=\left(\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)\right)
$$

where $L_{i, j} \in\left\{A_{1}, A_{2}, \cdots\right\} \cup\left\{\neg A_{1}, \neg A_{2}, \cdots\right\}$

Definition

A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals:

$$
F=\left(\bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{m_{i}} L_{i, j}\right)\right)
$$

where $L_{i, j} \in\left\{A_{1}, A_{2}, \cdots\right\} \cup\left\{\neg A_{1}, \neg A_{2}, \cdots\right\}$

Transformation into CNF and DNF

Any formula can be transformed into an equivalent formula in CNF or DNF in two steps:

1. Transform the initial formula into its NNF
2. Transform the NNF into CNF or DNF:

- Transformation into CNF. Apply the following equivalences from left to right as long as possible:

$$
\begin{aligned}
(F \vee(G \wedge H)) & \equiv((F \vee G) \wedge(F \vee H)) \\
((F \wedge G) \vee H) & \equiv((F \vee H) \wedge(G \vee H))
\end{aligned}
$$

- Transformation into DNF. Apply the following equivalences from left to right as long as possible:

$$
\begin{aligned}
(F \wedge(G \vee H)) & \equiv((F \wedge G) \vee(F \wedge H)) \\
((F \vee G) \wedge H) & \equiv((F \wedge H) \vee(G \wedge H))
\end{aligned}
$$

Termination

Why does the transformation into NNF and CNF terminate?
Challenge Question: Find a weight function $w::$ formula $\rightarrow \mathbb{N}$ such that $w($ I.h.s. $)>w(r . h . s$.$) for the equivalences$

$$
\begin{aligned}
\neg \neg F & \equiv F \\
\neg(F \wedge G) & \equiv(\neg F \vee \neg G) \\
\neg(F \vee G) & \equiv(\neg F \wedge \neg G) \\
(F \vee(G \wedge H)) & \equiv((F \vee G) \wedge(F \vee H)) \\
((F \wedge G) \vee H) & \equiv((F \vee H) \wedge(G \vee H))
\end{aligned}
$$

Define w recursively:
$w\left(A_{i}\right)=\ldots$
$w(\neg F)=\ldots w(F) \ldots$
$w(F \wedge G)=\ldots w(F) \ldots w(G) \ldots$
$w(F \vee G)=\ldots w(F) \ldots w(G) \ldots$

Complexity considerations

The CNF and DNF of a formula of size n can have size 2^{n}
Can we do better? Yes, if we do not instist on \equiv.
Definition
Two formulas F and G are equisatisfiable if
F is satisfiable iff G is satisfiable.
Theorem
For every formula F of size n
there is an equisatisfiable CNF formula G of size $O(n)$.

Propositional Logic Definitional CNF

Definitional CNF

The definitional CNF of a formula is obtained in 2 steps:

1. Repeatedly replace a subformula G of the form $\neg A^{\prime}, A^{\prime} \wedge B^{\prime}$ or $A^{\prime} \vee B^{\prime}$ by a new atom A and conjoin $A \leftrightarrow G$.
This replacement is not applied to the "definitions" $A \leftrightarrow G$ but only to the (remains of the) original formula.
2. Translate all the subformulas $A \leftrightarrow G$ into CNF.

Example

$\neg\left(A_{1} \vee A_{2}\right) \wedge A_{3}$
$\neg A_{4} \wedge A_{3} \wedge\left(A_{4} \leftrightarrow\left(A_{1} \vee A_{2}\right)\right)$
$A_{5} \wedge A_{3} \wedge\left(A_{4} \leftrightarrow\left(A_{1} \vee A_{2}\right)\right) \wedge\left(A_{5} \leftrightarrow \neg A_{4}\right)$
$A_{5} \wedge A_{3} \wedge C N F\left(A_{4} \leftrightarrow\left(A_{1} \vee A_{2}\right)\right) \wedge C N F\left(A_{5} \leftrightarrow \neg A_{4}\right)$

Definitional CNF: Complexity

Let the initial formula have size n.

1. Each replacement step increases the size of the formula by a constant.
There are at most as many replacement steps as subformulas, linearly many.
2. The conversion of each $A \leftrightarrow G$ into CNF increases the size by a constant.
There are only linearly many such subformulas.
Thus the definitional CNF has size $O(n)$.

Notation

Definition

The notation $F[G / A]$ denotes the result of replacing all occurrences of the atom A in F by G. We pronounce it as " F with G for A ".

Example
$(A \wedge B)[(A \rightarrow B) / B]=(A \wedge(A \rightarrow B))$
Definition
The notation $\mathcal{A}[v / A]$ denotes a modified version of \mathcal{A} that maps A to v and behaves like \mathcal{A} otherwise:

$$
(\mathcal{A}[v / A])\left(A_{i}\right)= \begin{cases}v & \text { if } A_{i}=A \\ \mathcal{A}\left(A_{i}\right) & \text { otherwise }\end{cases}
$$

Substitution Lemma

> Lemma
> $\mathcal{A}(F[G / A])=\mathcal{A}^{\prime}(F)$ where $\mathcal{A}^{\prime}=\mathcal{A}[\mathcal{A}(G) / A]$

Example
$\mathcal{A}\left(\left(A_{1} \wedge A_{2}\right)\left[G / A_{2}\right]\right)=\mathcal{A}^{\prime}\left(A_{1} \wedge A_{2}\right)$ where $\mathcal{A}^{\prime}=\mathcal{A}\left[\mathcal{A}(G) / A_{2}\right]$
Proof by structural induction on F.
Case F is an atom:
If $F=A: \mathcal{A}(F[G / A])=\mathcal{A}(G)=\mathcal{A}^{\prime}(F)$
If $F \neq A: \mathcal{A}(F[G / A])=\mathcal{A}(F)=\mathcal{A}^{\prime}(F)$
Case $F=F_{1} \wedge F_{2}$:
$\mathcal{A}(F[G / A])=$
$\mathcal{A}\left(F_{1}[G / A] \wedge F_{2}[G / A]\right)=$
$\min \left(\mathcal{A}\left(F_{1}[G / A]\right), \mathcal{A}\left(F_{2}[G / A]\right)\right) \stackrel{I H}{=}$
$\min \left(\mathcal{A}^{\prime}\left(F_{1}\right), \mathcal{A}^{\prime}\left(F_{2}\right)\right)=\mathcal{A}^{\prime}\left(F_{1} \wedge F_{2}\right)=\mathcal{A}^{\prime}(F)$

Definitional CNF: Correctness

Each replacement step produces an equisatisfiable formula:

Lemma

Let A be an atom that does not occur in G.
Then $F[G / A]$ is equisatisfiable with $F \wedge(A \leftrightarrow G)$.
Proof If $F[G / A]$ is satisfiable by some assignment \mathcal{A}, then by the Substitution Lemma, $\mathcal{A}^{\prime}=\mathcal{A}[\mathcal{A}(G) / A]$ is a model of F. Moreover $\mathcal{A}^{\prime} \models(A \leftrightarrow G)$ because $\mathcal{A}^{\prime}(A)=\mathcal{A}(G)$ and $\mathcal{A}(G)=\mathcal{A}^{\prime}(G)$ by the Coincidence Lemma (Exercise 1.2).
Thus $F \wedge(A \leftrightarrow G)$ is satsifiable (by \mathcal{A}^{\prime}).
Conversely we actually have $F \wedge(A \leftrightarrow G) \models F[G / A]$. Suppose $\mathcal{A} \vDash F \wedge(A \leftrightarrow G)$. This implies $\mathcal{A}(A)=\mathcal{A}(G)$.
Therefore $\mathcal{A}[\mathcal{A}(G) / A]=\mathcal{A}$.
Thus $\mathcal{A}(F[G / A])=(\mathcal{A}[\mathcal{A}(G) / A])(F)=\mathcal{A}(F)=1$ by the Substitution Lemma.

Does $F[G / A] \models F \wedge(A \leftrightarrow G)$ hold?

Summary

Theorem
For every formula F of size n there is an equisatisfiable CNF formula G of size $O(n)$.

Similarly it can be shown:
Theorem
For every formula F of size n there is an equivalid DNF formula G of size $O(n)$.

Validity of CNF

Validity of formulas in CNF can be checked in linear time.
A formula in CNF is valid iff all its disjunctions are valid. A disjunction is valid iff it contains both an atomic A and $\neg A$ as literals.

Example
Valid: $\quad(A \vee \neg A \vee B) \wedge(C \vee \neg C)$
Not valid: $\quad(A \vee \neg A) \wedge(\neg A \vee C)$

Satisfiability of DNF

Satisfiability of formulas in DNF can be checked in linear time.
A formula in DNF is satisfiable iff at least one of its conjunctions is satisfiable. A conjunction is satisfiable iff it does not contain both an atomic A and $\neg A$ as literals.

Example
Satisfiable: $\quad(\neg B \wedge A \wedge B) \vee(\neg A \wedge C)$
Unsatisfiable: $\quad(A \wedge \neg A \wedge B) \vee(C \wedge \neg C)$

Satisfiability/validity of DNF and CNF

Theorem
Satisfiability of formulas in CNF is NP-complete.

Theorem
Validity of formulas in DNF is co-NP-complete.

The standard decision procedure for vailidity of F :

1. Transform $\neg F$ into an equisat. formula G in def. CNF
2. Apply efficient CNF-based SAT solver to G

Propositional Logic Horn Formulas

Efficient satisfiability checks

In the following:

- A very efficient satisfiability check for the special class of Horn formulas.
- Efficient satisfiability checks for arbitrary formulas in CNF: resolution (later).

Horn formulas

Definition

A formula F in CNF is a Horn formula if every disjunction in F contains at most one positive literal.

A disjunction in a Horn formula can equivalently be viewed as an implication $K \rightarrow B$ where K is a conjunction of atoms or $K=T$ and B is an atom or $B=\perp$:

$$
\begin{aligned}
(\neg A \vee \neg B \vee C) & \equiv(A \wedge B \rightarrow C) \\
(\neg A \vee \neg B) & \equiv(A \wedge B \rightarrow \perp) \\
A & \equiv(丁 \rightarrow A)
\end{aligned}
$$

Satisfiablity check for Horn formulas

Input: a Horn formula F.
Algorithm building a model (assignment) \mathcal{M} :
for all atoms A_{i} in F do $\mathcal{M}\left(A_{i}\right):=0$;
while F has a subformula $K \rightarrow B$ such that $\mathcal{M}(K)=1$ and $\mathcal{M}(B)=0$
do
if $B=\perp$ then return "unsatisfiable" else $\mathcal{M}(B):=1$
return "satisfiable"
Maximal number of iterations of the while loop: number of implications in F
Each iteration requires at most $O(|F|)$ steps.
Overall complexity: $O\left(|F|^{2}\right)$
[Algorithm can be improved to $O(|F|)$. See Schöning.]

Correctness of the model building algorithm

Theorem

The algorithm returns "satisfiable" iff F is satisfiable.
Proof Observe: if the algorithm sets $\mathcal{M}(B)=1$, then $\mathcal{A}(B)=1$ for every assignment \mathcal{A} such that $\mathcal{A}(F)=1$. This is an invariant.
(a) If "unsatisfiable" then unsatisfiable.

We prove unsatisfiability by contradiction.
Assume $\mathcal{A}(F)=1$ for some \mathcal{A}.
Let $\left(A_{i_{1}} \wedge \ldots \wedge A_{i_{k}} \rightarrow \perp\right)$ be the subformula causing "unsatisfiable".
Since $\mathcal{M}\left(A_{i_{1}}\right)=\cdots=\mathcal{M}\left(A_{i_{k}}\right)=1, \mathcal{A}\left(A_{i_{1}}\right)=\ldots=\mathcal{A}\left(A_{i_{k}}\right)=1$. Then $\mathcal{A}\left(A_{i_{1}} \wedge \ldots \wedge A_{i_{k}} \rightarrow \perp\right)=0$ and so $\mathcal{A}(F)=0$, contradiction. So F has no satisfying assignments.
(b) If "satisfiable" then satisfiable. After termination with "satisfiable", for every subformula $K \rightarrow B$ of $F, \mathcal{M}(K)=0$ or $\mathcal{M}(B)=1$. Therefore $\mathcal{M}(K \rightarrow B)=1$ and thus $\mathcal{M} \models F$.
In fact, the invariant shows that \mathcal{M} is the minimal model of F.

Propositional Logic Compactness

Compactness Theorem

Theorem
A set S of formulas is satisfiable iff every finite subset of S is satisfiable.

Equivalent formulation:
A set S of formulas is unsatisfiable iff some finite subset of S is unsatisfiable.

An application: Graph Coloring

Definition

A 4-coloring of a graph (V, E) is a map $c: V \rightarrow\{1,2,3,4\}$ such that $(x, y) \in E$ implies $c(x) \neq c(y)$.

Theorem (4CT)

An finite planar graph has a 4-coloring.
Theorem
An planar graph $G=(V, E)$ with countably many vertices
$V=\left\{v_{1}, v_{2}, \ldots\right\}$ has a 4-coloring.
Proof $G \rightsquigarrow$ set of formulas S s.t. S is sat. iff G is 4 -col.
G is planar
\Rightarrow every finite subgraph of G is planar and 4-col. (by 4CT)
\Rightarrow every finite subset of S is sat.
$\Rightarrow S$ is sat. (by Compactness)
$\Rightarrow G$ is 4-col.

Proof details

$$
G \rightsquigarrow S:
$$

For simplicity:
atoms are of the form A_{i}^{c} where $c \in\{1, \ldots, 4\}$ and $i \in \mathbb{N}$
$S:=\left\{A_{i}^{1} \vee A_{i}^{2} \vee A_{i}^{3} \vee A_{i}^{4} \mid i \in \mathbb{N}\right\} \cup$

$$
\begin{aligned}
& \left\{A_{i}^{c} \rightarrow \neg A_{i}^{d} \mid i \in \mathbb{N}, c, d \in\{1, \ldots, 4\}, c \neq d\right\} \cup \\
& \left\{\neg\left(A_{i}^{c} \wedge A_{j}^{c}\right) \mid\left(v_{i}, v_{j}\right) \in E, c \in\{1, \ldots, 4\}\right\}
\end{aligned}
$$

Subgraph corresponding to some $T \subseteq S$:
$V_{T}:=\left\{v_{i} \mid A_{i}^{c}\right.$ occurs in T (for some c) $\}$
$E_{T}:=\left\{\left(v_{i}, v_{j}\right) \mid \neg\left(A_{i}^{c} \wedge A_{j}^{c}\right) \in T\right.$ (for some $\left.\left.c\right)\right\}$

Proof of Compactness

Theorem
A set S of formulas is satisfiable
iff every finite subset of S is satisfiable.

Proof

\Rightarrow : If S is satisfiable then every finite subset of S is satisfiable.
Trivial.
\Leftarrow : If every finite subset of S is satisfiable then S is satisfiable.
We prove that S has a model.

Proof of Compactness

Terminology: \mathcal{A} is a b_{1}, \ldots, b_{n} model of T
(where $b_{1}, \ldots, b_{n} \in\{0,1\}^{*}$ and T is a set of formulas)
if $\mathcal{A}\left(A_{i}\right)=b_{i}($ for $i=1, \ldots, n)$ and $\mathcal{A} \models T$.
Define an infinite sequence b_{1}, b_{2}, \ldots recursively as follows:

$$
\begin{aligned}
b_{n+1}= & \text { some } b \in\{0,1\} \text { s.t. } \\
& \text { all finite } T \subseteq S \text { have a } b_{1}, \ldots, b_{n}, b \text { model. }
\end{aligned}
$$

Claim 1: For all n, all finite $T \subseteq S$ have a b_{1}, \ldots, b_{n} model.
Proof by induction on n.
Case $n=0$: because all finite $T \subseteq S$ are satisfiable.
Case $n+1$: We need to show that a suitable b exists.
Proof by contradiction. Assume there is no suitable b.
Then there is a finite $T_{0} \subseteq S$ that has no $b_{1}, \ldots, b_{n}, 0$ model (0) and there is a finite $T_{1} \subseteq S$ that has no $b_{1}, \ldots, b_{n}, 1$ model (1).
Therefore $T_{0} \cup T_{1}$ has no b_{1}, \ldots, b_{n} model \mathcal{A} :
$\mathcal{A}\left(A_{n+1}\right)=0$ contradicts (0), $\mathcal{A}\left(A_{n+1}\right)=1$ contradicts (1).
But by IH: $T_{0} \cup T_{1}$ has a b_{1}, \ldots, b_{n} model - Contradiction!

Proof of Compactness

Define $\mathcal{B}\left(A_{i}\right)=b_{i}$ for all i.
Claim 2: $\mathcal{B} \models S$
We show $\mathcal{B} \models F$ for all $F \in S$.
Let m be the maximal index of all atoms in F.
By Claim $1,\{F\}$ has a b_{1}, \ldots, b_{m} model \mathcal{A}.
Hence $\mathcal{B} \models F$ because \mathcal{A} and \mathcal{B} agree on all atoms in F.

Corollary

Corollary
If $S \models F$ then there is a finite subset $M \subseteq S$ such that $M \models F$.

Propositional Logic Resolution

Clause representation of CNF formulas

CNF:

$$
\left(L_{1,1} \vee \ldots \vee L_{1, n_{1}}\right) \wedge \ldots \wedge\left(L_{k, 1} \vee \ldots \vee L_{1, n_{k}}\right)
$$

Representation as set of sets of literals:

$$
\{\underbrace{\left\{L_{1,1}, \ldots, L_{1, n_{1}}\right\}}_{\text {clause }}, \ldots,\left\{L_{k, 1}, \ldots, L_{1, n_{k}}\right\}\}
$$

- Clause $=$ set of literals (disjunction).
- A formula in CNF can be viewed as a set of clauses
- Degenerate cases:
- The empty clause stands for \perp.
- The empty set of clauses stands for T.

The joy of sets

We get "for free":

- Commutativity:
$A \vee B \equiv B \vee A$, both represented by $\{A, B\}$
- Associativity: $(A \vee B) \vee C \equiv A \vee(B \vee C)$, both represented by $\{A, B, C\}$
- Idempotence:
$(A \vee A) \equiv A$, both represented by $\{A\}$
Sets are a convenient representation of conjunctions and disjunctions that build in associativity, commutativity and itempotence

Resolution - The idea

```
Input: Set of clauses F
Question: Is F unsatisfiable?
```

Algorithm:
Keep on "resolving" two clauses from F and adding the result to F until the empty clause is found

Correctness:
If the empty clause is found, the initial F is unsatisfiable Completeness:
If the initial F is unsatisfiable, the empty clause can be found.
Correctness/Completeness of syntactic procedure (resolution) w.r.t. semantic property (unsatisfiability)

Resolvent

Definition

Let L be a literal. Then \bar{L} is defined as follows:

$$
\bar{L}=\left\{\begin{aligned}
\neg A_{i} & \text { if } L=A_{i} \\
A_{i} & \text { if } L=\neg A_{i}
\end{aligned}\right.
$$

Definition

Let C_{1}, C_{2} be clauses and let L be a literal such that $L \in C_{1}$ and $\bar{L} \in C_{2}$. Then the clause

$$
\left(C_{1}-\{L\}\right) \cup\left(C_{2}-\{\bar{L}\}\right)
$$

is a resolvent of C_{1} and C_{2}.
The process of deriving the resolvent is called a resolution step.

Graphical representation of resolvent:

If $C_{1}=\{L\}$ and $C_{2}=\{\bar{L}\}$ then the empty clause is a resolvent of C_{1} and C_{2}. The special symbol \square denotes the empty clause.

Recall: \square represents \perp.

Resolution proof

Definition

A resolution proof of a clause C from a set of clauses F is a sequence of clauses C_{0}, \ldots, C_{n} such that

- $C_{i} \in F$ or C_{i} is a resolvent of two clauses C_{a} and $C_{b}, a, b<i$,
- $C_{n}=C$

Then we can write $F \vdash_{\text {Res }} C$.

Note: F can be finite or infinite

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

Example

A linear resolution proof

```
\(0:\{P, Q\}\)
1: \(\{P, \neg Q\}\)
2: \(\{\neg P, Q\}\)
3: \(\{\neg P, \neg Q\}\)
4: \(\{P\}\)
\((0,1)\)
5: \(\{Q\}\)
\((0,2)\)
6: \(\{\neg P\}\)
\((3,5)\)
\((4,6)\)
```


Correctness of resolution

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C_{1} and C_{2}. Then $C_{1}, C_{2} \models R$.
Proof By definition $R=\left(C_{1}-\{L\}\right) \cup\left(C_{2}-\{\bar{L}\}\right)$ (for some L).
Let $\mathcal{A} \vDash C_{1}$ and $\mathcal{A} \vDash C_{2}$. There are two cases.
If $\mathcal{A} \models L$ then $\mathcal{A} \models C_{2}-\{\bar{L}\}$ (because $\mathcal{A} \models C_{2}$), thus $\mathcal{A} \models R$.
If $\mathcal{A} \not \vDash L$ then $\mathcal{A} \models C_{1}-\{L\}$ (because $\mathcal{A} \models C_{1}$), thus $\mathcal{A} \models R$.
Theorem (Correctness of resolution)
Let F be a set of clauses. If $F \vdash_{\text {Res }} C$ then $F \vDash C$.
Proof Assume there is a resolution proof $C_{0}, \ldots, C_{n}=C$.
By induction on i we show $F \models C_{i}$. IH: $F \models C_{j}$ for all $j<i$.
If $C_{i} \in F$ then $F \models C_{i}$ is trivial. If C_{i} is a resolvent of C_{a} and C_{b}, $a, b<i$, then $F \models C_{a}$ and $F \models C_{b}$ by H and $C_{a}, C_{b} \models C_{i}$ by the resolution lemma. Thus $F \vDash C_{i}$.
Corollary
Let F be a set of clauses. If $F \vdash_{\text {Res }} \square$ then F is unsatisfiable.

Completeness of resolution

```
Theorem
Let \(F\) be a finite set of clauses. If \(F\) is unsatisfiable then \(F \vdash_{R e s} \square\).
```

Theorem (Completeness of resolution)
Let F be a set of clauses. If F is unsatisfiable then $F \vdash_{\text {Res }} \square$.
Proof If F is infinite, there must be a finite unsatisfiable subset of F (by the Compactness Theorem); in that case let F be that finite subset and apply the previous theorem.

Corollary
A set of clauses F is unsatisfiable iff $F \vdash_{\text {Res }} \square$.

Completeness proof

Theorem

Let F be a finite set of clauses. If F is unsatisfiable then $F \vdash_{\text {Res }} \square$.
Proof The proof of $F \vdash_{\text {Res }} \square$ is by induction on the number n of distinct atoms in F.
Basis: If $n=0$ then $F=\{ \}$ (but F is unsat.) or $F=\{\square\}$. Step:
IH : For every unsat. set of clauses F with n dist. atoms, $F \vdash_{\text {Res }} \square$. Let F contain $n+1$ distinct atoms. Pick some atom A in F. Idea: $F_{0}=F$ with A replaced by \perp
$F_{1}:=F$ with A replaced by \top
$F_{0}:=$ take F, remove all clauses with $\neg A$, remove all A
$F_{1}:=$ take F, remove all clauses with A, remove all $\neg A$
F_{0} and F_{1} contain n distinct atoms.
F_{0} is unsat: if $\mathcal{A} \models F_{0}$ then $\mathcal{A}[0 / A] \models F$
F_{1} is unsat: if $\mathcal{A} \models F_{1}$ then $\mathcal{A}[1 / A] \models F$

Completeness proof

By IH : there are res. proofs $C_{0}, \ldots, C_{m}=\square$ from F_{0} and $D_{0}, \ldots, D_{n}=\square$ from F_{1}.
Now transform C_{0}, \ldots, C_{m} into a proof $C_{0}^{\prime}, \ldots, C_{m}^{\prime}$ from F by adding A back into the clauses it was removed from. Then

- either $C_{m}^{\prime}=\{A\}$
- or $C_{m}^{\prime}=\square$ (and we are done).

Similarly we transform D_{0}, \ldots, D_{n} into a proof $D_{0}^{\prime}, \ldots, D_{n}^{\prime}$ from F (by adding $\neg A$ back in).
Then $D_{n}^{\prime}=\{\neg A\}$ or $D_{n}^{\prime}=\square$ (and we are done).
If $C_{m}^{\prime}=\{A\}$ and $D_{n}^{\prime}=\{\neg A\}$ then $F \vdash_{\text {Res }} A$ and $F \vdash_{\text {Res }} \neg A$
and thus $F \vdash_{\text {Res }} \square$.

Resolution is only refutation complete

Not everything that is a consequence of a set of clauses can be derived by resolution.

Exercise
Find F and C such that $F \models C$ but not $F \vdash_{\text {Res }} C$.

How to prove $F \vDash C$ by resolution?
Prove $F \cup\{\neg C\} \vdash_{\text {Res }} \square$

A resolution algorithm

Input: A CNF formula F, i.e. a finite set of clauses
while there are clauses $C_{a}, C_{b} \in F$ and resolvent R of C_{a} and C_{b} such that $R \notin F$
do $F:=F \cup\{R\}$
Lemma
The algorithm terminates.
Proof There are only finitely many clauses over a finite set of atoms.

Theorem
The initial F is unsatisfiable iff \square is in the final F
Proof $F_{\text {init }}$ is unsat. iff $F_{\text {init }} \vdash_{\text {Res }} \square$ iff $\square \in F_{\text {final }}$
because the algorithm enumerates all R such that $F_{\text {init }} \vdash R$.
Corollary
The algorithm is a decision procedure for unsatisfiability of CNF formulas.

Basic Proof Theory Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Proof rules and proof systems

Proof systems are defined by (proof or inference) rules of the form

$$
\begin{array}{ccc}
T_{1} \ldots & T_{n} \\
\hline & \text { rule-name }
\end{array}
$$

where $T_{1}, \ldots T_{n}$ (premises) and T (conclusion) are syntactic objects (eg formulas).

Intuitive reading: If T_{1}, \ldots, T_{n} are provable, then T is provable.
Degenerate case: If $n=0$ the rule is called an axiom and the horizontal line is sometimes omitted.

If some U is provable, we write $\vdash U$.

Proof trees

Proofs (also: derivations) are drawn as trees of nested proof rules.
Example (Proof/derivation tree)

$$
\frac{\frac{\overline{T_{1}} \frac{\bar{U}}{T_{2}}}{\frac{\overline{T_{3}}}{S_{2}}}}{\frac{S_{1}}{R}}
$$

We sometimes omit the names of proof rules in a proof tree if they are obvious or for space reasons. You should always show them!
Every fragment

$$
\begin{array}{lll}
T_{1} & \ldots & T_{n} \\
\hline &
\end{array}
$$

of a proof tree must be (an instance of) a proof rule. All proofs must start with axioms.

The depth of a proof tree is the number of rules on the longest branch of the tree. Thus ≥ 1

Abbreviations

Until further notice:
$\perp, \neg, \wedge, \vee, \rightarrow$ are primitives.
\top abbreviates $\neg \perp$
A possible simplification:
$\neg F$ abbreviates $F \rightarrow \perp$

We now consider three important proof systems:

- Sequent Calculus
- Natural Deduction
- Hilbert Systems

Sequent Calculus Propositional Logic

Sequent Calculus

Invented by Gerhard Gentzen in 1935. Birth of proof theory.
Proof rules

$$
\begin{array}{ccc}
S_{1} \ldots & S_{n} \\
\hline & S
\end{array}
$$

where $S_{1}, \ldots S_{n}$ and S are sequents

$$
\Gamma \Rightarrow \Delta
$$

where Γ and Δ are finite multisets of formulas.
(Multiset $=$ set with possibly repeated elements)
(Could use sets instead of multisets
but this causes some complications)
Important: \Rightarrow is just a separator
Formally, a sequent is a pair of finite multisets.
Intuition: $\Gamma \Rightarrow \Delta$ is provable iff $\wedge \Gamma \rightarrow \bigvee \Delta$ is a tautology

Sequents: Notation

- We use set notation for multisets, eg $\{A, B \rightarrow C, A\}$
- Drop $\left\}: F_{1}, \ldots, F_{m} \Rightarrow G_{1}, \ldots G_{n}\right.$
- F, Γ abbreviates $\{F\} \cup \Gamma$ (similarly for $\Delta)$
- Γ_{1}, Γ_{2} abbreviates $\Gamma_{1} \cup \Gamma_{2}($ similarly for $\Delta)$

Sequent Calculus rules

Intuition: read backwards as proof search rules

$$
\begin{array}{ll}
\overline{\perp, \Gamma \Rightarrow \Delta} \perp L & \overline{A, \Gamma \Rightarrow A, \Delta} A x \\
\frac{\Gamma \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta} \neg L & \frac{F, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \neg F, \Delta} \neg R \\
\frac{F, G, \Gamma \Rightarrow \Delta}{\digamma \wedge G, \Gamma \Rightarrow \Delta} \wedge L & \frac{\Gamma \Rightarrow F, \Delta\ulcorner\Rightarrow G, \Delta}{\Gamma \Rightarrow F \wedge G, \Delta} \wedge R \\
\frac{F, \Gamma \Rightarrow \Delta}{F \vee G, \Gamma \Rightarrow \Delta} \vee L & \frac{\Gamma \Rightarrow F, G, \Delta}{\Gamma \Rightarrow F \vee G, \Delta} \vee R \\
\frac{\Gamma \Rightarrow F, \Delta}{F \rightarrow G, \Gamma \Rightarrow \Delta} \rightarrow L & \frac{F, \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F \rightarrow G, \Delta} \rightarrow R
\end{array}
$$

Every rule decomposes its principal formula

Example

$$
\begin{aligned}
& \frac{F, \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F \rightarrow G, \Delta} \rightarrow R \frac{F, G, \Gamma \Rightarrow \Delta}{F \wedge G, \Gamma \Rightarrow \Delta} \wedge L \frac{\Gamma \Rightarrow F, G, \Delta}{\Gamma \Rightarrow F \vee G, \Delta}
\end{aligned}
$$

Proof search properties

- For every logical operator (\neg etc) there is one left and one right rule
- Every formula in the premise of a rule is a subformula of the conclusion of the rule. This is called the subformula property. \Rightarrow no need to guess anything when applying a rule backward
- Backward rule application terminates because one operator is removed in each step.

Instances of rules

Definition
An instance of a rule is the result of replacing Γ and Δ by multisets of concrete formulas and F and G by concrete formulas.

Example

$$
\frac{\Rightarrow P \wedge Q, A, B}{\neg(P \wedge Q) \Rightarrow A, B}
$$

is an instance of

$$
\frac{\Gamma \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta}
$$

setting $F:=P \wedge Q, \Gamma:=\emptyset, \Delta:=\{A, B\}$

Proof trees

Definition (Proof tree)
A proof tree is a tree whose nodes are sequents and where each parent-children fragment

$$
\begin{array}{lll}
S_{1} \ldots S_{n} \\
S
\end{array}
$$

is an instance of a proof rule.
(\Rightarrow all leaves must be instances of axioms)
A sequent S is provable if there is a proof tree with root S. Then we write $\vdash_{G} S$.

Proof trees

An alternative inductive definition of proof trees:
Definition (Proof tree)
If

is an instance of a proof rule and there are proof trees $T_{1}, \ldots T_{n}$ with roots S_{1}, \ldots, S_{n} then

$$
\begin{array}{lll}
T_{1} \ldots T_{n} \\
S
\end{array}
$$

is a proof tree (with root S).

What does $\Gamma \Rightarrow \Delta$ "mean"?

Definition

$$
|\Gamma \Rightarrow \Delta|=(\bigwedge\ulcorner\rightarrow \bigvee \Delta)
$$

Example: $|\{A, B\} \Rightarrow\{P, Q\}|=(A \wedge B \rightarrow P \vee Q)$
Remember: $\wedge \emptyset=T$ and $\bigvee \emptyset=\perp$
Aim: $\vdash_{G} S$ iff $|S|$ is a tautology
Lemma (Rule Equivalence)
For every rule $\frac{S_{1} \ldots S_{n}}{S}$
$-|S| \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{n}\right|$

- $|S|$ is a tautology iff all S_{i} are tautologies

Theorem (Soundness of \vdash_{G})
If $\vdash_{G} S$ then $\vDash|S|$.
Proof by induction on the height of the proof tree for $\vdash_{G} S$.
Tree must end in rule instance

$\mathrm{IH}: \mid=S_{i}$ for all i.
Thus $\models|S|$ by the previous lemma.

Proof Search and Completeness

Proof search $=$ growing a proof tree from the root

- Start from an initial sequent S_{0}
- At each stage we have some potentially partial proof tree with unproved leaves
- In each step, pick some unproved leaf S and some rule instance

$$
\begin{array}{lll}
S_{1} & \ldots & S_{n} \\
\hline & S
\end{array}
$$

and extend the tree with that rule instance (creating new unproved leaves S_{1}, \ldots, S_{n})

Proof search termintes if . . .

- there are no more unproved leaves - success
- there is some unproved leaf where no rule applies - failure \Rightarrow that leaf is of the form

$$
P_{1}, \ldots, P_{k} \Rightarrow Q_{1}, \ldots, Q_{l}
$$

where all P_{i} and Q_{j} are atoms, no $P_{i}=Q_{j}$ and no $P_{i}=\perp$
Example (failed proof)

$$
\frac{\overline{P \Rightarrow P} A x \quad Q \Rightarrow P}{\frac{P \vee Q \Rightarrow P}{P \vee L} \frac{P \Rightarrow Q \quad \overline{Q \Rightarrow Q} A x}{P \vee Q \Rightarrow Q} \vee R}
$$

Falsifying assignments?

Proof search $=$ Counterexample search

Can view sequent calculus as a search for a falsifying assignment for $|\Gamma \Rightarrow \Delta|$:

Make Γ true and Δ false
Some examples:

$$
\frac{F, G, \Gamma \Rightarrow \Delta}{F \wedge G, \Gamma \Rightarrow \Delta} \wedge L
$$

To make $F \wedge G$ true, make both F and G true

$$
\frac{\Gamma \Rightarrow F, \Delta \quad \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F \wedge G, \Delta} \wedge R
$$

To make $F \wedge G$ false, make F or G false

Lemma (Search Equivalence)

At each stage of the search process,
if S_{1}, \ldots, S_{k} are the unproved leaves, then $\left|S_{0}\right| \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{k}\right|$
Proof by induction on the number of search steps.
Initially trivially true (base case).
When applying a rule instance

$$
\begin{array}{lll}
U_{1} \quad \ldots & U_{n} \\
\hline S_{i}
\end{array}
$$

we have

$$
\begin{aligned}
&\left|S_{0}\right| \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{i}\right| \wedge \ldots \wedge\left|S_{k}\right| \\
& \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{i-1}\right| \wedge\left|U_{1}\right| \wedge \ldots \wedge\left|U_{n}\right| \wedge\left|S_{i+1}\right| \wedge \ldots \wedge\left|S_{k}\right| \\
& \text { by Lemma Rule Equivalence. }
\end{aligned}
$$

Lemma

If proof search fails, $\left|S_{0}\right|$ is not a tautology.
Proof If proof search fails, there is some unproved leaf $S=$

$$
P_{1}, \ldots, P_{k} \Rightarrow Q_{1}, \ldots, Q_{l}
$$

where no $P_{i}=Q_{j}$ and no $P_{i}=\perp$.
This sequent can be falsified by setting $\mathcal{A}\left(P_{i}\right):=1$ (for all i) and $\mathcal{A}\left(Q_{j}\right):=0$ (for all j) and all other atoms to 0 or 1 .
Thus $\mathcal{A}(|S|)=0$ and hence $\mathcal{A}\left(S_{0}\right)=0$ by Lemma Search
Equivalence.
Because of soundness of \vdash_{G} :

Corollary

Starting with some fixed S_{0}, proof search cannot both fail (for some choices) and succeed (for other choices).
\Rightarrow no need for backtracking upon failure!

Lemma

Proof search terminates.
Proof In every step, one logical operator is removed.
\Rightarrow size of sequent decreases by 1
\Rightarrow Depth of proof tree is bounded by size of S_{0} but breadth only bounded by $2^{\text {size of } S_{0}}$

Corollary
Proof search is a decision procedure: it either succeeds or fails.
Theorem (Completeness)
If $\vDash|S|$ then $\vdash_{G} S$.
Proof by contraposition: if not $\vdash_{G} S$ then proof seach must fail. Therefore $\not \vDash|S|$.

Multisets versus sets

Termination only because of multisets.
With sets, the principal formula may get duplicated:

$$
\frac{\Gamma \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta} \neg L \quad \stackrel{\Gamma:=\{\neg F\}}{\sim \sim} \quad \frac{\neg F \Rightarrow F, \Delta}{\neg F \Rightarrow \Delta}
$$

An alternative formulation of the set version:

$$
\frac{\Gamma \backslash\{\neg F\} \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta}
$$

Gentzen used sequences (hence "sequent calculus")

Admissible Rules and Cut Elimination

Admissible rules

Definition

A rule

$$
\begin{array}{lll}
S_{1} \ldots & S_{n} \\
\hline & S
\end{array}
$$

is admissible if $\vdash_{G} S_{1}, \ldots, \vdash_{G} S_{n}$ together imply $\vdash_{G} S$.
\Rightarrow Admissible rules can be used in proofs like normal rules
Admissibility is often proved by induction.
Aim: prove admissibility of

$$
\frac{\Gamma \Rightarrow F, \Delta \quad \Gamma, F \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} c u t
$$

This is Gentzen's Hauptsatz. Many applications.

Lemma (Non-atomic Ax)

The non-atomic axiom rule

$$
\overline{F, \Gamma \Rightarrow F, \Delta} A x^{\prime}
$$

is admissible, i.e. $\vdash_{G} F, \Gamma \Rightarrow F, \Delta$.
Proof idea: decompose F, then use $A x$.
Formally: proof by induction on (the structure of) F.
Case $F_{1} \rightarrow F_{2}$:

$$
\frac{\overline{F_{1}, \Gamma \Rightarrow F_{1}, F_{2}, \Delta} \operatorname{lH} \quad \overline{F_{1}, F_{2}, \Gamma \Rightarrow F_{2}, \Delta}}{} \rightarrow L
$$

The other cases are analogous.

Semantic proofs of admissibility

Admissibility of

$$
\begin{array}{lll}
S_{1} \ldots & S_{n} \\
\hline & S
\end{array}
$$

can also be shown semantically (using $\vdash_{G}=\models$) by proving that $\vDash\left|S_{1}\right|, \ldots, \vDash\left|S_{n}\right|$ together imply $\vDash|S|$.

Semantic proofs are much simpler and much less informative than syntactic proofs. Syntactic proofs show how to eliminate admissible rules. For examle, the admissibility proof of $A x^{\prime}$ is a recursive procedure that decomposes F. In particular it tells us that the elimination of $A x^{\prime}$ generates a proof of size $O(\quad)$.

We focuses on proof theory

Weakening

Notation:
$\Gamma \Rightarrow_{n} \Delta$ means that there is a proof tree for $\Gamma \Rightarrow \Delta$ of depth $\leq n$.

Lemma (Weakening)
If $\Gamma \Rightarrow_{n} \Delta$ then $\Gamma^{\prime}, \Gamma \Rightarrow_{n} \Delta^{\prime}, \Delta$.
Proof idea: take proof tree for $\Gamma \Rightarrow \Delta$ and add Γ^{\prime} everywhere on the left and Δ^{\prime} everywhere on the right.

General principal: transform proof trees
Notation:
$D: \Gamma \Rightarrow \Delta$ means that D is a proof tree for $\Gamma \Rightarrow \Delta$

Inversion rules

Lemma (Inversion rules)

$$
\begin{aligned}
& \wedge L^{-1} \text { If } F \wedge G, \Gamma \Rightarrow_{n} \Delta \text { then } F, G, \Gamma \Rightarrow_{n} \Delta \\
& \vee R^{-1} \text { If } \Gamma \Rightarrow_{n} F \vee G, \Delta \text { then } \Gamma \Rightarrow_{n} F, G, \Delta \\
& \wedge R^{-1} \text { If } \Gamma \Rightarrow_{n} F_{1} \wedge F_{2}, \Delta \text { then } \Gamma \Rightarrow_{n} F_{i}, \Delta(i=1,2) \\
& \vee L^{-1} \text { If } F_{1} \vee F 2, \Gamma \Rightarrow_{n} \Delta \text { then } F_{i}, \Gamma \Rightarrow_{n} \Delta(i=1,2) \\
& \rightarrow R^{-1} \text { If } \Gamma \Rightarrow_{n} F \rightarrow G, \Delta \text { then } F, \Gamma \Rightarrow_{n} G, \Delta \\
& \rightarrow L^{-1} \text { If } F \rightarrow G, \Gamma \Rightarrow_{n} \Delta \text { then } \Gamma \Rightarrow_{n} F, \Delta \text { and } G, \Gamma \Rightarrow_{n} \Delta
\end{aligned}
$$

$$
\frac{F, G, \Gamma \Rightarrow \Delta}{F \wedge G, \Gamma \Rightarrow \Delta} \wedge L \frac{\Gamma \Rightarrow F, G, \Delta}{\Gamma \Rightarrow F \vee G, \Delta} \vee R \frac{\Gamma \Rightarrow F, \Delta \Gamma \Rightarrow}{\Gamma \Rightarrow F \wedge G,}
$$

Negation?

Proof of $\rightarrow L^{-1}$

If $F \rightarrow G, \Gamma \Rightarrow_{n} \Delta$ then $\Gamma \Rightarrow_{n} F, \Delta$ and $G, \Gamma \Rightarrow_{n} \Delta$
Proof by induction on n. Base case trivial because \Rightarrow_{0} impossible. Assume $D: F \rightarrow G, \Gamma \Rightarrow_{n+1} \Delta$ Let r be the last rule in D. Proof by cases.

Case $r=A x(r=\perp L$ similar $)$
$\Rightarrow D=\overline{F \rightarrow G, A, \Gamma^{\prime} \Rightarrow_{1} A, \Delta^{\prime}}$ where $\Gamma=A, \Gamma^{\prime}$ and $\Delta=A, \Delta^{\prime}$
$\Rightarrow \overline{\Gamma \Rightarrow_{1} F, \Delta}$ and $\overline{G, \Gamma \Rightarrow_{1} \Delta}$
Otherwise there are two subcases.

1. $F \rightarrow G$ is the principal formula
$\Rightarrow D=\frac{\Gamma \Rightarrow_{n} F, \Delta \quad G, \Gamma \Rightarrow_{n} \Delta}{F \rightarrow G, \Gamma \Rightarrow_{n+1} \Delta} \rightarrow L$

Proof of $\rightarrow L^{-1}$

If $F \rightarrow G, \Gamma \Rightarrow_{n} \Delta$ then $\Gamma \Rightarrow_{n} F, \Delta$ and $G, \Gamma \Rightarrow_{n} \Delta$
2. $F \rightarrow G$ is not the principal formula

Cases r :
Case $r=\vee R$

$$
D=\frac{F \rightarrow G, \Gamma \Rightarrow_{n} H_{1}, H_{2}, \Delta^{\prime}}{F \rightarrow G, \Gamma \Rightarrow_{n+1} H_{1} \vee H_{2}, \Delta^{\prime}}
$$

IH: $\frac{\Gamma \Rightarrow_{n} F, H_{1}, H_{2}, \Delta^{\prime}}{\Gamma \Rightarrow_{n+1} F, \Delta} \vee R \quad$ and $\quad \frac{G, \Gamma \Rightarrow_{n} H_{1}, H_{2}, \Delta^{\prime}}{G, \Gamma \Rightarrow_{n+1} \Delta} \vee R$
Similar for all other rules because $F \rightarrow G$ is not principal

Contraction

$$
\frac{F, F, \Gamma \Rightarrow \Delta}{\Gamma, \Gamma \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow F, F, \Delta}{\Gamma \Rightarrow F, \Delta}
$$

Lemma (Contraction)

(i) If $F, F, \Gamma \Rightarrow_{n} \Delta$ then $F, \Gamma \Rightarrow_{n} \Delta$
(ii) If $\Gamma \Rightarrow_{n} F, F, \Delta$ then $\Gamma \Rightarrow_{n} F, \Delta$

Proof by induction on n. Base case trivial. Step: focus on (i).
Assume $D: F, F, \Gamma \Rightarrow_{n+1} \Delta$
Let r be the last rule in D. Proof by cases.
Case $r=\rightarrow L$ (other rules similar)
Two subcases:

1. F is not principal formula
$\Rightarrow D=\frac{F, F, \Gamma^{\prime} \Rightarrow_{n} G, \Delta \quad F, F, H, \Gamma^{\prime} \Rightarrow_{n} \Delta}{F, F, G \rightarrow H, \Gamma^{\prime} \Rightarrow_{n+1} \Delta} \rightarrow L$
$\mathrm{IH}: \frac{F, \Gamma^{\prime} \Rightarrow_{n} G, \Delta \quad F, H, \Gamma^{\prime} \Rightarrow_{n} \Delta}{F, G \rightarrow H, \Gamma^{\prime} \Rightarrow_{n+1} \Delta} \rightarrow L$

Contraction

2. F is principal formula
$\Rightarrow D=\frac{G \rightarrow H, \Gamma \Rightarrow_{n} G, \Delta \quad H, G \rightarrow H, \Gamma \Rightarrow_{n} \Delta}{G \rightarrow H, G \rightarrow H, \Gamma \Rightarrow_{n+1} \Delta} \rightarrow L$

No $\perp R$

Lemma
If $\vdash_{G} \Gamma \Rightarrow \Delta$ then $\vdash_{G} \Gamma \Rightarrow \Delta-\{\perp\}$
Proof idea:

- no rule expects \perp on the right
- no rule can move \perp from right to left.
\Rightarrow no rule is disabled by removing \perp on the right
\Rightarrow the same proof rules that prove $\Gamma \Rightarrow \Delta$ also prove
$\Gamma \Rightarrow \Delta-\{\perp\}$.
Formally: induction on the height of the proof tree for $\Gamma \Rightarrow \Delta$
$=$ recursive transformation of proof tree.

Atomic cut

Lemma (Atomic cut)
If $D_{1}: \Gamma \Rightarrow A, \Delta$ and $D_{2}: A, \Gamma \Rightarrow \Delta$ then $\vdash_{G} \Gamma \Rightarrow \Delta$
Proof by induction on the depth of D_{1}.

Cut

Theorem (Cut)
If $D_{1}: \Gamma \Rightarrow F, \Delta$ and $D_{2}: F, \Gamma \Rightarrow \Delta$ then $\vdash_{G} \Gamma \Rightarrow \Delta$
Proof by induction on F.

Tableaux Calculus Propositional Logic

A compact version of sequent calculus

The idea

What's "wrong" with sequent calculus:
Why do we have to copy(?) 「 and Δ with every rule application?

The answer: tableaux calculus.
The idea:
Describe backward sequent calculus rule application but leave Γ and Δ implicit/shared

Comparison:
Sequent Proof is a tree labeled by sequents, trees grow upwards
Tableaux Proof is a tree labeled by formulas, trees grow downwards
Terminology: tableau $=$ tableaux calculus proof tree

Tableaux rules (examples)

Notation: $+F \approx F$ occurs on the right of \Rightarrow
$-F \approx F$ occurs on the left of \Rightarrow
S.C. Tab.
$\frac{F, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \neg F, \Delta}$

$$
\frac{\Gamma \Rightarrow F, G, \Delta}{\Gamma \Rightarrow F \vee G, \Delta}
$$

$$
\rightsquigarrow \begin{gathered}
\frac{+F \vee G}{+F} \\
+G
\end{gathered}
$$

$$
\frac{\Gamma \Rightarrow F, \Delta \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F \wedge G, \Delta} \rightsquigarrow \frac{+F \wedge G}{+F \mid+G}
$$

$$
\begin{gathered}
+F \wedge G \\
+F^{/ \backslash}+G
\end{gathered}
$$

Interpretation of tableaux rule

$$
\frac{F}{F G H}
$$

if F matches the formula at some node in the tableau extend the end of some branch starting at that node according to $F G H$.

Example

$$
\begin{gathered}
-A \rightarrow B \\
-B \rightarrow C \\
-A \\
+C
\end{gathered}
$$

$A \rightarrow B, B \rightarrow C, A \Rightarrow C$

From tableau to sequents:

- Every path from the root to a leaf in a tableau represents a sequent
- The set of all such sequents represents the set of leaves of the corresponding sequent calculus proof \Rightarrow
- A branch is closed (proved) if both $+F$ and $-F$ occur on it or $-\perp$ occurs on it
- The root sequent is proved if all branches are closed

Algorithm to prove $F_{1}, \ldots \Rightarrow G_{1}, \ldots$:

1. Start with the tableau $-F_{1}, \ldots,+G_{1}, \ldots$
2. while there is an open branch do pick some non-atomic formula on that branch, extend the branch according to the matching rule

Termination

No formula needs to be used twice on the same branch. But possibly on different branches:

$$
\begin{gathered}
+\neg A \wedge \neg B \\
+A \vee B
\end{gathered}
$$

A formula occurrence in a tableau can be deleted if it has been used in every unclosed branch starting from that occurrence

Tableaux rules

$$
\begin{array}{lc}
\frac{-\neg F}{+F} & \frac{+\neg F}{-F} \\
\frac{-F \wedge G}{-F} & \frac{+F \wedge G}{+F \mid+G} \\
-G & \frac{+F \vee G}{+F} \\
& \\
\frac{-F \vee G}{-F \mid-G} & +G \\
& \\
\frac{-F \rightarrow G}{+F \mid-G} & \frac{+F}{+G}
\end{array}
$$

Natural Deduction Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Natural deduction (Gentzen 1935) aims at natural proofs It formalizes good mathematical practice

Resolution but also sequent calculus aim at proof search

Main principles

1. For every logical operator \oplus there are two kinds of rules: Introduction rules: How to prove $F \oplus G$

$$
\frac{\cdots}{F \oplus G}
$$

Elimination rules What can be proved from $F \oplus G$

$$
\underset{F \oplus G}{\ldots} \ldots
$$

Examples

$$
\frac{A B}{A \wedge B} \wedge I \quad \frac{F \wedge G}{F} \wedge E_{1} \quad \frac{F \wedge G}{G} \wedge E_{2}
$$

Main principles

2. Proof can contain subproofs with local/closed assumptions

Example

If from the local assumption F we can prove G then we can prove $F \rightarrow G$.

The formal inference rule:

$$
\begin{gathered}
{[F]} \\
\vdots \\
\frac{\dot{G}}{F \rightarrow G} \rightarrow I
\end{gathered}
$$

A proof tree:

$$
\frac{\frac{[P] Q}{P \wedge Q} \wedge I}{P \rightarrow P \wedge Q} \rightarrow I
$$

Form the (open) assumption Q we can prove $P \rightarrow P \wedge Q$. In symbols: $Q \vdash_{N} P \rightarrow P \wedge Q$

Growing the proof tree

Upwards:

$$
\frac{\frac{[P] Q}{P \wedge Q} \wedge I}{P \rightarrow P \wedge Q} \rightarrow I
$$

Downwards:

$$
\frac{\frac{[P] Q}{P \wedge Q} \wedge I}{P \rightarrow P \wedge Q} \rightarrow I
$$

ND proof trees

The nodes of a ND proof tree are labeled by formulas. Leaf nodes represent assumptions.
The root node is the conclusion.
Assumptions can be open or closed.
Closed assumptions are written [F].

Intuition:

- Open assumptions are used in the proof of the conclusion
- Closed assumptions are local assumptions in a subproof that have been closed (removed) by some proof rule like $\rightarrow I$.

ND proof trees are defined inductively.

- Every F is a ND proof tree (with open assumption F and conclusion F). Reading: From F we can prove F.
- New proof trees are constructed by the rules of ND.

Natural Deduction rules

$$
\begin{aligned}
& \frac{F \quad G}{F \wedge G} \wedge I \\
& \frac{F \wedge G}{F} \wedge E_{1} \quad \frac{F \wedge G}{G} \wedge E_{2} \\
& \text { [F] } \\
& \frac{\dot{\dot{G}}}{F \rightarrow G} \rightarrow I \\
& \frac{F \rightarrow G \quad F}{G} \rightarrow E \\
& \frac{F}{F \vee G} \vee I_{1} \quad \frac{G}{F \vee G} \vee I_{2} \quad \frac{F \vee G \dot{H} \quad \dot{H}}{H} \vee E \\
& \begin{array}{c}
{[\neg F]} \\
\vdots \\
\stackrel{\perp}{F} \perp
\end{array}
\end{aligned}
$$

Natural Deduction rules

Rules for \neg are special cases of rules for \rightarrow :

$$
\begin{aligned}
& {[F]} \\
& \vdots \\
& \frac{\perp}{\neg F} \neg I \quad \frac{\neg F \quad F}{\perp} \neg E
\end{aligned}
$$

Natural Deduction rules

How to read a rule

Forward:
Close all (or some) of the assumptions F in the proof of G when applying rule r

Backward:
In the subproof of G you can use the local assumption $[F]$.
Can use labels to show which rule application closed which assumptions.

Soundness

Definition

$\Gamma \vdash{ }_{N} F$ if there is a proof tree with root F and open assumptions contained in the set of formulas Γ.

Lemma (Soundness)
If $\Gamma \vdash_{N} F$ then $\Gamma \models F$
Proof by induction on the depth of the proof tree for $\Gamma \vdash_{N} F$.
Base case: no rule, $F \in \Gamma$
Step: Case analysis of last rule
Case $\rightarrow E$:
$\mathrm{IH}: \Gamma \models F \rightarrow G \quad \Gamma \models F$
To show: $\Gamma \models G$
Assume $\mathcal{A} \models \Gamma \Rightarrow{ }^{I H} \mathcal{A}(F \rightarrow G)=1$ and $\mathcal{A}(F)=1 \Rightarrow \mathcal{A}(G)=1$

Soundness

Case

$$
\begin{gathered}
{[F]} \\
\vdots \\
\frac{\dot{G}}{F \rightarrow G} \rightarrow I
\end{gathered}
$$

IH: $\Gamma, F \models G$
To show: $\Gamma \vDash F \rightarrow G$ iff for all $\mathcal{A}, \mathcal{A} \mid \Gamma \Rightarrow \mathcal{A} \models F \rightarrow G$ iff for all $\mathcal{A}, \mathcal{A} \models \Gamma \Rightarrow(\mathcal{A} \models F \Rightarrow \mathcal{A} \models G)$ iff for all $\mathcal{A}, \mathcal{A} \models \Gamma$ and $\mathcal{A} \models F \Rightarrow \mathcal{A} \models G$ iff IH

Completeness

Towards completeness

ND can simulate truth tables

Lemma (Tertium non datur)
$\vdash_{N} F \vee \neg F$
Corollary (Cases)
If $F, \Gamma \vdash_{N} G$ and $\neg F, \Gamma \vdash_{N} G$ then $\Gamma \vdash_{N} G$.
Definition

$$
F^{\mathcal{A}}:=\left\{\begin{aligned}
F & \text { if } \mathcal{A}(F)=1 \\
\neg F & \text { if } \mathcal{A}(F)=0
\end{aligned}\right.
$$

Towards completeness

Lemma (1)
If atoms $(F) \subseteq\left\{A_{1}, \ldots, A_{n}\right\}$ then $A_{1}^{\mathcal{A}}, \ldots, A_{n}^{\mathcal{A}} \vdash_{N} F^{\mathcal{A}}$
Proof by induction on F
Lemma (2)
If atoms $(F)=\left\{A_{1}, \ldots, A_{n}\right\}$ and $\models F$
then $A_{1}^{\mathcal{A}}, \ldots, A_{k}^{\mathcal{A}} \vdash_{N} F$ for all $k \leq n$
Proof by (downward) induction on $k=n, \ldots, 0$

Completeness

Theorem (Completeness)
If $\Gamma \vDash F$ then $\Gamma \vdash_{N} F$
Proof

Relating

Sequent Calculs and Natural Deduction

Constructive approach to relating proof systems:

- Show how to transform proofs in one system into proofs in another system
- Implicit in inductive (meta) proof

Theorem (ND can simulate SC)
If $\vdash_{G} \Gamma \Rightarrow \Delta$ then $\Gamma, \neg \Delta \vdash_{N} \perp\left(\right.$ where $\left.\neg\left\{F_{1}, \ldots\right\}=\left\{\neg F_{1}, \ldots\right\}\right)$
Proof by induction on (the depth of) $\vdash_{G} \Gamma \Rightarrow \Delta$

Corollary (Completeness of ND)
If $\Gamma \vDash F$ then $\Gamma \vdash_{N} F$
Proof If $\Gamma \vDash F$ then $\Gamma_{0} \models F$ for some finite $\Gamma_{0} \subseteq \Gamma$.

Two completness proofs

- Direct
- By simulating a complete system

Theorem (SC can simulate ND)
If $\Gamma \vdash_{N} F$ and Γ is finite then $\vdash_{G} \Gamma \Rightarrow F$
Proof by induction on $\Gamma \vdash_{N} F$

Corollary
If $\Gamma \vdash_{N} F$ then there is some finite $\Gamma_{0} \subseteq \Gamma$ such that $\vdash_{G} \Gamma_{0} \Rightarrow F$

Hilbert Systems Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Easy to define, hard to use

No context management

A Hilber system for propositional logic consists of

- a set of axioms (formulae)
- and a single infrence rule, $\rightarrow E$ or modus ponens:

$$
\frac{F \rightarrow G \quad F}{G} \rightarrow E
$$

Proof trees for some Hilbert system are labeled with formulas. The only inference rule is $\rightarrow E$.

Definition
We write $\Gamma \vdash_{H} F$ if there is a proof tree with root F whose leaves are either axioms or elements of Γ.

Alternative proof presentation

Proofs in Hilbert systems are freqently shown as lists of lines

1. F_{1} justification
2. F_{2} justification
i. F_{i} justification ${ }_{i}$
justification $_{i}$ is either
assumption, axiom or $\rightarrow E(j, k)$ where $j, k<i$

Like linearized tree but also allows sharing of subproofs

Notational convention:

$$
F \rightarrow G \rightarrow H \quad \text { means } \quad F \rightarrow(G \rightarrow H)
$$

Note: $F \rightarrow G \rightarrow H \equiv F \wedge G \rightarrow H$

$$
F \rightarrow G \rightarrow H \quad \not \equiv \quad(F \rightarrow G) \rightarrow H
$$

Example (A simple Hilbert system)
Axioms: $\quad F \rightarrow(G \rightarrow F)$

$$
\begin{equation*}
(F \rightarrow G \rightarrow H) \rightarrow(F \rightarrow G) \rightarrow F \rightarrow H \tag{A2}
\end{equation*}
$$

A proof of $F \rightarrow F$:

$$
\begin{aligned}
& \quad \rightarrow \quad \rightarrow(F \rightarrow F) \\
& \Rightarrow \vdash_{H} F \rightarrow F
\end{aligned}
$$

Theorem (Deduction Theorem)
In any Hilbert-system that contains the axioms A1 and A2:

$$
F, \Gamma \vdash_{H} G \quad \text { iff } \quad \Gamma \vdash_{H} F \rightarrow G
$$

```
Proof " }\Leftarrow\mathrm{ ":
\Gamma\vdashH}F->
=>F,\Gamma\vdash苂F->G
=>F,\Gamma\vdash
```


Theorem (Deduction Theorem)

In any Hilbert-system that contains the axioms A1 and A2:

$$
F, \Gamma \vdash_{H} G \quad \text { iff } \quad \Gamma \vdash_{H} F \rightarrow G
$$

Proof " \Rightarrow ":

By induction on (the length/depth of) the proof of $F, \Gamma \vdash_{H} G$ Then by cases on the last proof step:

Case $G=F$: see proof of $F \rightarrow F$ from $A 1$ and $A 2$
Case $G \in \Gamma$ or axiom: by $A 1$ and \ldots
Case $\rightarrow E$ from $H \rightarrow G$ and H :

$$
\left.\frac{(F \rightarrow H \rightarrow G) \rightarrow(F \rightarrow H) \rightarrow F \rightarrow G \quad F \rightarrow H \rightarrow G}{} \quad \underset{F \rightarrow H}{F \rightarrow H} \quad F \rightarrow H\right)
$$

Hilbert System

From now on \vdash_{H} refers to the following set of axioms:

$$
\begin{align*}
& F \rightarrow G \rightarrow F \tag{A1}\\
& (F \rightarrow G \rightarrow H) \rightarrow(F \rightarrow G) \rightarrow F \rightarrow H \tag{A2}\\
& F \rightarrow G \rightarrow F \wedge G \tag{A3}\\
& F \wedge G \rightarrow F \tag{A4}\\
& F \wedge G \rightarrow G \\
& F \rightarrow F \vee G \\
& G \rightarrow F \vee G \\
& F \vee G \rightarrow(F \rightarrow H) \rightarrow(G \rightarrow H) \rightarrow H \\
& (\neg F \rightarrow \perp) \rightarrow F
\end{align*}
$$

Relating

Hilbert and Natural Deduction

Theorem (Hilbert can simulate ND)
If $\Gamma \vdash_{N} F$ then $\Gamma \vdash_{H} F$
Proof translation in two steps: $\vdash_{N} \rightsquigarrow \vdash_{H}+\rightarrow I \rightsquigarrow \vdash_{H}$

1. Transform a ND-proof tree into a proof tree containing Hilbert axioms, $\rightarrow E$ and $\rightarrow I$ by replacing all other ND rules by Hilbert proofs incl. \rightarrow I Principle: ND rule $\rightsquigarrow 1$ axiom $+\rightarrow I / E$
2. Eliminate the $\rightarrow I$ rules by the Deduction Theorem

Lemma (ND can simulate Hilbert)
If $\Gamma \vdash_{H} F$ then $\Gamma \vdash_{N} F$
Proof by induction on $\Gamma \vdash_{H} F$.

- Every Hilbert axiom is provable in ND (Exercise!)
$\rightarrow \rightarrow E$ is also available in ND

Corollary
$\Gamma \vdash_{H} F$ iff $\Gamma \vdash_{N} F$
Corollary (Soundness and completeness)
$\Gamma \vdash_{H} F \quad$ iff $\Gamma \models F$

First-Order Predicate Logic Basics

Syntax of predicate logic: terms

A variable is a symbol of the form x_{i} where $i=1,2,3 \ldots$
A function symbol is of the form f_{i}^{k} where $i=1,2,3 \ldots$ and $k=0,1,2 \ldots$
A predicate symbol is of the form P_{i}^{k} where $i=1,2,3 \ldots$ and $k=0,1,2 \ldots$
We call i the index and k the arity of the symbol.
Terms are inductively defined as follows:

1. Variables are terms.
2. If f is a function symbol of arity k and t_{1}, \ldots, t_{k} are terms then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.

Function symbols of arity 0 are called constant symbols. Instead of $f_{i}^{0}()$ we write f_{i}^{0}.

Syntax of predicate logic: formulas

If P is a predicate symbol of arity k and t_{1}, \ldots, t_{k} are terms then $P\left(t_{1}, \ldots, t_{k}\right)$ is an atomic formula.
If $k=0$ we write P instead of $P()$.
Formulas (of predicate logic) are inductively defined as follows:

- Every atomic formula is a formula.
- If F is a formula, then $\neg F$ is also a formula.
- If F and G are formulas, then $F \wedge G, F \vee G$ and $F \rightarrow G$ are also formulas.
- If x is a variable and F is a formula, then $\forall x F$ and $\exists x F$ are also formulas.
The symbols \forall and \exists are called the universal and the existential quantifier.

Syntax trees and subformulas

Syntax trees are defined as before, extended with the following trees for $\forall x F$ and $\exists x F$:

Subformulas again correspond to subtrees.

Sructural induction of formulas

Like for propositional logic but

- Different base case: $\mathcal{P}\left(P\left(t_{1}, \ldots, t_{k}\right)\right)$
- Two new induction steps:
prove $\mathcal{P}(\forall x F)$ under the induction hypothesis $\mathcal{P}(F)$ prove $\mathcal{P}(\exists \times F)$ under the induction hypothesis $\mathcal{P}(F)$

Naming conventions

```
x,y,z,\ldots instead of }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},
a,b,c,\ldots.for constant symbols
f,g,h,\ldots for function symbols of arity >0
P,Q,R,\ldots instead of P P
```


Precedence of quantifiers

Quantifiers have the same precedence as \neg
Example
$\forall x P(x) \wedge Q(x) \quad$ abbreviates $\quad(\forall x P(x)) \wedge Q(x)$ not $\quad \forall x(P(x) \wedge Q(x))$
Similarly for \vee etc.
[This convention is not universal]

Free and bound variables, closed formulas

A variable x occurs in a formula F if it occurs in some atomic subformula of F.
An occurrence of a variable in a formula is either free or bound. An occurrence of x in F is bound if it occurs in some subformula of F of the form $\exists x G$ or $\forall x G$; the smallest such subformula is the scope of the occurrence. Otherwise the occurrence is free.
A formula without any free occurrence of any variable is closed.

Example
$\forall x P(x) \rightarrow \exists y Q(a, x, y)$

Exercise

	Closed?
$\forall x P(a)$	
$\forall x \exists y(Q(x, y) \vee R(x, y))$	Y
$\forall x Q(x, x) \rightarrow \exists x Q(x, y)$	N
$\forall x P(x) \vee \forall x Q(x, x)$	Y
$\forall x(P(y) \wedge \forall y P(x))$	N
$P(x) \rightarrow \exists x Q(x, f(x))$	N

	Formula?
$\exists x P(f(x))$	
$\exists f P(f(x))$	

Semantics of predicate logic: structures

A structure is a pair $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$ where $U_{\mathcal{A}}$ is an arbitrary, nonempty set called the universe of \mathcal{A}, and the interpretation $I_{\mathcal{A}}$ is a partial function that maps

- variables to elements of the universe $U_{\mathcal{A}}$,
- function symbols of arity k to functions of type $U_{\mathcal{A}}^{k} \rightarrow U_{\mathcal{A}}$,
- predicate symbols of arity k to functions of type $U_{\mathcal{A}}^{k} \rightarrow\{0,1\}$ (predicates) [or equivalently to subsets of $U_{\mathcal{A}}^{k}$ (relations)]
$I_{\mathcal{A}}$ maps syntax (variables, functions and predicate symbols) to their meaning (elements, functions and predicates)

The special case of arity 0 can be written more simply:

- constant symbols are mapped to elements of $U_{\mathcal{A}}$,
- predicate symbols of arity 0 are mapped to $\{0,1\}$.

Abbreviations:
$x^{\mathcal{A}}$ abbreviates $I_{\mathcal{A}}(x)$
$f^{\mathcal{A}}$ abbreviates $I_{\mathcal{A}}(f)$
$P^{\mathcal{A}}$ abbreviates $I_{\mathcal{A}}(P)$
Example
$U_{\mathcal{A}}=\mathbb{N}$
$I_{\mathcal{A}}(P)=P^{\mathcal{A}}=\{(m, n) \mid m, n \in \mathbb{N}$ and $m<n\}$
$I_{\mathcal{A}}(Q)=Q^{\mathcal{A}}=\{m \mid m \in \mathbb{N}$ and m is prime $\}$
$I_{\mathcal{A}}(f)$ is the successor function: $f^{\mathcal{A}}(n)=n+1$
$I_{\mathcal{A}}(g)$ is the addition function: $g^{\mathcal{A}}(m, n)=m+n$
$I_{\mathcal{A}}(a)=a^{\mathcal{A}}=2$
$I_{\mathcal{A}}(z)=z^{\mathcal{A}}=3$
Intuition: is $\forall x P(x, f(x)) \wedge Q(g(a, z))$ true in this structure?

Evaluation of a term in a structure

Definition

Let t be a term and let $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$ be a structure.
\mathcal{A} is suitable for t if $I_{\mathcal{A}}$ is defined for all variables and function symbols occurring in t.
The value of a term t in a suitable structure \mathcal{A}, denoted by $\mathcal{A}(t)$, is defined recursively:

$$
\begin{aligned}
\mathcal{A}(x) & =x^{\mathcal{A}} \\
\mathcal{A}(c) & =c^{\mathcal{A}} \\
\mathcal{A}\left(f\left(t_{1}, \ldots, t_{k}\right)\right) & =f^{\mathcal{A}}\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right)
\end{aligned}
$$

Example
$\mathcal{A}(f(g(a, z)))=$

Definition

Let F be a formula and let $\mathcal{A}=\left(U_{\mathcal{A}}, I_{\mathcal{A}}\right)$ be a structure. \mathcal{A} is suitable for F if $I_{\mathcal{A}}$ is defined for all predicate and function symbols occurring in F and for all variables occurring free in F.

Evaluation of a formula in a structure

Let \mathcal{A} be suitable for F. The (truth) value of F in \mathcal{A}, denoted by $\mathcal{A}(F)$, is defined recursively:

$$
\begin{aligned}
& \mathcal{A}(\neg F), \mathcal{A}(F \wedge G), \mathcal{A}(F \vee G), \mathcal{A}(F \rightarrow G) \\
& \text { as for propositional logic }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A}\left(P\left(t_{1}, \ldots, t_{k}\right)\right) & = \begin{cases}1 & \text { if }\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right) \in P^{\mathcal{A}} \\
0 & \text { otherwise }\end{cases} \\
\mathcal{A}(\forall x F) & = \begin{cases}1 & \text { if for every } d \in U_{\mathcal{A}},(\mathcal{A}[d / x])(F)=1 \\
0 & \text { otherwise }\end{cases} \\
\mathcal{A}(\exists \times F) & = \begin{cases}1 & \text { if for some } d \in U_{\mathcal{A}},(\mathcal{A}[d / x])(F)=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$\mathcal{A}[d / x]$ coincides with \mathcal{A} everywhere except that $x^{\mathcal{A}[d / x]}=d$.

Example $\mathcal{A}(\forall x P(x, f(x)) \wedge Q(g(a, z)))=$

Notes

- During the evaluation of a formulas in a structure, the structure stays unchanged except for the interpretation of the variables.
- If the formula is closed, the initial interpretation of the variables is irrelevant.

Coincidence Lemma

Lemma
Let \mathcal{A} and \mathcal{A}^{\prime} be two structures that coincide on all free variables, on all function symbols and all predicate symbols that occur in F.
Then $\mathcal{A}(F)=\mathcal{A}^{\prime}(F)$.
Proof.
Exercise.

Relation to propositional logic

- Every propositional formula can be seen as a formula of predicate logic where the atom A_{i} is replaced by the atom P_{i}^{0}.
- Conversely, every formula of predicate logic that does not contain quantifiers and variables can be seen as a formula of propositional logic by replacing atomic formulas by propositional atoms.
Example
$F=(Q(a) \vee \neg P(f(b), b) \wedge P(b, f(b)))$
can be viewed as the propositional formula
$F^{\prime}=\left(A_{1} \vee \neg A_{2} \wedge A_{3}\right)$.
Exercise
F is satifiable/valid iff F^{\prime} is satisfiable/valid

Predicate logic with equality

> Predicate logic
> +
> distinguished predicate symbol "=" of arity 2

Semantics: A structure \mathcal{A} of predicate logic with equality always maps the predicate symbol $=$ to the identity relation:

$$
\mathcal{A}(=)=\left\{(d, d) \mid d \in U_{\mathcal{A}}\right\}
$$

Model, validity, satisfiability

Like in propositional logic

Definition

We write $\mathcal{A} \models F$ to denote that the structure \mathcal{A} is suitable for the formula F and that $\mathcal{A}(F)=1$.
Then we say that F is true in \mathcal{A} or that \mathcal{A} is a model of F.
If every structure suitable for F is a model of F, then we write $\models F$ and say that F is valid.

If F has at least one model then we say that F is satisfiable.

Exercise

V : valid S : satisfiable, but not valid U : unsatisfiable

	V	S	U
$\forall x P(a)$			
$\exists x(\neg P(x) \vee P(a))$			
$P(a) \rightarrow \exists x P(x)$			
$P(x) \rightarrow \exists x P(x)$			
$\forall x P(x) \rightarrow \exists x P(x)$			
$\forall x P(x) \wedge \neg \forall y P(y)$			

Consequence and equivalence

Like in propositional logic

Definition

A formula G is a consequence of a set of formulas M
if every structure that is a model of all $F \in M$ and suitable for G is also a model of G. Then we write $M \models G$.
Two formulas F and G are (semantically) equivalent if every structure \mathcal{A} suitable for both F and G satisfies $\mathcal{A}(F)=\mathcal{A}(G)$. Then we write $F \equiv G$.

Exercise

1. $\forall x P(x) \vee \forall x Q(x, x)$
2. $\forall x(P(x) \vee Q(x, x))$
3. $\forall x(\forall z P(z) \vee \forall y Q(x, y))$

	Y	N
$1 \models 2$		
$2 \models 3$		
$3 \models 1$		

Exercise

1. $\exists y \forall x P(x, y)$
2. $\forall x \exists y P(x, y)$

	Y	N
$1 \models 2$		
$2 \models 1$		

Exercise

	Y	N
$\forall x \forall y F \equiv \forall y \forall x F$		
$\forall x \exists y F \equiv \exists x \forall y F$		
$\exists x \exists y F \equiv \exists y \exists x F$		
$\forall x F \vee \forall x G \equiv \forall x(F \vee G)$		
$\forall x F \wedge \forall x G \equiv \forall x(F \wedge G)$		
$\exists x F \vee \exists x G \equiv \exists x(F \vee G)$		
$\exists x F \wedge \exists x G \equiv \exists x(F \wedge G)$		

Equivalences

Theorem

1. $\neg \forall x F \equiv \exists x \neg F$
$\neg \exists x F \equiv \forall x \neg F$
2. If x does not occur free in G then:
$(\forall x F \wedge G) \equiv \forall x(F \wedge G)$
$(\forall x F \vee G) \equiv \forall x(F \vee G)$
$(\exists x F \wedge G) \equiv \exists x(F \wedge G)$
$(\exists x F \vee G) \equiv \exists x(F \vee G)$
3. $(\forall x F \wedge \forall x G) \equiv \forall x(F \wedge G)$
$(\exists x F \vee \exists x G) \equiv \exists x(F \vee G)$
4. $\forall x \forall y F \equiv \forall y \forall x F$
$\exists x \exists y F \equiv \exists y \exists x F$

Replacement theorem

Just like for propositional logic it can be proved:
Theorem
Let $F \equiv G$. Let H be a formula with an occurrence of F as a subformula. Then $H \equiv H^{\prime}$, where H^{\prime} is the result of replacing an arbitrary occurrence of F in H by G.

First-Order Logic Normal Forms

Abbreviations

We return to the abbreviations used in connection with resolution:

$$
\begin{array}{rll}
F_{1} \rightarrow F_{2} & \text { abbreviates } & \neg F_{1} \vee F_{2} \\
\top & \text { abbreviates } & P_{1}^{0} \vee \neg P_{1}^{0} \\
\perp & \text { abbreviates } & P_{1}^{0} \wedge \neg P_{1}^{0}
\end{array}
$$

Substitution

- Substitutions replace free variables by terms.
(They are mappings from variables to terms)
- By $[t / x]$ we denote the substitution that replaces x by t.
- The notation $F[t / x]$ (" F with t for x ") denotes the result of replacing all free occurrences of x in F by t.
Example
$(\forall x P(x) \wedge Q(x))[f(y) / x]=\forall x P(x) \wedge Q(f(y))$
- Similarly for subsitutions in terms:
$u[t / x]$ is the result of replacing x by t in term u.
Example
$(f(x))[g(x) / x]=f(g(x))$

Variable capture

Warning
If t contains a variable that is bound in F, substitution may lead to variable capture:

$$
(\forall x P(x, y))[f(x) / y]=\forall x P(x, f(x))
$$

Variable capture should be avoided

Substitution lemmas

Lemma (Substitution Lemma)
If t contains no variable bound in F then
$\mathcal{A}(F[t / x])=(\mathcal{A}[\mathcal{A}(t) / x])(F)$
Proof by structural induction on F
with the help of the corresponding lemma on terms:
Lemma
$\mathcal{A}(u[t / x])=(\mathcal{A}[\mathcal{A}(t) / x])(u)$
Proof by structural induction on u

Warning

The notation .[./.] is heavily overloaded:
Substitution in syntactic objects
$F[G / A]$ in propositional logic $F[t / x]$ $u[t / x]$ where u is a term
Function update
$\mathcal{A}[v / A]$ where \mathcal{A} is a propositional assignment $\mathcal{A}[d / x]$ where \mathcal{A} is a structure and $d \in U_{\mathcal{A}}$

Aim:
Transform any formula into an equisatisfiable closed formula

$$
\forall x_{1} \ldots \forall x_{n} G
$$

where G is quantifier-free.

Rectified Formulas

Definition

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the formula bind different variables.

Lemma
Let $F=Q \times G$ be a formula where $Q \in\{\forall, \exists\}$.
Let y be a variable that does not occur in G.
Then $F \equiv Q y G[y / x]$.

Lemma

Every formula is equivalent to a rectified formula.
Example
$\forall x P(x, y) \wedge \exists x \exists y Q(x, y) \equiv \forall x^{\prime} P\left(x^{\prime}, y\right) \wedge \exists x \exists y^{\prime} Q\left(x, y^{\prime}\right)$

Prenex form

Definition

A formula is in prenex form if it has the form

$$
Q_{1} y_{1} \ldots Q_{n} y_{n} F
$$

where $Q_{i} \in\{\exists, \forall\}, n \geq 0$, and F is quantifier-free.

Prenex form

Theorem
Every formula is equivalent to a rectified formula in prenex form (a formula in RPF).
Proof First construct an equivalent rectified formula.
Then pull the quantifiers to the front using the following equivalences from left to right as long as possible:

$$
\begin{aligned}
\neg \forall x F & \equiv \exists x \neg F \\
\neg \exists x F & \equiv \forall x \neg F \\
Q \times F \wedge G & \equiv Q \times(F \wedge G) \\
F \wedge Q \times G & \equiv Q \times(F \wedge G) \\
Q \times F \vee G & \equiv Q \times(F \vee G) \\
F \vee Q \times G & \equiv Q \times(F \vee G)
\end{aligned}
$$

For the last four rules note that the formula is rectified!

Skolem form

The Skolem form of a formula F in RPF is the result of applying the following algorithm to F :
while F contains an existential quantifier do
Let $F=\forall y_{1} \forall y_{2} \ldots \forall y_{n} \exists z G$
(the block of universal quantifiers may be empty)
Let f be a fresh function symbol of arity n
that does not occur in F.
$F:=\forall y_{1} \forall y_{2} \ldots \forall y_{n} G\left[f\left(y_{1}, y_{2}, \ldots, y_{n}\right) / z\right]$
i.e. remove the outermost existential quantifier in F and replace every occurrence of z in G by $f\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

Example
$\exists x \forall y \exists z \forall u \exists v P(x, y, z, u, v)$

Exercise

Which formulas are rectified, in prenex, or Skolem form?

	R	P	S
$\forall x(T(x) \vee C(x) \vee D(x))$			
$\exists x \exists y(C(y) \vee B(x, y))$			
$\neg \exists x C(x) \leftrightarrow \forall x \neg C(x)$			
$\forall x(C(x) \rightarrow S(x)) \rightarrow \forall y(\neg C(y) \rightarrow \neg S(y))$			

Skolem form

Theorem
A formula in RPF and its Skolem form are equisatisfiable.
Proof Every iteration produces an equisatisfiable formula.
Let (for simplicity) $F=\forall y \exists z G$ and $F^{\prime}=\forall y \quad G[f(y) / z]$.

1. $F^{\prime} \models F$

Assume \mathcal{A} is suitable for F^{\prime} and $\mathcal{A}\left(F^{\prime}\right)=1$.
\Rightarrow for all $u \in U_{\mathcal{A}}, \mathcal{A}[u / y](G[f(y) / z])=1$
\Rightarrow for all $u \in U_{\mathcal{A}}, \mathcal{A}[u / y]\left[f^{\mathcal{A}}(u) / z\right](G)=1$
\Rightarrow for all $u \in U_{\mathcal{A}}$ there is a $v \in U_{\mathcal{A}}$ s.t. $\mathcal{A}[u / y][v / z](G)=1$
$\Rightarrow \mathcal{A}(F)=1$

Skolem form

Theorem
A formula in RPF and its Skolem form are equisatisfiable.
Proof Every iteration produces an equisatisfiable formula.
Let (for simplicity) $F=\forall y \exists z G$ and $F^{\prime}=\forall y \quad G[f(y) / z]$.
2. If F has a model, so does F^{\prime}

Assume \mathcal{A} is suitable for F and $\mathcal{A}(F)=1$.
Wog \mathcal{A} does not define f (because f is new)
\Rightarrow for all $u \in U_{\mathcal{A}}$ there is a $v \in U_{\mathcal{A}}$ s.t. $\mathcal{A}[u / y][v / z](G)=1$
Let \mathcal{A}^{\prime} be \mathcal{A} extended with a definition of f :
$f^{\mathcal{A}^{\prime}}(u):=v$ where v is chosen as in $(*)$
$\Rightarrow \mathcal{A}^{\prime}\left(F^{\prime}\right)=1$ because for all $u \in U_{\mathcal{A}}$:

$$
\mathcal{A}^{\prime}[u / y](G[f(y) / z])
$$

$=\mathcal{A}^{\prime}[u / y]\left[f \mathcal{A}^{\prime}(u) / z\right](G)$
$=\mathcal{A}^{\prime}[u / y][v / z](G)$
$=1$

Summary: conversion to Skolem form

Input: a formula F
Output: an equisatisfiable, rectified, closed formula in Skolem form $\forall y_{1} \ldots \forall y_{k} G$ where G is quantifier-free

1. Rectify F by systematic renaming of bound variables.

The result is a formula F_{1} equivalent to F.
2. Let $y_{1}, y_{2}, \ldots, y_{n}$ be the variables occurring free in F_{1}.

Produce the formula $F_{2}=\exists y_{1} \exists y_{2} \ldots \exists y_{n} F_{1}$.
F_{2} is equisatisfiable with F_{1}, rectified and closed.
3. Produce a formula F_{3} in RPF equivalent to F_{2}.
4. Eliminate the existential quantifiers in F_{3}
by transforming F_{3} into its Skolem form F_{4}.
The formula F_{4} is equisatisfiable with F_{3}.

Convert into Skolem form:
$F=\forall x P(y, f(x, y)) \vee \neg \forall y Q(g(x), y)$

First-Order Logic Herbrand Theory

Herbrand universe

The Herbrand universe $T(F)$ of a closed formula F in Skolem form is the set of all terms that can be constructed using the function symbols in F.

In the special case that F contains no constants, we first pick an arbitrary constant, say a, and then construct the terms.

Formally, $T(F)$ is inductively defined as follows:

- All constants occurring in F belong to $T(F)$;
if no constant occurs in F, then $a \in T(F)$ where a is some arbitrary constant.
- For every n-ary function symbol f occurring in F, if $t_{1}, t_{2}, \ldots, t_{n} \in T(F)$ then $f\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in T(F)$.

Note: All terms in $T(F)$ are variable-free by construction!
Example
$F=\forall x \forall y P(f(x), g(c, y))$

Herbrand structure

Let F be a closed formula in Skolem form.
A structure \mathcal{A} suitable for F is a Herbrand structure for F
if it satisfies the following conditions:

- $U_{\mathcal{A}}=T(F)$, and
- for every n-ary function symbol f occurring in F and every $t_{1}, \ldots, t_{n} \in T(F): f^{\mathcal{A}}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Fact
If \mathcal{A} is a Herbrand structure, then $\mathcal{A}(t)=t$ for all $t \in U_{\mathcal{A}}$.
We call a Herbrand structure that is a model a Herbrand model.

Matrix of a formula

Definition
The matrix of a formula F is the result of removing all quantifiers (all $\forall x$ and $\exists x$) from F. The matrix is denoted by F^{*}.

Fundamental theorem of predicate logic

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff it has a Herbrand model.
Proof If F has a Herbrand model then it is satisfiable.
For the other direction let \mathcal{A} be an arbitrary model of F.
We define a Herbrand structure \mathcal{T} as follows:
Universe

$$
U_{\mathcal{T}}=T(F)
$$

Function symbols $\quad f^{\mathcal{T}}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$
If F contains no constant: $a^{\mathcal{A}}=u$ for some arbitrary $u \in U_{\mathcal{A}}$
Predicate symbols $\left(t_{1}, \ldots, t_{n}\right) \in P^{\mathcal{T}}$ iff $\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{n}\right)\right) \in P^{\mathcal{A}}$
Claim: \mathcal{T} is also a model of F.

Claim: \mathcal{T} is also a model of F.
We prove a stronger assertion:
For every closed formula G in Skolem form that contains the same fun. and pred. symbols as F :
if $\mathcal{A} \models G$ then $\mathcal{T} \models G$
Proof By induction on the number n of universal quantifiers of G.
Basis $n=0$. Then G has no quantifiers at all.
Therefore $\mathcal{A}(G)=\mathcal{T}(G)$ (why?), and we are done.

Induction step: $G=\forall x H$.

$$
\mathcal{A} \models G
$$

\Rightarrow for every $u \in U_{\mathcal{A}}: \mathcal{A}[u / x](H)=1$
\Rightarrow for every $u \in U_{\mathcal{A}}$ of the form $u=\mathcal{A}(t)$ where $t \in T(F): \mathcal{A}[u / x](H)=1$
\Rightarrow for every $t \in T(F): \mathcal{A}[\mathcal{A}(t) / x](H)=1$
\Rightarrow for every $t \in T(F): \mathcal{A}(H[t / x])=1$
\Rightarrow for every $t \in T(F): \mathcal{T}(H[t / x])=1$
\Rightarrow for every $t \in T(F): \mathcal{T}[\mathcal{T}(t) / x](H)=1$
\Rightarrow for every $t \in T(F): \mathcal{T}[t / x](H)=1$
$\Rightarrow \mathcal{T}(\forall \times H)=1$
$\Rightarrow \quad \mathcal{T} \models G$
(substitution lemma)
(induction hypothesis)
(substitution lemma)
(\mathcal{T} is Herbrand structure)
$\left(U_{\mathcal{T}}=T(F)\right)$

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff it has a Herbrand model.

What goes wrong if F is not closed or not in Skolem form?

Herbrand expansion

Let $F=\forall y_{1} \ldots \forall y_{n} F^{*}$ be a closed formula in Skolem form. The Herbrand expansion of F is the set of formulas

$$
E(F)=\left\{F^{*}\left[t_{1} / y_{1}\right] \ldots\left[t_{n} / y_{n}\right] \mid t_{1}, \ldots, t_{n} \in T(F)\right\}
$$

Informally: the formulas of $E(F)$ are the result of substituting terms from $T(F)$ for the variables of F^{*} in every possible way.
Example
$E(\forall x \forall y P(f(x), g(c, y))=$
Note The Herbrand expansion can be viewed as a set of propositional formulas.

Gödel-Herbrand-Skolem Theorem

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff its Herbrand expansion $E(F)$ is satisfiable (in the sense of propositional logic).
Proof By the fundamental theorem, it suffices to show:
F has a Herbrand model iff $E(F)$ is satisfiable.
Let $F=\forall y_{1} \ldots \forall y_{n} F^{*}$.
\mathcal{A} is a Herbrand model of F
iff for all $t_{1}, \ldots, t_{n} \in T(F), \mathcal{A}\left[t_{1} / y_{1}\right] \ldots\left[t_{n} / y_{n}\right]\left(F^{*}\right)=1$
iff for all $t_{1}, \ldots, t_{n} \in T(F), \mathcal{A}\left(F^{*}\left[t_{1} / y_{1}\right] \ldots\left[t_{n} / y_{n}\right]\right)=1$
iff for all $G \in E(F), \mathcal{A}(G)=1$
iff \mathcal{A} is a model of $E(F)$

Herbrand's Theorem

Theorem
Let F be a closed formula in Skolem form.
F is unsatisfiable iff some finite subset of $E(F)$ is unsatisfiable.
Proof Follows immediately from the Gödel-Herbrand-Skolem Theorem and the Compactness Theorem.

Gilmore's Algorithm

Let F be a closed formula in Skolem form and let $F_{1}, F_{2}, F_{3}, \ldots$ be a computable enumeration of $E(F)$.

Input: F
$n:=0$;
repeat $n:=n+1$; until $\left(F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}\right)$ is unsatisfiable; return "unsatisfiable"

The algorithm terminates iff F is unsatisfiable.

Semi-decidability Theorems

Theorem
(a) The unsatisfiability problem of predicate logic is (only) semi-decidable.
(b) The validity problem of predicate logic is (only) semi-decidable.

Proof

(a) Gilmore's algorithm is a semi-decision procedure.
(The problem is undecidable. Proof later)
(b) F valid iff $\neg F$ unsatisfiable.

Löwenheim-Skolem Theorem

Theorem
Every satisfiable formula of first-order predicate logic has a model with a countable universe.
Proof Let F_{0} be a formula with free variables x_{1}, \ldots, x_{n}. Define $F:=\exists x_{1} \ldots \exists x_{n} F_{0}$ and observe that F_{0} has a model with universe U iff F has a model with universe U. Let G be an equisatisfiable, closed formula in Skolem form as produced by the Normal Form transformations starting with F.
Fact: Every model of G is a model of F. (Check this!)
F_{0} satisfiable $\Rightarrow F$ satisfiable
$\Rightarrow \quad G$ satisfiable
$\Rightarrow \quad G$ has a Herbrand model \mathcal{T}
$\Rightarrow \quad F$ also has that model \mathcal{T}
$\Rightarrow \quad F_{0}$ has a countable model (Herbrand universes are countable)

Löwenheim-Skolem Theorem

Formulas of first-order logic cannot enforce uncountable models
Formulas of first-order logic cannot axiomatize the real numbers because there will always be countable models

First-Order Logic Resolution

Resolution for first-order logic

Gilmore's algorithm is correct and complete, but useless in practice.

We upgrade resolution to make it work for predicate logic.

Recall: resolution in propositional logic

Resolution step:

Resolution graph:

A set of clauses is unsatisfiable iff the empty clause can be derived.

Adapting Gilmore's Algorithm

Gilmore's Algorithm:
Let F be a closed formula in Skolem form and let $F_{1}, F_{2}, F_{3}, \ldots$ be an enumeration of $E(F)$.
$n:=0$;
repeat $n:=n+1$
until ($F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}$) is unsatisfiable;

- this can be checked with any calculus for propositional logic
return "unsatisfiable"
"any calculus" \rightsquigarrow use resolution for the unsatisfiability test

Terminology

Literal/clause/CNF is defined as for propositional logic but with the atomic formulas of predicate logic.

A ground term/formula/etc is a term/formula/etc that does not contain any variables.

An instance of a term/formula/etc is the result of applying a substitution to a term/formula/etc.

A ground instance
is an instance that does not contain any variables.

Clause Herbrand expansion

Let $F=\forall y_{1} \ldots \forall y_{n} F^{*}$ be a closed formula in Skolem form with F^{*} in CNF, and let C_{1}, \ldots, C_{m} be the clauses of F^{*}.
The clause Herbrand expansion of F is the set of ground clauses

$$
C E(F)=\bigcup_{i=1}^{m}\left\{C_{i}\left[t_{1} / y_{1}\right] \ldots\left[t_{n} / y_{n}\right] \mid t_{1}, \ldots, t_{n} \in T(F)\right\}
$$

Lemma
$C E(F)$ is unsatisfiable iff $E(F)$ is unsatisfiable.
Proof Informally speaking, " $C E(F) \equiv E(F)$ ".

Ground resolution algorithm

Let F be a closed formula in Skolem form with F^{*} in CNF.
Let $C_{1}, C_{2}, C_{3}, \ldots$ be an enumeration of $C E(F)$.

$$
\begin{aligned}
& n:=0 ; \\
& S:=\emptyset ; \\
& \text { repeat } \\
& \quad n:=n+1 ; \\
& \quad S:=S \cup\left\{C_{n}\right\} ; \\
& \text { until } S \vdash_{\text {Res }} \square
\end{aligned}
$$

return "unsatisfiable"
Note: The search for \square can be performed incrementally every time S is extended.

Example
$F^{*}=\{\{\neg P(x), \neg P(f(a)), Q(y)\},\{P(y)\},\{\neg P(g(b, x)), \neg Q(b)\}\}$

Ground resolution theorem

The correctness of the ground resolution algorithm can be rephrased as follows:

Theorem
A formula $F=\forall y_{1} \ldots \forall y_{n} F^{*}$ with F^{*} in CNF is unsatisfiable iff there is a sequence of ground clauses $C_{1}, \ldots, C_{m}=\square$ such that for every $i=1, \ldots, m$

- either C_{i} is a ground instance of a clause $C \in F^{*}$, i.e. $C_{i}=C\left[t_{1} / y_{1}\right] \ldots\left[t_{n} / y_{n}\right]$ where $t_{1}, \ldots, t_{n} \in T(F)$,
- or C_{i} is a resolvent of two clauses C_{a}, C_{b} with $a<i$ and $b<i$

Where do the ground substitutions come from?

Better:

- allow substitutions with variables
- only instantiate clauses enough to allow one (new kind of) resolution step

Example
Resolve $\{P(x), Q(x)\}$ and $\{\neg P(f(y)), R(y)\}$

Substitutions as functions

Substitutions are functions from variables to terms:
[t / x] maps x to t (and all other variales to themselves)
Functions can be composed.
Composition of substitutions is denoted by juxtaposition: [$\left.t_{1} / x\right]\left[t_{2} / y\right]$ first substitutes t_{1} for x and then substitutes t_{2} for y.
Example
$(P(x, y))[f(y) / x][b / y]=(P(f(y), y))[b / y]=P(f(b), b)$
Similarly we can compose arbitrary substitutions σ_{1} and σ_{2} : $\sigma_{1} \sigma_{2}$ is the substitution that applies σ_{1} first and then σ_{2}.

Substitutions are functions. Therefore

$$
\sigma_{1}=\sigma_{2} \quad \text { iff } \quad \text { for all variables } x, x \sigma_{1}=x \sigma_{2}
$$

Substitutions as functions

Definition

The domain of a substitution: $\operatorname{dom}(\sigma)=\{x \mid x \sigma \neq x\}$
Example
$\operatorname{dom}([a / x][b / y])=\{x, y\}$
Substitutions are defined to have finite domain. Therefore every substitution can be written as a simultaneous substitution $\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$.

Unifier and most general unifier

Let $\mathrm{L}=\left\{L_{1}, \ldots, L_{k}\right\}$ be a set of literals.
A substitution σ is a unifier of L if

$$
L_{1} \sigma=L_{2} \sigma=\cdots=L_{k} \sigma
$$

i.e. if $|\mathrm{L} \sigma|=1$, where $\mathrm{L} \sigma=\left\{L_{1} \sigma, \ldots, L_{k} \sigma\right\}$.

A unifier σ of L is a most general unifier (mgu) of L if for every unifier σ^{\prime} of L there is a substitution δ such that $\sigma^{\prime}=\sigma \delta$.

Exercise

Unifiable?			Yes
No			
$P(f(x))$	$P(g(y))$		x
$P(x)$	$P(f(y))$	x	
$P(x)$	$P(f(x))$		x
$P(x, f(y))$	$P(f(u), f(z))$	x	
$P(x, f(x))$	$P(f(y), y)$		x
$P\left(x, g(x), g^{2}(x)\right)$	$P(f(z), w, g(w))$	x	
$P(x, f(y))$	$P(g(y), f(a))$	$P(g(a), z)$	x

Unification algorithm

Input: a set $\mathrm{L} \neq \emptyset$ of literals
$\sigma:=[] \quad$ (the empty substitution)
while $|\mathrm{L} \sigma|>1$ do
Find the first position at which two literals $L_{1}, L_{2} \in L \sigma$ differ
if none of the two characters at that position is a variable then return "non-unifiable"
else let x be the variable and t the term starting at that position if x occurs in t
then return "non-unifiable"
else $\sigma:=\sigma[t / x]$
return σ
Example
$\{\neg P(f(z, g(a, y)), h(z))$,
$\neg P(f(f(u, v), w), h(f(a, b)))\}$

Correctness of the unification algorithm

Lemma

The unification algorithm terminates.
Proof Every iteration of the while-loop (possibly except the last) replaces a variable x by a term t not containing x, and so the number of variables occurring in $\mathrm{L} \sigma$ decreases by one.

Lemma

If L is non-unifiable then the algorithm returns "non-unifiable".
Proof If L is non-unifiable then the algorithm can never exit the loop normally.

Correctness/completeness of the unification algorithm

Lemma

If L is unifiable then the algorithm returns the mgu of L (and so in particular every unifiable set L has an mgu).
Proof Assume L is unifiable and let n be the number of iterations of the loop on input L .
Let $\sigma_{0}=[]$, for $1 \leq i \leq n$ let σ_{i} be the value of σ after the i-th iteration of the loop.
We prove for every $0 \leq i \leq n$:
(a) If $1 \leq i$, the i-th iteration does not return "non-unifiable".
(b) For every unifier σ^{\prime} of L there is a substitution δ_{i} such that $\sigma^{\prime}=\sigma_{i} \delta_{i}$.
By (a) the algorithm exits the loop normally after n iterations.
By (b) it returns a most general unifier.

Correctness/completeness of the unification algorithm

Proof of (a) and (b) by induction on i :
Basis $(i=0)$: For (a) there is nothing to prove.
For (b) take $\delta_{0}=\sigma^{\prime}$.
Step $(i \Rightarrow i+1)$
For (a), since $\left|\mathrm{L} \sigma_{i}\right|>1$ and $\mathrm{L} \sigma_{i}$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned.
For (b): Let σ^{\prime} be a unifier of L. $\mathrm{IH}: \sigma^{\prime}=\sigma_{i} \delta_{i}$ for some δ_{i}.
δ_{i} must be of the form $\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}, u / x\right]$ where x_{1}, \ldots, x_{k}, x
are distinct. Define $\delta_{i+1}=\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]$.
Note $u=x \delta_{i}=t \delta_{i}=t \delta_{i+1} \quad\left(\sigma_{i} \delta_{i}\right.$ is unifier (IH), x not in $\left.t\right)$

$$
\begin{aligned}
& \sigma_{i+1} \delta_{i+1} & & \\
= & \sigma_{i}[t / x] \delta_{i+1} & & \\
= & \sigma_{i}\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}, t \delta_{i+1} / x\right] & & \\
= & \sigma_{i}\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}, u / x\right] & & \\
= & \sigma_{i} \delta_{i} & & \\
= & \sigma^{\prime} & & \text { (IH) })
\end{aligned}
$$

The standard view of unification

A unification problem is a pair of terms $s=$? t (or a set of pairs $\left\{s_{1}=?{ }_{1}, \ldots, s_{n}=? t_{n}\right\}$)

A unifier is a substitution σ such that $s \sigma=t \sigma$ (or $s_{1} \sigma=t_{1} \sigma, \ldots, s_{n} \sigma=t_{n} \sigma$)

Renaming

Definition
A substitution ρ is a renaming if for every variable $x, x \rho$ is a variable and ρ is injective on $\operatorname{dom}(\rho)$.

Resolvents for first-order logic

A clause R is a resolvent of two clauses C_{1} and C_{2} if the following holds:

- There is a renaming ρ such that no variable occurs in both C_{1} and $C_{2} \rho$ and ρ is injective on the set of variables in C_{2}
- There are literals $L_{1}, \ldots, L_{m} \in C_{1}(m \geq 1)$ and literals $L_{1}^{\prime}, \ldots, L_{n}^{\prime} \in C_{2} \rho(n \geq 1)$ such that

$$
\mathrm{L}=\left\{\overline{L_{1}}, \ldots, \overline{L_{m}}, L_{1}^{\prime}, \ldots, L_{n}^{\prime}\right\}
$$

is unifiable. Let σ be an mgu of L .

- $R=\left(\left(C_{1}-\left\{L_{1}, \ldots, L_{m}\right\}\right) \cup\left(C_{2} \rho-\left\{L_{1}^{\prime}, \ldots, L_{n}^{\prime}\right\}\right)\right) \sigma$

Example
$C_{1}=\{P(x), Q(x), P(g(y))\}$ and $C_{2}=\{\neg P(x), R(f(x), a)\}$

Exercise

How many resolvents are there?

C_{1}	C_{2}	Resolvents
$\{P(x), Q(x, y)\}$	$\{\neg P(f(x))\}$	
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	
$\{P(x), P(f(x))\}$	$\{\neg P(y), Q(y, z)\}$	

Why renaming?

Example

$\forall x(P(x) \wedge \neg P(f(x)))$

Resolution for first-order logic

As for propositional logic, $F \vdash_{\text {Res }} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_{1}, \ldots, C_{m}=C$ such that for every C_{i}

- either $C_{i} \in F$
- or C_{i} is the resolvent of C_{a} and C_{b} where $a, b<i$.

Questions:
Correctness Does $F \vdash_{\text {Res }} \square$ imply that F is unsatisfiable?
Completeness Does unsatisfiability of F imply $F \vdash_{\text {Res }} \square$?

Exercise

Derive \square from the following clauses:

1. $\{\neg P(x), Q(x), R(x, f(x))\}$
2. $\{\neg P(x), Q(x), S(f(x))\}$
3. $\{T(a)\}$
4. $\{P(a)\}$
5. $\{\neg R(a, z), T(z)\}$
6. $\{\neg T(x), \neg Q(x)\}$
7. $\{\neg T(y), \neg S(y)\}$

Correctness of Resolution for First-Order Logic

Definition

The universal closure of a formula H with free variables x_{1}, \ldots, x_{n} :

$$
\forall H=\forall x_{1} \forall x_{2} \ldots \forall x_{n} H
$$

Theorem
Let F be a closed formula in Skolem form with matrix F^{*} in CNF. If $F^{*} \vdash_{\text {Res }} \square$ then F is unsatisfiable.

Theorem

Let F be a closed formula in Skolem form with matrix F^{*} in CNF.
If $F^{*} \vdash_{\text {Res }} \square$ then F is unsatisfiable.
Proof Let C_{1}, \ldots, C_{m} be the sequence of clauses leading to \square.
By induction on i : if $\forall F^{*} \models \forall C_{i}$. Trivial if $C_{i} \in F^{*}$.
Let C_{i} be a resolvent of C_{a} and $C_{b}(a, b<i)$. We prove

$$
\begin{equation*}
\forall C_{a}, \forall C_{b} \models \forall C_{i} \tag{*}
\end{equation*}
$$

Thus $\forall F^{*} \models \forall C_{i}$ because $\forall F^{*} \models \forall C_{a}$ and $\forall F^{*} \models \forall C_{b}$ by IH.
Proof of $(*)$: Assume $\mathcal{A}\left(\forall C_{a}\right)=\mathcal{A}\left(\forall C_{b}\right)=1$

$$
\begin{align*}
C_{i} & =\left(\left(C_{a}-\left\{L_{1}, \ldots\right\}\right) \cup\left(C_{b} \rho-\left\{L_{1}^{\prime}, \ldots\right\}\right)\right) \sigma \tag{**}\\
& =\left(C_{a} \sigma-\{L\}\right) \cup\left(C_{b} \rho \sigma-\{\bar{L}\}\right)
\end{align*}
$$

Indirect proof of $\mathcal{A}\left(\forall C_{i}\right)=1$. Assume $\mathcal{A}\left(\forall C_{i}\right)=0$.
$\Rightarrow \mathcal{A}^{\prime}\left(C_{i}\right)=0$ where $\mathcal{A}^{\prime}=\mathcal{A}\left[u_{1} / x_{1}, \ldots\right]$ for some $u_{i} \in U_{\mathcal{A}}$
$\Rightarrow \mathcal{A}^{\prime}\left(C_{a} \sigma-\{L\}\right)=\mathcal{A}^{\prime}\left(C_{b} \rho \sigma-\{\bar{L}\}\right)=0$
$\Rightarrow \mathcal{A}^{\prime}(L)=\mathcal{A}^{\prime}(\bar{L})=1$ becs. $\mathcal{A}^{\prime}\left(C_{a} \sigma\right)=\mathcal{A}^{\prime}\left(C_{b} \rho \sigma\right)=1$ becs. $(* *)$
Contradiction

Completeness: The idea

Simulate ground resolution because that is complete
Lift the resolution proof from the ground resolution proof

Lifting Lemma

Let C_{1}, C_{2} be two clauses and let $C_{1}^{\prime}, C_{2}^{\prime}$ be two ground instances with (propositional) resolvent R^{\prime}.
Then there is a resolvent R of C_{1}, C_{2} such that R^{\prime} is a ground instance of R.

\rightarrow Substitution
-: Resolution

Lifting Lemma: example

Proof of Lifting Lemma.
(1) $C_{1}^{\prime}, C_{2}^{\prime}$ are ground instances of C_{1}, C_{2}
(2) R^{\prime} is propositional resolvent of C_{1}^{\prime} and C_{2}^{\prime}

We prove that R^{\prime} is an instance of a resolvent of C_{1} and C_{2}
(3) Let ρ be a renaming s.t. C_{1} and $C_{2} \rho$ have no common variables
(1) $\Rightarrow C_{2}^{\prime}$ is a ground instance of $C_{2} \rho$. Thus there are σ_{1}, σ_{2} s.t.
$C_{1}^{\prime}=C_{1} \sigma_{1}$ and $C_{2}^{\prime}=C_{2} \rho \sigma_{2}$ and $\operatorname{dom}\left(\sigma_{1}\right) \cap \operatorname{dom}\left(\sigma_{2}\right)=\emptyset$
$\Rightarrow C_{1}^{\prime}=C_{1} \sigma$ and $C_{2}^{\prime}=C_{2} \rho \sigma$ where $\sigma=\sigma_{1} \cup \sigma_{2}$
(2) $\Rightarrow R^{\prime}=\left(C_{1}^{\prime}-\{L\}\right) \cup\left(C_{2}^{\prime}-\{\bar{L}\}\right)$ where $L \in C_{1}^{\prime}$ and $\bar{L} \in C_{2}^{\prime}$
\Rightarrow there are $\left\{L_{1}, \ldots\right\} \subseteq C_{1}$ and $\left\{L_{1}^{\prime}, \ldots\right\} \subseteq C_{2} \rho$
s.t. σ is a unifier of $\left\{\overline{L_{1}}, \ldots, L_{1}^{\prime}, \ldots\right\}=: M$.

Let σ_{0} be an mgu of M and let $\sigma=\sigma_{0} \delta$ for some δ
$\Rightarrow \mathrm{A}$ resolvent of C_{1} and C_{2} :
$R:=\left(\left(C_{1}-\left\{L_{1}, \ldots\right\}\right) \cup\left(C_{2} \rho-\left\{L_{1}^{\prime}, \ldots\right\}\right)\right) \sigma_{0}$
$R \delta=\left(\left(C_{1}-\left\{L_{1}, \ldots\right\}\right) \cup\left(C_{2} \rho-\left\{L_{1}^{\prime}, \ldots\right\}\right)\right) \sigma$
$=\left(C_{1} \sigma-\{L\}\right) \cup\left(C_{2} \rho \sigma-\{\bar{L}\}\right)$
$=\left(C_{1}^{\prime}-\{L\}\right) \cup\left(C_{2}^{\prime}-\{\bar{L}\}\right)$
$=R^{\prime}$

Completeness of Resolution for First-Order Logic

Theorem

Let F be a closed formula in Skolem form with matrix F^{*} in CNF. If F is unsatisfiable then $F^{*} \vdash_{\text {Res }} \square$.
Proof If F is unsatisfiable, there is a ground resolution proof $C_{1}^{\prime}, \ldots, C_{n}^{\prime}=\square$. We transform this step by step into a resolution proof $C_{1}, \ldots, C_{n}=\square$ such that C_{i}^{\prime} is a ground instance of C_{i}.
If C_{i}^{\prime} is a ground instance of some clause $C \in F^{*}$:
Set $C_{i}=C$
If C_{i}^{\prime} is a resolvent of $C_{a}^{\prime}, C_{b}^{\prime}(a, b<i)$:
$C_{a}^{\prime}, C_{b}^{\prime}$ have been transformed already into C_{a}, C_{b} s.t. $C_{a}^{\prime}, C_{b}^{\prime}$ are ground instances of C_{a}, C_{b}. By the Lifting Lemma there is a resolvent R of C_{a}, C_{b} s.t. C_{i}^{\prime} is a ground instance of R. Set $C_{i}=R$.

Resolution Theorem for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F^{*} in CNF. Then F is unsatisfiable iff $F^{*} \vdash_{\text {Res }} \square$.

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses
while $\square \notin S$ and there are clauses $C_{a}, C_{b} \in S$ and resolvent R of C_{a} and C_{b} such that $R \notin S$ (modulo renaming)
do $S:=S \cup\{R\}$
The selection of resolvents must be fair: every resolvent is added eventually

Three possible behaviours:

- The algorithm terminates and $\square \in S$ $\Rightarrow F$ is unsatisfiable
- The algorithm terminates and $\square \notin S$ $\Rightarrow F$ is satisfiable
- The algorithm does not terminate ($\Rightarrow F$ is satisfiable)

Refinements of resolution

Problems of resolution:

- Branching degree of the search space too large
- Too many dead ends
- Combinatorial explosion of the search space

Solution:
Strategies and heuristics: forbid certain resolution steps, which narrows the search space.

But: Completeness must be preserved!

First-Order Logic Equality

Predicate logic with equality

> Predicate logic
> +
> distinguished predicate symbol "=" of arity 2

Semantics: A structure \mathcal{A} of predicate logic with equality always maps the predicate symbol $=$ to the identity relation:

$$
\mathcal{A}(=)=\left\{(d, d) \mid d \in U_{\mathcal{A}}\right\}
$$

Expressivity

Fact

A structure is model of $\exists x \forall y x=y$ iff its universe is a singleton.
Theorem
Every satisfiable formula of predicate logic has a countably infinite model.
Proof Let F be satisfiable. We assume w.l.o.g. that
$F=\forall x_{1} \ldots \forall x_{n} F^{*}$ and the variables occurring in F^{*} are exactly x_{1}, \ldots, x_{n}. (If necessary bring F into closed Skolem form).
We consider two cases:
$n=0$. Exercise.
$n>0$. Let $G=\forall x_{1} \ldots \forall x_{n} F^{*}\left[f\left(x_{1}\right) / x_{1}\right]$, where f is a function symbol that does not occur in F^{*}. G is satisfiable (why?).
If G has a model M with universe U, then F has a model with universe $\left\{f^{M}(u) \mid u \in(U)\right\}$. Because G has a Herbrand model with countably infinite universe $T(G)$ (by the Fundamental Theorem), F also has a model with countably infinite universe $\{f(t) \mid t \in T(G)\}$.

Modelling equality

Let F be a formula of predicate logic with equality.
Let $E q$ be a predicate symbol that does not occur in F.
Let E_{F} be the conjunction of the following formulas:
$\forall x E q(x, x)$
$\forall x \forall y(E q(x, y) \rightarrow E q(y, x))$
$\forall x \forall y \forall z((E q(x, y) \wedge E q(y, z)) \rightarrow E q(x, z))$
For every function symbol f in F of arity n and every $1 \leq i \leq n$:
$\forall x_{1} \ldots \forall x_{n} \forall y\left(E q\left(x_{i}, y\right) \rightarrow\right.$

$$
\left.E q\left(f\left(x_{1}, \ldots, x_{i}, \ldots x_{n}\right), f\left(x_{1}, \ldots, y, \ldots, x_{n}\right)\right)\right)
$$

For every predicate symbol P in F of arity n and every $1 \leq i \leq n$:
$\forall x_{1} \ldots \forall x_{n} \forall y\left(E q\left(x_{i}, y\right) \rightarrow\right.$

$$
\left.\left(P\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \leftrightarrow P\left(x_{1}, \ldots, y, \ldots, x_{n}\right)\right)\right)
$$

E_{F} expresses that $E q$ is a congruence relation on the symbols in F.

Quotient structure

Definition

Let \mathcal{A} be a structure and \sim an equivalence relation on $U_{\mathcal{A}}$ that is a congruence relation for all the predicate and function symbols defined by $I_{\mathcal{A}}$. The quotient structure \mathcal{A} / \sim is defined as follows:

- $U_{\mathcal{A} / \sim}=\left\{[u]_{\sim} \mid u \in U_{\mathcal{A}}\right\}$ where $[u]_{\sim}=\left\{v \in U_{\mathcal{A}} \mid u \sim v\right\}$
- For every function symbol f defined by $I_{\mathcal{A}}$: $f \mathcal{A} / \sim\left(\left[d_{1}\right]_{\sim}, \ldots,\left[d_{n}\right]_{\sim}\right)=\left[f^{\mathcal{A}}\left(d_{1}, \ldots, d_{n}\right)\right]_{\sim}$
- For every predicate symbol P defined by $I_{\mathcal{A}}$:

$$
P^{\mathcal{A} / \sim}\left(\left[d_{1}\right]_{\sim}, \ldots,\left[d_{n}\right]_{\sim}\right)=P^{\mathcal{A}}\left(d_{1}, \ldots, d_{n}\right)
$$

- For every variable x defined by $I_{\mathcal{A}}: x^{\mathcal{A} / \sim}=\left[x^{\mathcal{A}}\right]_{\sim}$

Lemma

$\mathcal{A} / \sim(t)=[\mathcal{A}(t)]_{\sim}$
Lemma
$\mathcal{A} / \sim(F)=\mathcal{A}(F)$

Theorem

The formulas F and $E_{F} \wedge F[E q /=]$ are equisatisfiable.
Proof We show that if $E_{F} \wedge F[E q /=]$ is sat., then F is satisfiable. Assume $\mathcal{A} \vDash E_{F} \wedge F[E q /=]$.
$\Rightarrow E q^{\mathcal{A}}$ is an congruence relation.
Let $\mathcal{B}=\mathcal{A} /_{E q \mathcal{A}}$ (extended with $=$ interpreted as identity).
$\Rightarrow \mathcal{B} \models F[E q /=]$
By construction $E q^{\mathcal{B}}$ is identity:
$E q^{\mathcal{B}}\left([a],\left[a^{\prime}\right]\right)=E q^{\mathcal{A}}\left(a, a^{\prime}\right)=\left([a]_{E q \mathcal{A}}=\left[a^{\prime}\right]_{E q \mathcal{A}}\right)$
$\Rightarrow \mathcal{B}(F[E q /=])=\mathcal{B}(F)$
$\Rightarrow \mathcal{B} \models F$
Conversely, it is easy to see that any model of F can be turned into a model of $E_{F} \wedge F[E q /=]$ by interpreting $E q$ as equality.

First-Order Logic Undecidability

[Cutland, Computability, Section 6.5.]

- Aim:

Show that validity of first-order formulas is undecidable

- Method:

Reduce the halting problem to validity of formulas by expressing program behaviour as formulas

Logical formulas can talk about computations!

Register machine programs (RMPs)

A register machine program is a sequence of instructions I_{1}, \ldots, I_{t}. The instructions manipulate registers $R_{i}(i=1,2, \ldots)$ that contain (unbounded!) natural numbers.
There are 4 instructions:

$$
\begin{aligned}
& R_{n}:=0 \\
& R_{n}:=R_{n}+1 \\
& R_{n}:=R_{m} \\
& \text { IF } R_{m}=R_{n} \text { GOTO } p
\end{aligned}
$$

Assumption: all jumps in a program go to $1, \ldots, t+1$; execution terminates when the PC is $t+1$.
Let r be the maximal index of any register used in a program P. Then the state of P during execution can be described by a tuple of natural numbers

$$
\left(n_{1}, \ldots, n_{r}, k\right)
$$

where n_{i} is the contents of R_{i} and k is the PC (the number of the next instruction to be executed).

Undecidability

Theorem (Undecidability of the halting problem for RMPs) It is undecidable if a given register machine program terminates when started in state $(0, \ldots, 0,1)$.

We reduce the halting problem for RMPs to the validity problem for first-order formulas.

Notation:
$P(0) \downarrow=$ "RMP P started in state $(0, \ldots, 0,1)$ terminates"

Theorem
Given an RMP P we can effectively construct a closed formula φ_{P} such that $P(0) \downarrow$ iff $\models \varphi_{P}$.

Proof by construction of φ_{P} from $P=I_{1}, \ldots, I_{t}$.
Funct. symb.: z, s. Abbr.: $\overline{0}=z, \overline{1}=s(z), \overline{2}=s(s(z)), \ldots$
Pred. symb.: R (arity: $r+1$) "reachable"
Aim: if $R\left(\overline{n_{1}}, \ldots \overline{n_{r}}, \bar{k}\right)$ then $(0, \ldots, 0,1) \stackrel{P}{\rightsquigarrow}\left(n_{1}, \ldots, n_{r}, k\right)$
For every I_{i} construct closed formula Ψ_{i} :

$$
\begin{array}{r}
I_{i}=\left(R_{n}:=0\right): \Psi_{i}:=\forall x_{1} \ldots x_{r} \begin{array}{r}
\left(R\left(x_{1}, \ldots, x_{n}, \ldots, x_{r}, \bar{i}\right) \rightarrow\right. \\
R\left(x_{1}, \ldots, z, \ldots, x_{r}, s(\bar{i})\right)
\end{array}
\end{array}
$$

$I_{i}=\left(R_{n}:=R_{n}+1\right):$ the same except $s\left(x_{n}\right)$ instead of z
$I_{i}=\left(R_{n}:=R_{m}\right)$: the same except x_{m} instead of z
$I_{i}=\left(I F R_{m}=R_{n}\right.$ GOTO $\left.p\right)$:
$\Psi_{i}:=\forall x_{1} \ldots x_{r}\left(R\left(x_{1}, \ldots, x_{r}, \bar{i}\right) \rightarrow\left(x_{m}=x_{n} \rightarrow R\left(x_{1}, \ldots, x_{r}, \bar{p}\right)\right) \wedge\right.$

$$
\left(x_{m} \neq x_{n} \rightarrow R\left(x_{1}, \ldots, x_{r}, s(\overline{\bar{i}})\right)\right)
$$

$\Psi_{P}:=\psi \wedge R(z, \ldots, z, s(z)) \wedge \Psi_{1} \wedge \cdots \wedge \Psi_{t}$
Ψ enforces that every model is similar to \mathbb{N} :
$\psi:=\forall x \forall y(s(x)=s(y) \rightarrow x=y) \wedge \forall x(z \neq s(x))$
(How can models of Ψ differ from \mathbb{N} ?)
$\varphi_{P}:=\Psi_{P} \rightarrow \tau$ where $\tau:=\exists x_{1} \ldots x_{r} R\left(x_{1}, \ldots, x_{r}, s(\bar{t})\right)$
Claim: $P(0) \downarrow$ iff $\models \varphi_{P}$
" \Rightarrow ": Assume $P(0) \downarrow$, show $\models \varphi_{P}$. Assume $\mathcal{A} \models \Psi_{P}$.
Lemma
If $(0, \ldots, 0,1) \stackrel{P}{\rightsquigarrow}\left(n_{1}, \ldots, n_{r}, k\right)$ then $\mathcal{A} \models R\left(\overline{n_{1}}, \ldots, \overline{n_{r}}, \bar{k}\right)$
Proof by induction on the length of the execution using $\mathcal{A} \models \Psi_{P}$.
Thus $\mathcal{A} \models \tau$ because $P(0) \downarrow$.
$" \Leftarrow ": \models \varphi_{P} \Rightarrow \mathcal{N} \vDash \varphi_{P} \Rightarrow\left(\mathcal{N} \vDash \Psi_{P} \Rightarrow \mathcal{N} \models \tau\right) \Rightarrow P(0) \downarrow$
where $U_{\mathcal{N}}:=\mathbb{N}, z^{\mathcal{N}}:=0 s^{\mathcal{N}}(n):=n+1$,
$R^{\mathcal{N}}:=\{s \mid(0, \ldots, 0,1) \stackrel{P}{\rightsquigarrow} s\}$

First-Order Logic Compactness

[Harrison, Section 3.16]

More Herbrand Theory

Recall Gödel-Herbrand-Skolem:
Theorem
Let F be a closed formula in Skolem form. Then F is satisfiable iff its Herbrand expansion $E(F)$ is (propositionally) satisfiable.
Can easily be generalized:
Theorem (1)
Let S be a set of closed formulas in Skolem form.
Then S is satisfiable iff $E(S)$ is (propositionally) satisfiable.

Transforming sets of formulas

Recall the transformation of single formulas into equisatisfiable Skolem form: close, RPF, skolemize

Theorem (2)

Let S be a countable set of closed formulas. Then we can transform it into an equisatisfiable set T of closed formulas in Skolem form.
We call this transformation function skolem.

- Can all formulas in S be transformed in parallel?
- Why countable?

Transforming sets of formulas

1. Put all formulas in S into RPF.

Problem in Skolemization step: How do we generate new function symbols if all of them have been used already in S ?
2. Rename all function symbols in $S: f_{i}^{k} \mapsto f_{2 i}^{k}$

The result: equisatisfiable countable set $\left\{F_{0}, F_{1}, \ldots\right\}$.
Unused symbols: all $f_{2 i+1}^{k}$
3. Skolemize the F_{i} one by one using the $f_{2 i+1}^{k}$ not used in the Skolemization of F_{0}, \ldots, F_{i-1}
Result is equisatisfiable with initial S.

Compactness

Theorem

Let S be a countable set of closed formulas.
If every finite subset of S is satisfiable, then S is satisfiable.
Proof every fin. $F \subseteq S$ is sat.
\Rightarrow every fin. $F \subseteq \operatorname{skolem}(S)$ is sat. by Theorem (2)
(fin. $F \subseteq \operatorname{skolem}(S) \Rightarrow F \subseteq \operatorname{skolem}\left(S_{0}\right)$ for some fin. $S_{0} \subseteq S$)
\Rightarrow for every fin. $F \subseteq$ skolem $(S), E(F)$ is prop. sat. by Theorem(1)
\Rightarrow every fin. $F^{\prime} \subseteq E($ skolem $(S))$ is prop. sat.
(there must exist a fin. $F \subseteq$ skolem (S) s.t. $F^{\prime} \subseteq E(F)$)
$\Rightarrow E($ skolem $(S))$ is prop. sat. by prop. compactness
$\Rightarrow \operatorname{skolem}(S)$ is sat. by Theorem (1)
$\Rightarrow S$ is sat. by Theorem (2)

First-Order Logic

The Classical Decision Problem

Validity/satisfiability of arbitrary first-order formulas is undecidable.

What about subclasses of formulas?

Examples
$\forall x \exists y(P(x) \rightarrow P(y))$
Satisfiable? Resolution?
$\exists x \forall y(P(x) \rightarrow P(y))$
Satisfiable? Resolution?

The $\exists^{*} \forall^{*}$ class

Definition

The $\exists^{*} \forall^{*}$ class is the class of closed formulas of the form

$$
\exists x_{1} \ldots \exists x_{m} \forall y_{1} \ldots \forall y_{n} F
$$

where F is quantifier-free and contains no function symbols of arity >0.

This is also called the Bernays-Schönfinkel class.
Corollary
Unsatisfiability is decidable for formulas in the $\exists^{*} \forall^{*}$ class.

What if a formula is not in the $\exists^{*} \forall^{*}$ class?
 Try to transform it into the $\exists^{*} \forall^{*}$ class!

Example
$\forall y \exists x(P(x) \wedge Q(y))$

Heuristic transformation procedure:

1. Put formula into NNF
2. Push all quantifiers into the formula as far as possible ("miniscoping")
3. Pull out \exists first and \forall afterwards

Miniscoping

Perform the following transformations bottom-up, as long as possible:

- $(\exists x F) \equiv F$ if x does not occur free in F
- $\exists x(F \vee G) \equiv(\exists x F) \vee(\exists x G)$
- $\exists x(F \wedge G) \equiv(\exists x F) \wedge G$ if x is not free in G
- $\exists x F$ where F is a conjunction, x occurs free in every conjunct, and the DNF of F is of the form $F_{1} \vee \cdots \vee F_{n}, n \geq 2$: $\exists x F \equiv \exists x\left(F_{1} \vee \cdots \vee F_{n}\right)$
Together with the dual transformations for \forall
Example
$\exists x(P(x) \wedge \exists y(Q(y) \vee R(x)))$
Warning: Complexity!

The monadic class

Definition

A formula is monadic if it contains only unary (monadic) predicate symbols and no function symbol of arity >0.

Examples

All men are mortal. Sokrates is a man. Sokrates is mortal.

The monadic class is decidable

Theorem
Satisfiability of monadic formulas is decidable.
Proof Put into NNF. Perform miniscoping.
The result has no nested quantifiers (Exercise!).
First pull out all \exists, then all \forall.
Existentially quantify free variables.
The result is in the $\exists^{*} \forall^{*}$ class.
Corollary
Validity of monadic formulas is decidable.

The finite model property

Definition

A formula F has the finite model property (for satisfiability) if F has a model iff F has a finite model.

Theorem
If a formula has the finite model property, satisfiability is decidable.
Theorem
Monadic formulas have the finite model property.

The finite model property

Theorem

Monadic formulas have the finite model property.
Proof A satisfiable monadic formula F with k different monadic predicate symbols P_{1}, \ldots, P_{k} has a model of size $\leq 2^{k}$.
Given a model \mathcal{A} of F, define \sim such that $\left|U_{\mathcal{A} / \sim}\right| \leq 2^{k}$:
$u \sim v$ iff for all $i, P_{i}^{\mathcal{A}}(u)=P_{i}^{\mathcal{A}}(v)$
Why $\left|U_{\mathcal{A} / \sim}\right| \leq 2^{k}$?
Every class $[u]_{\sim}$ can be viewed as a bit-vector of length k : $\left(P_{1}^{\mathcal{A}}(u), \ldots, P_{k}^{\mathcal{A}}(u)\right)$
Obvious: \sim is an equivalence.
\sim is a congruence: if $u \sim v$ then $P_{i}^{\mathcal{A}}(u)=P_{i}^{\mathcal{A}}(u)$ for all i

Classification by quantifier prefix of prenex form

There is a complete classification of decidable and undecidable classes of formulas based on

- the form of the quantifier prefix of the prenex form
- the arity of the predicate and function symbols allowed
- whether " $=$ " is allowed or not.

A complete classification

Only formulas without function symbols of arity >0, no restrictions on predicate symbols.
Satisfiability is decidable:

$$
\begin{aligned}
& \exists^{*} \forall^{*} \\
\exists^{*} \forall \exists^{*} & \text { (Ackermann 1928) } \\
\exists^{*} \forall^{2} \exists^{*} & \text { (Gödel 1932) }
\end{aligned}
$$

Satsifiability is undecidable:

$$
\begin{aligned}
& \forall^{3} \exists \text { (Surányi 1959) } \\
& \forall \exists \forall \text { (Kahr, Moore, Wang 1962) }
\end{aligned}
$$

Why complete?
Famous mistake by Gödel: $\exists^{*} \forall^{2} \exists^{*}$ with " $=$ " is undecidable (Goldfarb 1984)

First-Order Logic Basic Proof Theory

Gebundene Namen sind Schall und Rauch

We permit ourselves to identifty formulas that differ only in the names of bound variables.

Example
$\forall x \exists y P(x, y)=\forall u \exists v P(u, v)$
The renaming must not capture free variables:
$\forall x P(x, y) \neq \forall y P(y, y)$
Substitution $F[t / x]$ assumes that bound variables in F are automatically renamed to avoid capturing free variables in t.

Example
$(\forall x P(x, y))[f(x) / y]=\forall x^{\prime} P\left(x^{\prime}, f(x)\right)$

All proof systems below are extensions of the corresponding propositional systems

Sequent Calculus

Sequent Calculus rules

$$
\begin{array}{ll}
\frac{F[t / x], \forall x F, \Gamma \Rightarrow \Delta}{\forall x F, \Gamma \Rightarrow \Delta} \forall L & \frac{\Gamma \Rightarrow F[y / x], \Delta}{\Gamma \Rightarrow \forall x F, \Delta} \forall R(*) \\
\frac{F[y / x], \Gamma \Rightarrow \Delta}{\exists x F, \Gamma \Rightarrow \Delta} \exists L(*) & \frac{\Gamma \Rightarrow F[t / x], \exists x F, \Delta}{\Gamma \Rightarrow \exists x F, \Delta} \exists R
\end{array}
$$

(*): y not free in the conclusion of the rule
Note: $\forall L$ and $\exists R$ do not delete the principal formula

Soundness

Lemma
For every quantifier rule $\frac{S^{\prime}}{S},|S|$ and $\left|S^{\prime}\right|$ are equivalid.
Theorem (Soundness)
If $\vdash_{G} S$ then $\vDash|S|$.
Proof induction on the size of the proof of $\vdash_{G} S$
using the above lemma and the corresponding propositional lemma $\left(|S| \equiv\left|S_{1}\right| \wedge \ldots \wedge\left|S_{n}\right|\right)$.

Completeness Proof

Construct counter model from (possibly infinite!) failed proof search
Let e_{0}, e_{1}, \ldots be an enumeration of all terms (over some given set of function symbols and variables)

Proof search

Construct proof tree incrementally:

1. Pick some uproved leaf $\Gamma \Rightarrow \Delta$
such that some rule is applicable.
2. Pick some principal formula in $\Gamma \Rightarrow \Delta$ fairly and apply rule. $\forall R, \exists L$: pick some arbitrary new y $\forall L, \exists R$:

$$
t= \begin{cases}e_{0} & \begin{array}{l}
\text { if the p.f. has never been instantiated } \\
\text { (on the path to the root) }
\end{array} \\
e_{i+1} & \begin{array}{l}
\text { if the previous instantiation of the p.f. } \\
\text { (on the path to the root) used } e_{i}
\end{array}\end{cases}
$$

Failed proof search: there is a branch A such that A ends in a sequent where no rule is applicable or A is infinite.

Construction of Herbrand countermodel \mathcal{A} from A

$U_{\mathcal{A}}=$ all terms over the function symbols and variables in A
$f^{\mathcal{A}}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$
$P^{\mathcal{A}}=\left\{\left(t_{1}, \ldots, t_{n}\right) \mid P\left(t_{1}, \ldots, t_{n}\right) \in \Gamma\right.$ for some $\left.\Gamma \Rightarrow \Delta \in A\right\}$

Theorem

For all $\Gamma \Rightarrow \Delta \in A: \mathcal{A}(F)= \begin{cases}1 & \text { if } F \in \Gamma \\ 0 & \text { if } F \in \Delta\end{cases}$
Proof by induction on the structure of F
$F=P\left(t_{1}, \ldots, t_{n}\right)$:
$F \in \Gamma \Rightarrow \mathcal{A}(F)=1$ by def
$F \in \Delta \Rightarrow F \notin$ any $\Gamma \in A$, (A would end in $A x) \Rightarrow \mathcal{A}(F)=0$
F not atomic $\Rightarrow F$ must be p.f. in some $\Gamma \Rightarrow \Delta \in A$ (fairness!)
Let $\Gamma^{\prime} \Rightarrow \Delta^{\prime}$ be the next sequent in A
$F=\neg G: F \in \Gamma$ iff $G \in \Delta^{\prime}$ iff $\mathcal{A}(G)=0$ (IH) iff $\mathcal{A}(F)=1$
$F=G_{1} \wedge G_{2}:$
$F \in \Gamma \Rightarrow G_{1}, G_{2} \in \Gamma^{\prime} \Rightarrow A\left(G_{1}\right)=\mathcal{A}\left(G_{2}\right)=1(\mathrm{IH}) \Rightarrow \mathcal{A}(F)=1$
$F \in \Delta \Rightarrow G_{1} \in \Delta^{\prime}$ or $G_{2} \in \Delta^{\prime} \Rightarrow \mathcal{A}\left(G_{1}\right)=0$ or $\mathcal{A}\left(G_{2}\right)=0(\mathrm{IH})$
$\Rightarrow \mathcal{A}(F)=0$
$F=\forall x G: F \in \Delta \Rightarrow G[y / x] \in \Delta^{\prime} \Rightarrow \mathcal{A}(G[y / x])=0(\mathrm{IH})$
$\Rightarrow \mathcal{A}[\mathcal{A}(y) / x](G)=0 \Rightarrow \mathcal{A}(F)=0$

Completeness

Corollary

If proof search with root $\Gamma \Rightarrow \Delta$ fails, then there is a structure \mathcal{A} such that $\mathcal{A}(\bigwedge \Gamma \rightarrow \bigvee \Delta)=0$.

Example
$\exists x P(x) \Rightarrow \forall x P(x)$

Corollary (Completeness)
If $\models|\Gamma \rightarrow \Delta|$ then $\vdash_{G} \Gamma \Rightarrow \Delta$
Proof by contradiction. If not $\vdash_{G} \Gamma \Rightarrow \Delta$ then proof search fails.
Then there is an \mathcal{A} such that $\mathcal{A}(\bigwedge \Gamma \rightarrow \bigvee \Delta)=0$.
Therefore not $\models|\Gamma \rightarrow \Delta|$.

Natural Deduction

Natural Deduction rules

$$
\begin{array}{lc}
\frac{F[y / x]}{\forall x F} \forall I(*) & \frac{\forall x F}{F[t / x]} \forall E \\
& {[F[y / x]]} \\
& \vdots \\
\frac{F[t / x]}{\exists x F} \exists I & \frac{\exists x F \quad \dot{H}}{H} \exists E(* *)
\end{array}
$$

$(*):(y=x$ or $y \notin f v(F))$ and
y not free in an open assumption in the proof of $F[y / x]$
$(* *):(y=x$ or $y \notin f v(F))$ and
y not free in H or in an open assumption in the proof of the second premise, except for $F[y / x]$

Theorem (Soundness)
If $\Gamma \vdash_{N} F$ then $\Gamma \models F$
Proof as before, with additional cases:

$$
\begin{gathered}
{[F[y / x]]} \\
\vdots \\
\frac{\exists x F \quad \stackrel{H}{H}}{H} \exists E(* *)
\end{gathered}
$$

$$
\mathrm{IH}: \Gamma \models \exists x F \text { and } F[y / x], \Gamma \models H
$$

Show $\Gamma \models H$. Assume $\mathcal{A} \models \Gamma$.
$\Rightarrow \mathcal{A} \vDash \exists x F($ by IH$) \Rightarrow$ there is a $u \in U_{\mathcal{A}}$ s.t. $\mathcal{A}[u / x] \models F$
$\Rightarrow \mathcal{A}[u / y] \models F[y / x] \quad$ because $y=x$ or $y \notin f v(F)$
$\mathcal{A}[u / y] \models \Gamma \quad$ because y not free in Γ
$\Rightarrow \mathcal{A}[u / y] \models H \quad$ by IH
$\Rightarrow \mathcal{A} \models H \quad$ because y not free in H

Theorem (ND can simulate SC)
If $\vdash_{G} \Gamma \Rightarrow \Delta$ then $\Gamma, \neg \Delta \vdash_{N} \perp\left(\right.$ where $\left.\neg\left\{F_{1}, \ldots\right\}=\left\{\neg F_{1}, \ldots\right\}\right)$
Proof by induction on (the depth of) $\vdash_{G} \Gamma \Rightarrow \Delta$

Corollary (Completeness of ND)
If $\Gamma \vDash F$ then $\Gamma \vdash_{N} F$
Proof as before: compactness, completeness of \vdash_{G}, translation to \vdash_{N}

Translation from \vdash_{N} to \vdash_{G} also as before: $I \mapsto R, E \mapsto L+c u t$

Equality

Hilbert System

Hilbert System

Additional rule $\forall I$:
if F is provable then $\forall y F[y / x]$ is provable provided x not free in the assumptions and $(y=x$ or $y \notin f v(F))$
Additional axioms:
$\forall x F \rightarrow F[t / x]$
$F[t / x] \rightarrow \exists x F$
$\forall x(G \rightarrow F) \rightarrow(G \rightarrow \forall y F[y / x])$
$\forall x(F \rightarrow G) \rightarrow(\exists y F[y / x] \rightarrow G)$
$(*)$ if $x \notin f v(G)$ and $(y=x$ or $y \notin f v(F))$

Equivalence of Hilbert and ND

As before, with additional cases.

First-order Predicate Logic Theories

Definitions

Definition

A signature Σ is a set of predicate and function symbols.
A Σ-formula is a formula that contains only predicate and function symbols from Σ.
A Σ-structure is a structure that interprets all predicate and function symbols from Σ.

Definition
A sentence is a closed formula.
In the sequel, S is a set of sentences.

Theories

Definition

A theory is a set of sentences S such that S is closed under consequence: If $S \models F$ and F is closed, then $F \in S$.

Let \mathcal{A} be a \sum-structure:
$\operatorname{Th}(\mathcal{A})$ is the set of all sentences true in \mathcal{A} :
$T h(\mathcal{A})=\left\{F \mid F \sum\right.$-sentence and $\left.\mathcal{A} \models F\right\}$
Lemma
Let \mathcal{A} be a Σ-structure and F a Σ-sentence.
Then $\mathcal{A} \models F$ iff $\operatorname{Th}(\mathcal{A}) \models F$.
Corollary
$\operatorname{Th}(\mathcal{A})$ is a theory.

Lemma

Let \mathcal{A} be a \sum-structure and F a \sum-sentence. Then $\mathcal{A} \models F$ iff $\operatorname{Th}(\mathcal{A}) \models F$.
Proof
$" \Rightarrow ": \mathcal{A} \models F \Rightarrow F \in \operatorname{Th}(\mathcal{A}) \Rightarrow \operatorname{Th}(\mathcal{A}) \models F$
" \Leftarrow ":
Assume $\operatorname{Th}(\mathcal{A}) \models F$
\Rightarrow for all \mathcal{B}, if $\mathcal{B} \models \operatorname{Th}(\mathcal{A})$ then $\mathcal{B} \models F$
$\Rightarrow \mathcal{A} \models F$ because $\mathcal{A} \vDash \operatorname{Th}(\mathcal{A})$

Example

Notation: $(\mathbb{Z},+, \leq)$ denotes the structure with universe \mathbb{Z} and the standard interpretations for the symbols + and \leq.
The same notation is used for other standard structures where the interpretation of a symbol is clear from the symbol.

Example (Linear integer arithmetic)

$T h(\mathbb{Z},+, \leq)$ is the set of all sentences over the signature $\{+, \leq\}$ that are true in the structure $(\mathbb{Z},+, \leq)$.

Famous numerical theories

$T h(\mathbb{R},+, \leq)$ is called linear real arithmetic.
It is decidable.
$T h(\mathbb{R},+, *, \leq)$ is called real arithmetic.
It is decidable.
$\operatorname{Th}(\mathbb{Z},+, \leq)$ is called linear integer arithmetic or Presburger arithmetic.
It is decidable.
$T h(\mathbb{Z},+, *, \leq)$ is called integer arithmetic.
It is not even semidecidable ($=$ r.e.).
Decidability via special algorithms.

Consequences

Definition

Let S be a set of Σ-sentences.
$C n(S)$ is the set of consequences of S :
$C n(S)=\left\{F \mid F \sum\right.$-sentence and $\left.S \models F\right\}$

Examples

$C n(\emptyset)$ is the set of valid sentences.
$C n(\{\forall x \forall y \forall z(x * y) * z=x *(y * z)\})$ is the set of sentences that are true in all semigroups.

Lemma

If S is a set of \sum-sentences, $C n(S)$ is a theory.
Proof Assume F is closed and $C n(S) \models F$. Show $F \in C n(S)$, i.e. $S \models F$. Assume $\mathcal{A} \models S$. Thus $\mathcal{A} \models C n(S)\left(^{*}\right)$ and hence $\mathcal{A} \models F$, i.e. $S \models F$. $\left(^{*}\right)$: Assume $G \in C n(S)$, i.e. $S \models G$. With $\mathcal{A} \models S$ the desired $\mathcal{A} \models G$ follows.

Axioms

Definition

Let S be a set of Σ-sentences.
A theory T is axiomatized by S if $T=C n(S)$
A theory T is axiomatizable if there is some decidable or recursively enumerable S that axiomatizes T.
A theory T is finitely axiomatizable if there is some finite S that axiomatizes T.

Completeness and elementary equivalence

Definition

A theory T is complete if for every sentence $F, T \models F$ or $T \models \neg F$.

Fact

$\operatorname{Th}(\mathcal{A})$ is complete.
Example
$C n(\{\forall x \forall y \forall z(x * y) * z=x *(y * z)\})$ is incomplete: neither $\forall x \forall y x * y=y * x$ nor its negation are present.

Definition
Two structures \mathcal{A} and \mathcal{B} are elementarily equivalent if
$\operatorname{Th}(\mathcal{A})=\operatorname{Th}(\mathcal{B})$.
Theorem
A theory T is complete iff all its models are elementarily equivalent.

Theorem

A theory T is complete iff all its models are elementarily equivalent.
Proof If T is unsatisfiable, then T is complete (because $T \models F$ for all F) and all models are elementarily equivalent.
Now assume T has a model \mathcal{M}.
" \Rightarrow "
Assume T is complete. Let $F \in \operatorname{Th}(\mathcal{M})$.
We cannot have $T \models \neg F$ because $\mathcal{M} \vDash T$ would imply $\mathcal{M} \vDash \neg F$ but $\mathcal{M} \vDash F$ because $F \in \operatorname{Th}(\mathcal{M})$. Thus $T \models F$ by completeness.
Therefore every formula that is true in some model of T is true in all models of T.
" \Leftarrow "
Assume all models of T are elem.eq. Let F be closed.
Either $\mathcal{M} \models F$ or $\mathcal{M} \models \neg F$. By elem.eq. $T \models F$ or $T \models \neg F$.
Why? Assume $\mathcal{M} \vDash F$ (similar for $\mathcal{M} \models \neg F)$.
To show $T \models F$, assume $\mathcal{A} \models T$ and show $\mathcal{A} \models F$.
$\Rightarrow \operatorname{Th}(\mathcal{A})=\operatorname{Th}(\mathcal{M})$ by elem.eq.
\Rightarrow for all closed $F, \mathcal{A} \models F$ iff $\mathcal{M} \models F$
$\Rightarrow \mathcal{A} \models F$ because $\mathcal{M} \models F$

Quantifier Elimination

Helpful lemmas

Let S be a set of sentences.
Lemma
$S \models F \quad$ iff $S \models \forall F$
Lemma
If $S \vDash F \leftrightarrow G$ then $S \models H[F] \leftrightarrow H[G]$,
i.e. one can replace a subformula F of H by G.

Quantifier elimination

Definition
If $T \models F \leftrightarrow F^{\prime}$ we say that F and F^{\prime} are T-equivalent.

Definition

A theory T admits quantifier elimination if for every formula F there is a quantifier-free T-equivalent formula G such that $f v(G) \subseteq f v(F)$. We call G a quantifier-free T-equivalent of F.

Examples

$$
\begin{aligned}
& \exists x \exists y(3 * x+5 * y=7) \leftrightarrow ? \\
& \forall y(x<y \wedge y<z) \leftrightarrow ? \\
& \exists y(x<y \wedge y<z) \leftrightarrow ?
\end{aligned}
$$

In linear real arithmetic: $\forall y(x<y \wedge y<z) \leftrightarrow$?

Quantifier elimination

A quantifier-elimination procedure (QEP) for a theory T and a set of formulas \mathcal{F} is a function that computes for every $F \in \mathcal{F}$ a quantifier-free T-equivalent.

Lemma

Let T be a theory such that

- T has a QEP for all formulas and
- for all ground formulas $G, T \models G$ or $T \models \neg G$, and it is decidable which is the case.
Then T is decidable and complete.

Simplifying quantifier elimination: one \exists

Fact
If T has a QEP for all $\exists x F$ where F is quantifier-free, then T has a QEP for all formulas.

Essence: It is sufficient to be able to eliminate a single \exists
Construction:
Given: a QEP qe1 for formulas of the form $\exists x F$ where F is quantifier-free
Define: a QEP for all formulas
Method: Eliminate quantifiers bottom-up by qe1, use $\forall \equiv \neg \exists \neg$

Simplifying quantifier elimination: $\exists x \bigwedge$ literals

Lemma
If T has a QEP for all $\exists x F$ where F is a conjunction of literals, all of which contain x, then T has a QEP for all $\exists x F$ where F is quantifier-free.

Construction:
Given: a QEP qe1c for formulas of the form $\exists x\left(L_{1} \wedge \cdots \wedge L_{n}\right)$ where each L_{i} is a literal that contains x
Define: $q e 1(\exists x F)$ where F is quantifier-free Method: DNF; miniscoping; qe1c

This is the end of the generic part of quantifier elimination.
The rest is theory specific.

Eliminating " \neg "

Motivation: $\neg x<y \leftrightarrow y<x \vee y=x$ for linear orderings
Assume that there is a computable function aneg that maps every negated atom to a quantifier-free and negation-free T-equivalent formula.

Lemma

If T has a QEP for all $\exists x F$ where F is a conjunction of atoms, all of which contain x, then T has a $Q E P$ for all $\exists x F$ where F is quantifier-free.
Construction:
Given: a QEP qe1ca for formulas of the form $\exists x\left(A_{1} \wedge \cdots \wedge A_{n}\right)$ where each atom A_{i} contains x
Define: $q e 1(\exists x F)$ where F quantifier-free Method: NNF; aneg; DNF; miniscoping; qe1ca

Quantifier Elimination Dense Linear Orders Without Endpoints

Dense Linear Orders Without Endpoints

$\Sigma=\{<,=\}$
Let DLO stand for "dense linear order without endpoints" and for the following set of axioms:

$$
\begin{aligned}
& \forall x \forall y \forall z(x<y \wedge y<z \rightarrow x<z) \\
& \forall x \neg(x<x) \\
& \forall x \forall y(x<y \vee x=y \vee y<x) \\
& \forall x \forall z(x<z \rightarrow \exists y(x<y \wedge y<z) \\
& \forall x \exists y x<y \\
& \forall x \exists y y<x
\end{aligned}
$$

Models of DLO?
Theorem
All countable DLOs are isomorphic.

Quantifier elimination example

Example

$D L O \models \exists y(x<y \wedge y<z) \leftrightarrow$

Eliminiation of " \neg "

Elimination of negative literals (function aneg):
$D L O \models \neg x=y \leftrightarrow x<y \vee y<x$
$D L O \models \neg x<y \leftrightarrow x=y \vee y<x$

Quantifier elimination for conjunctions of atoms

QEP qe1ca $\left(\exists x\left(A_{1} \wedge \cdots \wedge A_{n}\right)\right.$ where x occurs in all A_{i} :

1. Eliminate " $=$ ": Drop all A_{i} of the form $x=x$.

If some A_{i} is of the form $x=y$ (x and y different), eliminate $\exists x$:

$$
\exists x(x=t \wedge F) \equiv F[t / x] \quad(x \text { does not occur in } t)
$$

Otherwise:
2. Eliminate $x<x$: return \perp
3. Separate atoms into lower and upper bounds for x and use

$$
D L O \models \exists x\left(\bigwedge_{i=1}^{m} I_{i}<x \wedge \bigwedge_{j=1}^{n} x<u_{j}\right) \leftrightarrow \bigwedge_{i=1}^{m} \bigwedge_{j=1}^{n} I_{i}<u_{j}
$$

Special case: $\bigwedge_{k=1}^{0} F_{k}=\top$
Examples
$\exists x\left(x<z \wedge y<x \wedge x<y^{\prime}\right) \leftrightarrow ?$
$\forall x(x<y) \leftrightarrow$?
$\exists x \exists y \exists z(x<y \wedge y<z \wedge z<x) \leftrightarrow ?$

Complexity

Quadratic blow-up with each elimination step

\Rightarrow Eliminating all \exists from

$$
\exists x_{1} \ldots \exists x_{m} F
$$

where F has length n needs $O(\quad)$, assuming F is DNF.

Consequences

- $C n(D L O)$ has quantifier elimination
- $C n(D L O)$ is decidable and complete
- All models of DLO (for example $(\mathbb{Q},<)$ and $(\mathbb{R},<)$) are elementarily equivalent: you cannot distinguish models of DLO by first-order formulas.

Quantifier Elimination Linear real arithmetic

Linear real arithmetic

$$
\mathcal{R}_{+}=(\mathbb{R}, 0,1,+,<,=), \quad R_{+}=\operatorname{Th}\left(\mathcal{R}_{+}\right)
$$

For convenience we allow the following additional function symbols:
For every $c \in \mathbb{Q}$:

- c is a constant symbol
- c., multiplication with c, is a unary function symbol

A term in normal form: $c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c$ where $c_{i} \neq 0, x_{i} \neq x_{j}$ if $i \neq j$.
Every atom A is R_{+}-equivalent to an atom $0 \bowtie t$ in normal form (NF) where $\bowtie \in\{<,=\}$ and t is in normal form.

An atom is solved for x if it is of the form $x<t, x=t$ or $t<x$ where x does not occur in t.
Any atom A in normal form that contains x can be transformed into an R_{+}-equivalent atom solved for x.
Function sol (A) solves A for x.

Eliminiation of " \neg "

Elimination of negative literals (function aneg):
$R_{+} \vDash \neg x=y \leftrightarrow x<y \vee y<x$
$R_{+} \models \neg x<y \leftrightarrow x=y \vee y<x$

Fourier-Motzkin Elimination

QEP qe1ca $\left(\exists x\left(A_{1} \wedge \cdots \wedge A_{n}\right)\right.$, all A_{i} in NF and contain x :

1. Let $S=\left\{\right.$ sol $_{x}\left(A_{1}\right), \ldots$, sol $\left._{x}\left(A_{n}\right)\right\}$
2. Eliminate " $=$ ":

If $(x=t) \in S$ for some t, eliminate $\exists x$:

$$
\exists x(x=t \wedge F) \equiv F[t / x] \quad(x \text { does not occur in } t)
$$

Otherwise return

$$
\bigwedge_{(I<x) \in S} \bigwedge_{(x<u) \in S} I<u
$$

Special case: empty \bigwedge is \top
All returned formulas are implicitly put into NF.
Examples
$\exists x \exists y(3 x+5 y<7 \wedge 2 x-3 y<2) \leftrightarrow ?$
$\exists x \forall y(3 y \leq x \vee x \leq 2 y) \leftrightarrow$?

Can DNF be avoided?

Ferrante and Rackoff's theorem

Theorem
Let F be quantifier-free and negation-free and assume all atoms that contain x are solved for x. Let S_{x} be the set of atoms in F that contain x. Let $L=\left\{I \mid(I<x) \in S_{x}\right\}$, $U=\left\{u \mid(x<u) \in S_{x}\right\}, E=\left\{t \mid(x=t) \in S_{x}\right\}$. Then

$$
\begin{aligned}
R_{+} \models \exists x F \leftrightarrow & F[-\infty / x] \vee F[\infty / x] \vee \\
& \bigvee_{t \in E} F[t / x] \vee \bigvee_{I \in L} \bigvee_{u \in U} F[0.5(I+u) / x]
\end{aligned}
$$

(note: empty \bigvee is \perp) where $F[-\infty / x](F[\infty / x])$ is the following transformation of all solved atoms in $F: \quad x<t \mapsto \top(\perp)$

$$
\begin{aligned}
& t<x \mapsto \perp(\top) \\
& x=t \mapsto \perp(\perp)
\end{aligned}
$$

Examples
$\exists x(y<x \wedge x<z) \leftrightarrow ?$
$\exists x x<y \leftrightarrow ?$

Ferrante and Rackoff's procedure

Define $q e 1(\exists x F)$:

1. Put F into NNF, eliminate all negations, put all atoms into normal form, solve those atoms for x that contain x.
2. Apply Ferrante and Rackoff's theorem.

Theorem
Eliminating all quantifiers with Ferrante and Rackoff's procedure from a formula of size n takes space $O\left(2^{c n}\right)$ and time $O\left(2^{2^{d n}}\right)$.

Quantifier Elimination Presburger Arithmetic

See [Harrison] or [Enderton] under "Presburger"

Presburger Arithmetic

Linear integer arithmetic: $\mathcal{Z}_{+}:=(\mathbb{Z},+, 0,1, \leq)$
A problem with \mathcal{Z}_{+}:

$$
\mathcal{Z}_{+} \vDash \exists x x+x=y \leftrightarrow ?
$$

Fact Linear integer arithmetic does not have quantifier elimination
Presburger Arithmetic is linear integer arithmetic extended with the unary functions " $2|. ", " 3| . ", \ldots$
(Alternative: ". = . $(\bmod 2) ", \quad " .=.(\bmod 3) ", \ldots)$
Notation: $\mathcal{P}:=\mathcal{Z}_{+}$extended with " $k \mid$."
For convenience: add constants $c \in \mathbb{Z}$ and multiplication with constants $c \in \mathbb{Z}$

Normal form of atoms:
$0 \leq c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c$
$k \mid c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c$
where $c_{i} \neq 0$ and $k \geq 1$
Where necessary, atoms are put into normal form

Presburger Arithmetic

Elimination of \neg :
$\mathcal{Z}_{+} \vDash \neg s \leq t \leftrightarrow t+1 \leq s$
$\mathcal{Z}_{+}|=\neg k| t \leftrightarrow k|t+1 \vee k| t+2 \vee \cdots \vee k \mid t+(k-1)$
Elimination of $\neg \mid$ expensive and not really necessary. Can treat $\neg \mid$ like |

Quantifier Elimination for \mathcal{P}

Step 1

```
\(q e 1 c a(\exists x F)\)
where \(F=A_{1} \wedge \cdots \wedge A_{l}\)
```

where all A_{i} are atoms in normal form which contain x
Step 1: Set all coeffs of x in F to 1 or -1 :

1. Set all coeffs of x in F to the Icm m of all coeffs of x
2. Set all coeffs of x to 1 or -1 and add $\wedge m \mid x$

Quantifier Elimination for \mathcal{P}

Step 1

$q e 1 c a\left(\exists x A_{1} \wedge \cdots \wedge A_{l}\right)$
Step 1: Set all coeffs of x in F to 1 or -1
The details, in one step:
Let m be the (positive) Icm of all coeffs of x (eg lcm $\{-6,9\}=18)$ Let R be coeff $1\left(A_{1}\right) \wedge \cdots \wedge$ coeff $1\left(A_{l}\right) \wedge m \mid x($ result $)$ where coeff $1\left(0 \leq c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c\right)=\left(0 \leq c_{1}^{\prime} \cdot x_{1}+\ldots+c_{n}^{\prime} \cdot x_{n}+c^{\prime}\right)$
$\operatorname{coeff} 1\left(d \mid c_{1} \cdot x_{1}+\ldots+c_{n} \cdot x_{n}+c\right)=\left(d^{\prime} \mid c_{1}^{\prime} \cdot x_{1}+\ldots+c_{n}^{\prime} \cdot x_{n}+c^{\prime}\right)$ $x_{k}=x$
$m^{\prime}=m /\left|c_{k}\right|$
$c_{i}^{\prime}=m^{\prime} \cdot c_{i}$ if $i \neq k$
$c_{k}^{\prime}=$ if $c_{k}>0$ then 1 else -1
$c^{\prime}=m^{\prime} \cdot c$
$d^{\prime}=m^{\prime} \cdot d$
Lemma $\mathcal{P} \models(\exists x F) \leftrightarrow(\exists x R)$

Quantifier Elimination for \mathcal{P}

Step 2

$$
\begin{array}{ll}
A_{L}:=\text { set of all } 0 \leq x+t \text { in } R & L:=\left\{-t \mid(0 \leq x+t) \in A_{L}\right\} \\
A_{U}:=\text { set of all } 0 \leq-x+t \text { in } R & U:=\left\{t \mid(0 \leq-x+t) \in A_{U}\right\}
\end{array}
$$

$D:=$ the set of all $d \mid t$ in R $m:=$ the (pos.) Icm of $\{d \mid(d \mid t) \in D$ for some $t\}$
The quantifier-free result:

$$
\begin{aligned}
R^{\prime}:= & \text { if } L=\emptyset \\
& \text { then } \bigvee_{i=0}^{m-1} \bigwedge D[i / x] \\
& \text { else } \bigvee_{i=0}^{m-1} \bigvee_{I \in L} R[I+i / x]
\end{aligned}
$$

Optimisation: use U instead of L
Lemma (Periodicity Lemma)
If $A \in D$, i.e. $A=(d \mid x+t)$ and $x \notin f v(t)$, and $i \equiv j(\bmod d)$ then $\mathcal{P} \models A[i / x] \leftrightarrow A[j / x]$.

Incompleteness of (Integer) Arithmetic

[Schöning, Theoretische Informatik]

眺 Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. 1931.

Kurt Gödel 1906 (Brünn) 1978 (Princeton)

Syntax of arithmetic:
Variablen: $V \rightarrow x|y| z \mid \ldots$
Zahlen: $N \rightarrow 0|1| 2 \mid \ldots$
Terme: $\quad T \rightarrow V|N|(T+T) \mid(T * T)$
Formeln: $F \rightarrow(T=T)|\neg F|(F \wedge F)|(F \vee F)| \exists V . F$
We consider $\forall x . F$ as an abberviation for $\neg \exists x . \neg F$.

Definition

An occurrence of a variable x in a formula F is bound iff the occurrence is in a subformula of the form $\exists x . F^{\prime}$ within F^{\prime}.
An occurrence is free iff it is not bound.

Notation: $F\left(x_{1}, \ldots, x_{k}\right)$ denotes a formula in which at most the variables x_{1}, \ldots, x_{k} occur free.
If $n_{1}, \ldots, n_{k} \in \mathbb{N}$ then $F\left(n_{1}, \ldots, n_{k}\right)$ is the result of substituting n_{1}, \ldots, n_{k} for the free occurrences of x_{1}, \ldots, x_{k}.

Example

$$
\begin{aligned}
F(x, y) & =(x=y \wedge \exists x \cdot x=y) \\
F(5,7) & =(5=7 \wedge \exists x \cdot x=7)
\end{aligned}
$$

A sentence is a formula without free variables.
Example

$$
\exists x . \exists y . x=y
$$

S is the set of arithmetic sentences.

Definition

W is the set of true sentences of arithmetic:

$$
\begin{array}{rll}
\left(t_{1}=t_{2}\right) \in W & \text { iff } & t_{1} \text { and } t_{2} \text { have the same value. } \\
\neg F \in W & \text { iff } & F \notin W \\
(F \wedge G) \in W & \text { iff } & F \in W \text { and } G \in W \\
(F \vee G) \in W & \text { iff } & F \in W \text { or } G \in W \\
\exists x . F(x) \in W & \text { iff } & \text { there is some } n \in \mathbb{N} \text { s.t. } F(n) \in W
\end{array}
$$

Fact
For every sentence $F: F \in W$ iff $\neg F \notin W$,
NB If a formula with free variables is true or not can depend on the value of the free variables:

$$
\exists x \cdot x+x=y
$$

Therefore absolute truth only makes sense for sentences.

Formulas can represent functions and relations.

Examples

$$
F(x, y)=(\exists z . y=x+z+1)
$$

represents " $x<y$ ": $t_{1}<t_{2}$ is an abbreviation of $F\left(t_{1}, t_{2}\right)$.

$$
F(x, y, z)=(\exists k . x=k * y+z \wedge z<y)
$$

represents " $z=x \bmod y$ "

Definition

A partial function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is arithmetically representable iff there is a formula $F\left(x_{1}, \ldots, x_{k}, y\right)$ s.t. for all $n_{1}, \ldots, n_{k}, m \in \mathbb{N}$:

$$
f\left(n_{1}, \ldots, n_{k}\right)=m \quad \text { iff } \quad F\left(n_{1}, \ldots, n_{k}, m\right) \in W
$$

Theorem
Every WHILE-computable function is arithmetically representable.

Theorem

W is not decidable.
Proof.
Let $U \subseteq \mathbb{N}$ be a semi-decidabe but not decidable set.
$\Rightarrow \chi_{U}^{\prime}$ is WHILE-computable
$\Rightarrow \chi_{U}^{\prime}$ is arithmetically representable by some $F(x, y)$
$\Rightarrow n \in U$ iff $\chi_{U}^{\prime}(n)=1$ iff $F(n, 1) \in W$
$\Rightarrow W$ is not decidable.
Corollary
W is not semi-decidable.

What is a proof system? Minimal requirement:
It must decidable if a given text is a poof of a given formula.
We code proofs as natural numbers.

Definition

A proof system for arithmetic is a decidable predicate

$$
\text { Prf : } \mathbb{N} \times S \rightarrow\{0,1\}
$$

where $\operatorname{Prf}(p, F)$ means "' p is a proof for the sentence F "'. A proof system Prf is correct iff

$$
\operatorname{Prf}(p, F) \Rightarrow F \in W
$$

A proof system Prf is complete iff
$F \in W \Rightarrow$ there exists a p with $\operatorname{Prf}(p, F)$.

Theorem (Gödel)
There is no correct and complete proof system for arithmetic.
Proof.
With every correct and complete proof system
$\chi_{W}^{\prime}(F)$ can be programmed:
$p:=0$
while $\operatorname{Prf}(p, F)=0$ do $p:=p+1$
output(1)

Hilbert's 10th Problem

Given a diophantine equation: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in integers.

Hilbert, ICM, Paris, 1900

Theorem (Yuri Matiyasevich, Julia Robinson, Martin Davis, Hilary Putnam, 1949-1970)
It is in general undecidable if a diophantine equation has a solution.

An Isabelle Proof

J. Bayer, M. David, B. Stock, A. Pal, D. Schleicher. Diophantine Equations and the DPRM Theorem. Archive of Formal Proofs. 2022.

DPRM = Davis, Putnam, Robinson, Matiyasevich

Higher-Order Logic (HOL)

Types and Terms

Simly typed λ-terms

Types:

$$
\begin{array}{cc}
\tau \quad:=\quad \text { bool } \mid \ldots \\
\mid & (\tau \rightarrow \tau) \\
\mid & \alpha \mid \beta \ldots
\end{array}
$$

Terms

$$
\begin{aligned}
t: & =c|d| \cdots|f| h \mid \cdots \\
\mid & (t t) \\
& (\lambda x \cdot t)
\end{aligned}
$$

We assume that every variable and constant has an attached type. We consider only well-typed terms:

$$
\frac{t_{1}: \tau \rightarrow \tau^{\prime} \quad t_{2}: \tau}{t_{1} t_{2}: \tau^{\prime}} \quad \frac{t: \tau^{\prime}}{\lambda x: \tau . t: \tau \rightarrow \tau^{\prime}}
$$

Base logic

Formula $=$ term of type bool
Theorems: $\Gamma \vdash F$
Base constants: $=: \alpha \rightarrow \alpha \rightarrow$ bool
\rightarrow : bool \rightarrow bool \rightarrow bool

Inference rules

$$
\begin{gathered}
\overline{F \vdash F} \text { assume } \\
\overline{\vdash t=t} \text { refl } \\
\overline{\vdash(\lambda x . t) u=u[t / x]} \beta \\
\frac{\vdash \lambda x .(t x)=t}{} \eta \quad \text { if } x \notin f v(t) \\
\frac{\Gamma_{1} \vdash s=t \quad \Gamma_{2} \vdash F[s / x]}{\Gamma_{1} \cup \Gamma_{2} \vdash F[t / x]} \text { subst } \\
\frac{\Gamma \vdash s=t}{\Gamma \vdash(\lambda x . s)=(\lambda x . t)} \text { abs if } x \notin f v(\Gamma)
\end{gathered}
$$

Inference rules

$$
\frac{\Gamma \vdash F}{\Gamma \vdash F\left[\tau_{1} / \alpha_{1}, \ldots\right]} \text { inst }
$$

if α_{1}, \ldots do not occur in 「

Inference rules

$$
\begin{gathered}
\frac{\Gamma \vdash G}{\Gamma \backslash\{F\} \vdash F \rightarrow G} \rightarrow I \\
\frac{\Gamma_{1} \vdash F \rightarrow G \quad \Gamma_{2} \vdash F}{\Gamma_{1} \cup \Gamma_{2} \vdash G} \rightarrow E \\
\frac{\Gamma_{1} \vdash F \rightarrow G \quad \Gamma_{2} \vdash G \rightarrow F}{\Gamma_{1} \cup \Gamma_{2} \vdash F=G}=I
\end{gathered}
$$

Definitions of standard logical symbols

$$
\vdash \mathrm{T}=((\lambda x \cdot x)=(\lambda x \cdot x))
$$

all : $(\alpha \rightarrow$ bool $) \rightarrow$ bool
Notation: $\forall x . F$ abbreviates all $(\lambda x . F)$

$$
\begin{gathered}
\vdash a l l=(\lambda P . P=(\lambda x . T)) \\
\vdash \perp=(\forall F \cdot F) \\
\vdash \neg=(\lambda F \cdot F \rightarrow \perp) \\
\vdash(\wedge)=(\lambda F \cdot \lambda G . \forall H \cdot(F \rightarrow G \rightarrow H) \rightarrow H) \\
\vdash(\vee)=(\lambda F \cdot \lambda G \cdot \forall H \cdot(F \rightarrow H) \rightarrow(G \rightarrow H) \rightarrow H)
\end{gathered}
$$

Definitions of standard logical symbols

ex : $(\alpha \rightarrow$ bool $) \rightarrow$ bool
Notation: $\exists x . F$ abbreviates ex $(\lambda x . F)$

$$
\vdash e x=(\lambda P . \forall G .(\forall x .(P x \rightarrow G) \rightarrow G))
$$

The method of postulating what we want has many advantages; they are the same as the advantages of theft over honest toil.
Bertrand Russel

Classical logic

$$
\vdash F \vee \neg F
$$

Hilbert's ε

Informally: $\varepsilon x . F=$ an arbitrary but fixed x that satisfies F
Examples
$(\varepsilon x \cdot x=5)=5$
$(\varepsilon n .0 \leq n \leq 2) \in\{0,1,2\}$
$(\varepsilon \times . \perp)$???
Formally: eps : $(\alpha \rightarrow$ bool $) \rightarrow \alpha$
$\varepsilon x . F$ appreviates eps $(\lambda x . F)$
Axiom: $P x \rightarrow P(e p s P)$

