
Propositional Logic

Basics

1

Syntax of propositional logic

Definition
An atomic formula (or atom) has the form Ai where i = 1, 2, 3,
Formulas are defined inductively:

I ⊥ (“False”) and > (“True”) are formulas

I All atomic formulas are formulas

I For all formulas F , ¬F is a formula.

I For all formulas F und G , (F ◦ G) is a formula,
where ◦ ∈ {∧,∨,→,↔}

¬ is called negation
∧ is called conjunction
∨ is called disjunction
→ is called implication
↔ is called bi-implication

2

Parentheses

Precedence of logical operators in decreasing order:

¬ ∧ ∨ → ↔

Operators with higher precedence bind more strongly.

Example

Instead of (A→ ((B ∧ ¬(C ∨ D)) ∨ E))
we can write A→ B ∧ ¬(C ∨ D) ∨ E .

Outermost parentheses can be dropped.

3

Syntax tree of a formula

Every formula can be represented by a syntax tree.

Example

F = ¬((¬A4 ∨ A1) ∧ A3)

¬

¬

A4

∨ A3

∧

A1

4

Subformulas

The subformulas of a formula are the formulas corresponding to
the subtrees of its syntax tree.

A4

¬

¬

∨ A3

∧

A4

A1
A1

¬

¬

A4

∨ A3

∧

A1
A3

¬

¬

A4

∨

∧

A3

A1

¬A4

¬

∨ A3

∧

A4

¬ A1
(¬A4 ∨ A1)

¬

A3

∧

A4

∨

¬ A1

((¬A4 ∨A1)∧A3)

¬

A4

∨

¬

∧

A3

A1
¬((¬A4 ∨A1)∧A3)

¬

A4

∨

¬

∧

A3

A1

5

Induction on formulas

Proof by induction on the structure of a formula:
In order to prove some property P(F) for all formulas F
it suffices to prove the following:

I Base cases:
prove P(⊥), prove P(>), and prove P(Ai) for all atoms Ai

I Induction step for ¬:
prove P(¬F) under the induction hypothesis P(F)

I Induction step for all ◦ ∈ {∧,∨,→,↔}:
prove P(F ◦ G) under the induction hypotheses P(F) and P(G)

Operators that are merely abbreviations need not be considered!

6

Semantics of propositional logic (I)

The elements of the set {0, 1} are called truth values.
(You may call 0 “false” and 1 “true”)

An assignment is a function A : Atoms → {0, 1}
where Atoms is the set of all atoms.

We extend A to a function Â : Formulas → {0, 1}

7

Semantics of propositional logic (II)

Â(Ai) = A(Ai)

Â(¬F) =

{
1 if Â(F) = 0
0 otherwise

Â(F ∧ G) =

{
1 if Â(F) = 1 and Â(G) = 1
0 otherwise

Â(F ∨ G) =

{
1 if Â(F) = 1 or Â(G) = 1
0 otherwise

Â(F → G) =

{
1 if Â(F) = 0 or Â(G) = 1
0 otherwise

Instead of Â we simply write A

Using arithmetic: A(F ∧ G) = min(A(F),A(G))
A(F ∨ G) = max(A(F),A(G))

8

Truth tables (I)

We can compute Â with the help of truth tables.

¬ A

1 0
0 1

A ∨ B

0 0 0
0 1 1
1 1 0
1 1 1

A ∧ B

0 0 0
0 0 1
1 0 0
1 1 1

A → B

0 1 0
0 1 1
1 0 0
1 1 1

9

Abbreviations

A,B,C ,
P,Q,R, or . . . instead of A1,A2,A3 . . .

F1 ↔ F2 abbreviates (F1 ∧ F2) ∨ (¬F1 ∧ ¬F2)
n∨

i=1

Fi abbreviates (. . . ((F1 ∨ F2) ∨ F3) ∨ . . . ∨ Fn)

n∧
i=1

Fi abbreviates (. . . ((F1 ∧ F2) ∧ F3) ∧ . . . ∧ Fn)

Special cases:

0∨
i=1

Fi =
∨
∅ = ⊥

0∧
i=1

Fi =
∧
∅ = >

10

Truth tables (II)

A ↔ B

0 1 0
0 0 1
1 0 0
1 1 1

11

Coincidence Lemma

Lemma
Let A1 and A2 be two assignments.
If A1(Ai) = A2(Ai) for all atoms Ai in some formula F ,
then A1(F) = A2(F).

Proof.
Exercise.

12

Models

If A(F) = 1 then we write A |= F
and say F is true under A
or A is a model of F

If A(F) = 0 then we write A 6|= F
and say F is false under A
or A is not a model of F

13

Validity and satisfiability

Definition (Validity)

A formula F is valid (or a tautology)
if every assignment is a model of F .
We write |= F if F is valid, and 6|= F otherwise.

Definition (Satisfiability)

A formula F is satisfiable if it has at least one model;
otherwise F is unsatisfiable.
A (finite or infinite!) set of formulas S is satisfiable if there is an
assigment that is a model of every formula in S .

14

Exercise

Valid Satisfiable Unsatisfiable

A

x

A ∨ B

x

A ∨ ¬A

x x

A ∧ ¬A

x

A→ ¬A

x

A→ (B → A)

x x

A→ (A→ B)

x

A↔ ¬A

x

15

Exercise

Which of the following statements are true?

Y C.ex.

If F is valid, then F is satisfiable

Y

If F is satisfiable, then ¬F is satisfiable

>

If F is valid, then ¬F is unsatisfiable

Y

If F is unsatisfiable, then ¬F is unsatisfiable

⊥

16

Mirroring principle

all propositional formulas

valid
formulas

G

satisfiable
but not valid

formulas

F ¬F

unsatisfiable
formulas

¬G

17

Consequence

Definition
A formula G is a (semantic) consequence of a set of formulas M
if every model A of all F ∈ M is also a model of G .
Then we write M |= G .

In a nutshell:

“Every model of M is a model of G .”

Example

A ∨ B, A→ B, B ∧ R → ¬A, R |= (R ∧ ¬A) ∧ B

18

Consequence

Example

A ∨ B, A→ B, B ∧ R → ¬A, R︸ ︷︷ ︸
M

|= (R ∧ ¬A) ∧ B

Proof:
Assume A |= F for all F ∈ M.
We need to prove A |= (R ∧ ¬A) ∧ B.
From A |= A ∨ B and A |= A→ B follows A |= B:
Proof by cases:

If A(A) = 0 then A(B) = 1 because A |= A ∨ B
If A(A) = 1 then A(B) = 1 because A |= A→ B

From A |= B and A |= R follows A |= ¬A because . . .
From A |= B, A |= R, and A |= ¬A follows A |= (R ∧ ¬A) ∧ B

19

Exercise

M F M |= F ?

A A ∨ B

Y

A A ∧ B

N

A,B A ∨ B

Y

A,B A ∧ B

Y

A ∧ B A

Y

A ∨ B A

N

A,A→ B B

Y

20

Consequence

Exercise
The following statements are equivalent:

1. F1, . . . ,Fk |= G

2. |= (
∧k

i=1 Fi)→ G

Proof of “if F1, . . . ,Fk |= G then |= (
∧k

i=1 Fi)→ G︸ ︷︷ ︸
H

”.

Assume F1, . . . ,Fk |= G .
We need to prove |= H, i.e. A(H) = 1 for all A.
We pick an arbitrary A and show A(H) = 1.
Proof by cases.

If A(
∧

Fi) = 0 then A(H) = 1 because H =
∧

Fi → G
If A(

∧
Fi) = 1 then A(Fi) = 1 for all i .

Therefore A is a model of F1, . . . ,Fk .
Therefore A |= G because F1, . . . ,Fk |= G .
Therefore A(H) = 1

21

Validity and satisfiability

Exercise
The following statements are equivalent:

1. F → G is valid.

2. F ∧ ¬G is unsatisfiable.

22

Exercise

Let M be a set of formulas, and let F and G be formulas.
Which of the following statements hold?

Y/N C.ex.

If F satisfiable then M |= F .

¬A |= A

If F valid then M |= F .

Y

If F ∈ M then M |= F .

Y

If F |= G then ¬F |= ¬G .

A |= A ∨ B

23

Notation

Warning: The symbol |= is overloaded:

A |= F

|= F

M |= F

Convenient variations for set of formulas S :

A |= S means that for all F ∈ S , A |= F

|= S means that for all F ∈ S , |= F

M |= S means that for all F ∈ S , M |= F

24

Propositional Logic

Equivalences

25

Equivalence

Definition (Equivalence)

Two formulas F and G are (semantically) equivalent if
A(F) = A(G) for every assignment A.

We write F ≡ G to denote that F and G are equivalent.

26

Exercise

Which of the following equivalences hold?

(A ∧ (A ∨ B)) ≡ A

(A ∧ (B ∨ C)) ≡ ((A ∧ B) ∨ C)

(A→ (B → C)) ≡ ((A→ B)→ C)

(A→ (B → C)) ≡ ((A ∧ B)→ C)

27

Observation

The following connections hold:

|= F → G iff F |= G
|= F ↔ G iff F ≡ G

NB: “iff” means “if and only if”

28

Reductions between problems (I)

I Validity to Unsatisfiabilty (and back):

F valid iff ¬F unsatisfiable
F unsatisfiable iff ¬F valid

I Validity to Consequence:

F valid iff > |= F

I Consequence to Validity:

F |= G iff F → G valid

29

Reductions between problems (II)

I Validity to Equivalence:

F valid iff F ≡ >

I Equivalence to Validity:

F ≡ G iff F ↔ G valid

30

Properties of semantic equivalence

I Semantic equivalence is an equivalence relation
between formulas.

I Semantic equivalence is closed under operators:

If F1 ≡ F2 and G1 ≡ G2

then (F1 ∧ G1) ≡ (F2 ∧ G2),
(F1 ∨ G1) ≡ (F2 ∨ G2) and
¬F1 ≡ ¬F2

Equivalence relation + Closure under Operations
=

Congruence relation

31

Replacement theorem

Theorem
Let F ≡ G . Let H be a formula with an occurrence of F as a
subformula. Let H ′ be the result of replacing an arbitrary
occurrence of F in H by G . Then H ≡ H ′.

Proof by induction on the structure of H.
We consider only the case H = ¬H0.
We analyse where F occurs in H.
If F = H then H ′ = G and thus H = F ≡ G = H ′.
Otherwise F is a subformula of H0.
Let H ′0 be the result of replacing F by G in H0.
IH: H0 ≡ H ′0
Thus H = ¬H0 ≡ ¬H ′0 = H ′

32

Equivalences (I)

Theorem
(F ∧ F) ≡ F
(F ∨ F) ≡ F (Idempotence)
(F ∧ G) ≡ (G ∧ F)
(F ∨ G) ≡ (G ∨ F) (Commutativity)

((F ∧ G) ∧ H) ≡ (F ∧ (G ∧ H))
((F ∨ G) ∨ H) ≡ (F ∨ (G ∨ H)) (Associativity)
(F ∧ (F ∨ G)) ≡ F
(F ∨ (F ∧ G)) ≡ F (Absorption)

33

Equivalences (II)

(F ∧ (G ∨ H)) ≡ ((F ∧ G) ∨ (F ∧ H))
(F ∨ (G ∧ H)) ≡ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

¬¬F ≡ F (Double negation)
¬(F ∧ G) ≡ (¬F ∨ ¬G)
¬(F ∨ G) ≡ (¬F ∧ ¬G) (deMorgan’s Laws)

¬> ≡ ⊥
¬⊥ ≡ >

(> ∨ G) ≡ >
(> ∧ G) ≡ G
(⊥ ∨ G) ≡ G
(⊥ ∧ G) ≡ ⊥

34

Warning

The symbols |= and ≡ are not operators
in the language of propositional logic

but part of the meta-language for talking about logic.

Examples:

A |= F and F ≡ G are not propositional formulas.

(A |= F) ≡ G and (F ≡ G)↔ (G ≡ F) are nonsense.

35

Propositional Logic

Normal Forms

36

Abbreviations

Until further notice:

F1 → F2 abbreviates ¬F1 ∨ F2

> abbreviates A1 ∨ ¬A1

⊥ abbreviates A1 ∧ ¬A1

37

Literals

Definition
A literal is an atom or the negation of an atom.
In the former case the literal is positive,
in the latter case it is negative.

38

Negation Normal Form (NNF)

Definition
A formula is in negation formal form (NNF)
if negation (¬) occurs only directly in front of atoms.

Example
In NNF: ¬A ∧ ¬B

Not in NNF: ¬(A ∨ B)

39

Transformation into NNF

Any formula can be transformed into an equivalent formula in NNF
by pushing ¬ inwards. Apply the following equivalences from left
to right as long as possible:

¬¬F ≡ F

¬(F ∧ G) ≡ (¬F ∨ ¬G)

¬(F ∨ G) ≡ (¬F ∧ ¬G)

Example

(¬(A ∧ ¬B) ∧ C) ≡ ((¬A ∨ ¬¬B) ∧ C) ≡ ((¬A ∨ B) ∧ C)

Warning: “F ≡ G ≡ H” is merely an abbreviation for
“F ≡ G and G ≡ H”

Does this process always terminate? Is the result unique?

40

CNF and DNF

Definition
A formula F is in conjunctive normal form (CNF) if it is a
conjunction of disjunctions of literals:

F = (
n∧

i=1
(

mi∨
j=1

Li ,j)),

where Li ,j ∈ {A1,A2, · · · } ∪ {¬A1,¬A2, · · · }

Definition
A formula F is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals:

F = (
n∨

i=1
(

mi∧
j=1

Li ,j)),

where Li ,j ∈ {A1,A2, · · · } ∪ {¬A1,¬A2, · · · }

41

Transformation into CNF and DNF

Any formula can be transformed into an equivalent formula in CNF
or DNF in two steps:

1. Transform the initial formula into its NNF

2. Transform the NNF into CNF or DNF:
I Transformation into CNF. Apply the following equivalences

from left to right as long as possible:

(F ∨ (G ∧ H)) ≡ ((F ∨ G) ∧ (F ∨ H))

((F ∧ G) ∨ H) ≡ ((F ∨ H) ∧ (G ∨ H))

I Transformation into DNF. Apply the following equivalences
from left to right as long as possible:

(F ∧ (G ∨ H)) ≡ ((F ∧ G) ∨ (F ∧ H))

((F ∨ G) ∧ H) ≡ ((F ∧ H) ∨ (G ∧ H))

42

Termination

Why does the transformation into NNF and CNF terminate?
Challenge Question: Find a weight function w :: formula→ N
such that w(l .h.s.) > w(r .h.s.) for the equivalences

¬¬F ≡ F

¬(F ∧ G) ≡ (¬F ∨ ¬G)

¬(F ∨ G) ≡ (¬F ∧ ¬G)

(F ∨ (G ∧ H)) ≡ ((F ∨ G) ∧ (F ∨ H))

((F ∧ G) ∨ H) ≡ ((F ∨ H) ∧ (G ∨ H))

Define w recursively:
w(Ai) = . . .
w(¬F) = . . .w(F) . . .
w(F ∧ G) = . . .w(F) . . .w(G) . . .
w(F ∨ G) = . . .w(F) . . .w(G) . . .

43

Complexity considerations

The CNF and DNF of a formula of size n can have size 2n

Can we do better? Yes, if we do not instist on ≡.

Definition
Two formulas F and G are equisatisfiable if
F is satisfiable iff G is satisfiable.

Theorem
For every formula F of size n
there is an equisatisfiable CNF formula G of size O(n).

44

Propositional Logic

Definitional CNF

45

Definitional CNF

The definitional CNF of a formula is obtained in 2 steps:

1. Repeatedly replace a subformula G of the form ¬A′, A′ ∧ B ′

or A′ ∨ B ′ by a new atom A and conjoin A↔ G .
This replacement is not applied to the “definitions” A↔ G
but only to the (remains of the) original formula.

2. Translate all the subformulas A↔ G into CNF.

Example

¬(A1 ∨ A2) ∧ A3

¬A4 ∧ A3 ∧ (A4 ↔ (A1 ∨ A2))

A5 ∧ A3 ∧ (A4 ↔ (A1 ∨ A2)) ∧ (A5 ↔ ¬A4)

A5 ∧ A3 ∧ CNF (A4 ↔ (A1 ∨ A2)) ∧ CNF (A5 ↔ ¬A4)

46

Definitional CNF: Complexity

Let the initial formula have size n.

1. Each replacement step increases the size of the formula by a
constant.
There are at most as many replacement steps as subformulas,
linearly many.

2. The conversion of each A↔ G into CNF increases the size by
a constant.
There are only linearly many such subformulas.

Thus the definitional CNF has size O(n).

47

Notation

Definition
The notation F [G/A] denotes the result of replacing all
occurrences of the atom A in F by G .
We pronounce it as “F with G for A”.

Example

(A ∧ B)[(A→ B)/B] = (A ∧ (A→ B))

Definition
The notation A[v/A] denotes a modified version of A that maps A
to v and behaves like A otherwise:

(A[v/A])(Ai) =

{
v if Ai = A
A(Ai) otherwise

48

Substitution Lemma

Lemma
A(F [G/A]) = A′(F) where A′ = A[A(G)/A]

Example

A((A1 ∧ A2)[G/A2]) = A′(A1 ∧ A2) where A′ = A[A(G)/A2]

Proof by structural induction on F .
Case F is an atom:
If F = A: A(F [G/A]) = A(G) = A′(F)
If F 6= A: A(F [G/A]) = A(F) = A′(F)

Case F = F1 ∧ F2:
A(F [G/A]) =
A(F1[G/A] ∧ F2[G/A]) =

min(A(F1[G/A]),A(F2[G/A]))
IH
=

min(A′(F1),A′(F2)) = A′(F1 ∧ F2) = A′(F)

49

Definitional CNF: Correctness

Each replacement step produces an equisatisfiable formula:

Lemma
Let A be an atom that does not occur in G .
Then F [G/A] is equisatisfiable with F ∧ (A↔ G).

Proof If F [G/A] is satisfiable by some assignment A, then by the
Substitution Lemma, A′ = A[A(G)/A] is a model of F . Moreover
A′ |= (A↔ G) because A′(A) = A(G) and A(G) = A′(G) by the
Coincidence Lemma (Exercise 1.2).
Thus F ∧ (A↔ G) is satsifiable (by A′).
Conversely we actually have F ∧ (A↔ G) |= F [G/A].
Suppose A |= F ∧ (A↔ G). This implies A(A) = A(G).
Therefore A[A(G)/A] = A.
Thus A(F [G/A]) = (A[A(G)/A])(F) = A(F) = 1 by the
Substitution Lemma.

Does F [G/A] |= F ∧ (A↔ G) hold?

50

Summary

Theorem
For every formula F of size n
there is an equisatisfiable CNF formula G of size O(n).

Similarly it can be shown:

Theorem
For every formula F of size n
there is an equivalid DNF formula G of size O(n).

51

Validity of CNF

Validity of formulas in CNF can be checked in linear time.
A formula in CNF is valid iff all its disjunctions are valid.
A disjunction is valid iff it contains both an atomic A and
¬A as literals.

Example
Valid: (A ∨ ¬A ∨ B) ∧ (C ∨ ¬C)

Not valid: (A ∨ ¬A) ∧ (¬A ∨ C)

52

Satisfiability of DNF

Satisfiability of formulas in DNF can be checked in linear time.
A formula in DNF is satisfiable iff at least one of its con-
junctions is satisfiable. A conjunction is satisfiable iff it
does not contain both an atomic A and ¬A as literals.

Example
Satisfiable: (¬B ∧ A ∧ B) ∨ (¬A ∧ C)

Unsatisfiable: (A ∧ ¬A ∧ B) ∨ (C ∧ ¬C)

53

Satisfiability/validity of DNF and CNF

Theorem
Satisfiability of formulas in CNF is NP-complete.

Theorem
Validity of formulas in DNF is co-NP-complete.

The standard decision procedure for vailidity of F :

1. Transform ¬F into an equisat. formula G in def. CNF

2. Apply efficient CNF-based SAT solver to G

54

Propositional Logic

Horn Formulas

55

Efficient satisfiability checks

In the following:

I A very efficient satisfiability check for the special class of
Horn formulas.

I Efficient satisfiability checks for arbitrary formulas in CNF:
resolution (later).

56

Horn formulas

Definition
A formula F in CNF is a Horn formula if every disjunction in F
contains at most one positive literal.

A disjunction in a Horn formula can equivalently be viewed as an
implication K → B where K is a conjunction of atoms or K = >
and B is an atom or B = ⊥:

(¬A ∨ ¬B ∨ C) ≡ (A ∧ B → C)
(¬A ∨ ¬B) ≡ (A ∧ B → ⊥)

A ≡ (> → A)

57

Satisfiablity check for Horn formulas

Input: a Horn formula F .

Algorithm building a model (assignment) M:

for all atoms Ai in F doM(Ai) := 0;

while F has a subformula K → B
such that M(K) = 1 and M(B) = 0

do
if B = ⊥ then return “unsatisfiable”
elseM(B) := 1

return “satisfiable”

Maximal number of iterations of the while loop:
number of implications in F

Each iteration requires at most O(|F |) steps.

Overall complexity: O(|F |2)

[Algorithm can be improved to O(|F |). See Schöning.]

58

Correctness of the model building algorithm

Theorem
The algorithm returns “satisfiable” iff F is satisfiable.

Proof Observe: if the algorithm sets M(B) = 1, then A(B) = 1
for every assignment A such that A(F) = 1. This is an invariant.

(a) If “unsatisfiable” then unsatisfiable.
We prove unsatisfiability by contradiction.
Assume A(F) = 1 for some A.
Let (Ai1 ∧ . . . ∧ Aik → ⊥) be the subformula causing “unsatisfiable”.
Since M(Ai1) = · · · =M(Aik) = 1, A(Ai1) = . . . = A(Aik) = 1.
Then A(Ai1 ∧ . . . ∧ Aik → ⊥) = 0 and so A(F) = 0, contradiction.
So F has no satisfying assignments.

59

(b) If “satisfiable” then satisfiable.
After termination with “satisfiable”,
for every subformula K → B of F , M(K) = 0 or M(B) = 1.
Therefore M(K → B) = 1 and thus M |= F .
In fact, the invariant shows that M is the minimal model of F .

60

Propositional Logic

Compactness

61

Compactness Theorem

Theorem
A set S of formulas is satisfiable
iff every finite subset of S is satisfiable.

Equivalent formulation:
A set S of formulas is unsatisfiable
iff some finite subset of S is unsatisfiable.

62

An application: Graph Coloring

Definition
A 4-coloring of a graph (V ,E) is a map c : V → {1, 2, 3, 4} such
that (x , y) ∈ E implies c(x) 6= c(y).

Theorem (4CT)

An finite planar graph has a 4-coloring.

Theorem
An planar graph G = (V ,E) with countably many vertices
V = {v1, v2, . . .} has a 4-coloring.

Proof G set of formulas S s.t. S is sat. iff G is 4-col.
G is planar
⇒ every finite subgraph of G is planar and 4-col. (by 4CT)
⇒ every finite subset of S is sat.
⇒ S is sat. (by Compactness)
⇒ G is 4-col.

63

Proof details

G S :

For simplicity:
atoms are of the form Ac

i where c ∈ {1, . . . , 4} and i ∈ N
S := {A1

i ∨ A2
i ∨ A3

i ∨ A4
i | i ∈ N} ∪

{Ac
i → ¬Ad

i | i ∈ N, c , d ∈ {1, . . . , 4}, c 6= d} ∪
{¬(Ac

i ∧ Ac
j) | (vi , vj) ∈ E , c ∈ {1, . . . , 4}}

Subgraph corresponding to some T ⊆ S :
VT := {vi | Ac

i occurs in T (for some c)}
ET := {(vi , vj) | ¬(Ac

i ∧ Ac
j) ∈ T (for some c)}

64

Proof of Compactness

Theorem
A set S of formulas is satisfiable
iff every finite subset of S is satisfiable.

Proof

⇒: If S is satisfiable then every finite subset of S is satisfiable.

Trivial.

⇐ : If every finite subset of S is satisfiable then S is satisfiable.

We prove that S has a model.

65

Proof of Compactness
Terminology: A is a b1, . . . , bn model of T
(where b1, . . . , bn ∈ {0, 1}∗ and T is a set of formulas)
if A(Ai) = bi (for i = 1, . . . , n) and A |= T .

Define an infinite sequence b1, b2, . . . recursively as follows:

bn+1 = some b ∈ {0, 1} s.t.
all finite T ⊆ S have a b1, . . . , bn, b model.

Claim 1: For all n, all finite T ⊆ S have a b1, . . . , bn model.
Proof by induction on n.

Case n = 0: because all finite T ⊆ S are satisfiable.

Case n + 1: We need to show that a suitable b exists.
Proof by contradiction. Assume there is no suitable b.
Then there is a finite T0 ⊆ S that has no b1, . . . , bn, 0 model (0)
and there is a finite T1 ⊆ S that has no b1, . . . , bn, 1 model (1).
Therefore T0 ∪ T1 has no b1, . . . , bn model A:
A(An+1) = 0 contradicts (0), A(An+1) = 1 contradicts (1).
But by IH: T0 ∪ T1 has a b1, . . . , bn model — Contradiction!

66

Proof of Compactness

Define B(Ai) = bi for all i .

Claim 2: B |= S
We show B |= F for all F ∈ S .
Let m be the maximal index of all atoms in F .
By Claim 1, {F} has a b1, . . . , bm model A.
Hence B |= F because A and B agree on all atoms in F .

67

Corollary

Corollary

If S |= F then there is a finite subset M ⊆ S such that M |= F .

68

Propositional Logic

Resolution

69

Clause representation of CNF formulas

CNF:
(L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ L1,nk

)

Representation as set of sets of literals:

{{L1,1, . . . , L1,n1}︸ ︷︷ ︸
clause

, . . . , {Lk,1, . . . , L1,nk
}}

I Clause = set of literals (disjunction).

I A formula in CNF can be viewed as a set of clauses
I Degenerate cases:

I The empty clause stands for ⊥.
I The empty set of clauses stands for >.

70

The joy of sets

We get “for free”:

I Commutativity:
A ∨ B ≡ B ∨ A, both represented by {A,B}

I Associativity:
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C), both represented by {A,B,C}

I Idempotence:
(A ∨ A) ≡ A, both represented by {A}

Sets are a convenient representation of conjunctions and
disjunctions that build in associativity, commutativity and

itempotence

71

Resolution — The idea

Input: Set of clauses F
Question: Is F unsatisfiable?

Algorithm:
Keep on “resolving” two clauses from F and adding the result to F
until the empty clause is found

Correctness:
If the empty clause is found, the initial F is unsatisfiable
Completeness:
If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution)
w.r.t. semantic property (unsatisfiability)

72

Resolvent

Definition
Let L be a literal. Then L is defined as follows:

L =

{
¬Ai if L = Ai

Ai if L = ¬Ai

Definition
Let C1, C2 be clauses and let L be a literal
such that L ∈ C1 and L ∈ C2. Then the clause

(C1 − {L}) ∪ (C2 − {L})

is a resolvent of C1 and C2.
The process of deriving the resolvent is called a resolution step.

73

Graphical representation of resolvent:

C1 C2

R

If C1 = {L} and C2 = {L} then the empty clause is a resolvent of
C1 and C2. The special symbol � denotes the empty clause.

Recall: � represents ⊥.

74

Resolution proof

Definition
A resolution proof of a clause C from a set of clauses F
is a sequence of clauses C0, . . . ,Cn such that

I Ci ∈ F or Ci is a resolvent of two clauses Ca and Cb, a, b < i ,

I Cn = C

Then we can write F `Res C .

Note: F can be finite or infinite

75

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

�

76

A linear resolution proof

0: {P,Q}
1: {P,¬Q}
2: {¬P,Q}
3: {¬P,¬Q}
4: {P} (0, 1)
5: {Q} (0, 2)
6: {¬P} (3, 5)
7: � (4, 6)

77

Correctness of resolution

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C1 and C2. Then C1,C2 |= R.

Proof By definition R = (C1 − {L}) ∪ (C2 − {L}) (for some L).
Let A |= C1 and A |= C2. There are two cases.
If A |= L then A |= C2 − {L} (because A |= C2), thus A |= R.
If A 6|= L then A |= C1 − {L} (because A |= C1), thus A |= R.

Theorem (Correctness of resolution)

Let F be a set of clauses. If F `Res C then F |= C .

Proof Assume there is a resolution proof C0, . . . ,Cn = C .
By induction on i we show F |= Ci . IH: F |= Cj for all j < i .
If Ci ∈ F then F |= Ci is trivial. If Ci is a resolvent of Ca and Cb,
a, b < i , then F |= Ca and F |= Cb by IH and Ca,Cb |= Ci by the
resolution lemma. Thus F |= Ci .

Corollary

Let F be a set of clauses. If F `Res � then F is unsatisfiable.
78

Completeness of resolution

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F `Res �.

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then F `Res �.

Proof If F is infinite, there must be a finite unsatisfiable subset of
F (by the Compactness Theorem); in that case let F be that finite
subset and apply the previous theorem.

Corollary

A set of clauses F is unsatisfiable iff F `Res �.

79

Completeness proof

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F `Res �.

Proof The proof of F `Res � is by induction on the number n of
distinct atoms in F .

Basis: If n = 0 then F = {} (but F is unsat.) or F = {�}.
Step:
IH: For every unsat. set of clauses F with n dist. atoms, F `Res �.
Let F contain n + 1 distinct atoms. Pick some atom A in F .
Idea: F0 = F with A replaced by ⊥

F1 := F with A replaced by >
F0 := take F , remove all clauses with ¬A, remove all A
F1 := take F , remove all clauses with A, remove all ¬A
F0 and F1 contain n distinct atoms.
F0 is unsat: if A |= F0 then A[0/A] |= F
F1 is unsat: if A |= F1 then A[1/A] |= F

80

Completeness proof

By IH: there are res. proofs C0, . . . ,Cm = � from F0 and
D0, . . . ,Dn = � from F1.
Now transform C0, . . . ,Cm into a proof C ′0, . . . ,C

′
m from F

by adding A back into the clauses it was removed from. Then

I either C ′m = {A}
I or C ′m = � (and we are done).

Similarly we transform D0, . . . ,Dn into a proof D ′0, . . . ,D
′
n from F

(by adding ¬A back in).
Then D ′n = {¬A} or D ′n = � (and we are done).
If C ′m = {A} and D ′n = {¬A} then F `Res A and F `Res ¬A
and thus F `Res �.

81

Resolution is only refutation complete

Not everything that is a consequence of a set of clauses
can be derived by resolution.

Exercise
Find F and C such that F |= C but not F `Res C .

How to prove F |= C by resolution?
Prove F ∪ {¬C} `Res �

82

A resolution algorithm
Input: A CNF formula F , i.e. a finite set of clauses

while there are clauses Ca,Cb ∈ F and resolvent R of Ca and Cb

such that R /∈ F
do F := F ∪ {R}

Lemma
The algorithm terminates.

Proof There are only finitely many clauses over a finite set of
atoms.

Theorem
The initial F is unsatisfiable iff � is in the final F

Proof Finit is unsat. iff Finit `Res � iff � ∈ Ffinal

because the algorithm enumerates all R such that Finit ` R.

Corollary

The algorithm is a decision procedure for unsatisfiability of CNF
formulas.

83

Basic Proof Theory
Propositional Logic

(See the book by Troelstra and Schwichtenberg)

84

Proof rules and proof systems

Proof systems are defined by (proof or inference) rules of the form

T1 . . . Tn

T
rule-name

where T1, . . .Tn (premises) and T (conclusion)
are syntactic objects (eg formulas).

Intuitive reading: If T1, . . . ,Tn are provable, then T is provable.

Degenerate case: If n = 0 the rule is called an axiom and the
horizontal line is sometimes omitted.

If some U is provable, we write ` U.

85

Proof trees
Proofs (also: derivations) are drawn as trees of nested proof rules.

Example (Proof/derivation tree)

T1

U
T2

S1

T3

S2

R

We sometimes omit the names of proof rules in a proof tree if they
are obvious or for space reasons. You should always show them!

Every fragment
T1 . . . Tn

T

of a proof tree must be (an instance of) a proof rule.
All proofs must start with axioms.

The depth of a proof tree is the number of rules on the longest
branch of the tree. Thus ≥ 1

86

Abbreviations

Until further notice:

⊥, ¬, ∧, ∨, → are primitives.

> abbreviates ¬⊥

A possible simplification:

¬F abbreviates F → ⊥

87

We now consider three important proof systems:

I Sequent Calculus

I Natural Deduction

I Hilbert Systems

88

Sequent Calculus
Propositional Logic

89

Sequent Calculus

Invented by Gerhard Gentzen in 1935. Birth of proof theory.

Proof rules
S1 . . . Sn

S

where S1, . . .Sn and S are sequents

Γ⇒ ∆

where Γ and ∆ are finite multisets of formulas.
(Multiset = set with possibly repeated elements)
(Could use sets instead of multisets
but this causes some complications)

Important: ⇒ is just a separator
Formally, a sequent is a pair of finite multisets.

Intuition: Γ⇒ ∆ is provable iff
∧

Γ→
∨

∆ is a tautology

90

Sequents: Notation

I We use set notation for multisets, eg {A,B → C ,A}
I Drop {}: F1, . . . ,Fm ⇒ G1, . . .Gn

I F , Γ abbreviates {F} ∪ Γ (similarly for ∆)

I Γ1, Γ2 abbreviates Γ1 ∪ Γ2 (similarly for ∆)

91

Sequent Calculus rules

Intuition: read backwards as proof search rules

⊥, Γ⇒ ∆
⊥L

A, Γ⇒ A,∆
Ax

Γ⇒ F ,∆

¬F , Γ⇒ ∆
¬L

F , Γ⇒ ∆

Γ⇒ ¬F ,∆
¬R

F ,G , Γ⇒ ∆

F ∧ G , Γ⇒ ∆
∧L

Γ⇒ F ,∆ Γ⇒ G ,∆

Γ⇒ F ∧ G ,∆
∧R

F , Γ⇒ ∆ G , Γ⇒ ∆

F ∨ G , Γ⇒ ∆
∨L

Γ⇒ F ,G ,∆

Γ⇒ F ∨ G ,∆
∨R

Γ⇒ F ,∆ G , Γ⇒ ∆

F → G , Γ⇒ ∆
→L

F , Γ⇒ G ,∆

Γ⇒ F → G ,∆
→R

Every rule decomposes its principal formula

92

Example

P,Q ∨ ¬R ⇒ P,Q
Ax

R,Q ⇒ P,Q
Ax

R ⇒ R,P,Q
Ax

R,¬R ⇒ P,Q
¬L

R,Q ∨ ¬R ⇒ P,Q
∨L

P ∨ R,Q ∨ ¬R ⇒ P,Q
∨L

P ∨ R,Q ∨ ¬R ⇒ P ∨ Q
∨R

(P ∨ R) ∧ (Q ∨ ¬R)⇒ P ∨ Q
∧L

⇒ (P ∨ R) ∧ (Q ∨ ¬R)→ P ∨ Q
→R

F , Γ⇒ G ,∆

Γ⇒ F → G ,∆
→R

F ,G , Γ⇒ ∆

F ∧ G , Γ⇒ ∆
∧L

Γ⇒ F ,G ,∆

Γ⇒ F ∨ G ,∆
∨R

F , Γ⇒ ∆ G , Γ⇒ ∆

F ∨ G , Γ⇒ ∆
∨L

A, Γ⇒ A,∆
Ax

Γ⇒ F ,∆

¬F , Γ⇒ ∆
¬L

93

Proof search properties

I For every logical operator (¬ etc)
there is one left and one right rule

I Every formula in the premise of a rule
is a subformula of the conclusion of the rule.
This is called the subformula property.
⇒ no need to guess anything when applying a rule backward

I Backward rule application terminates
because one operator is removed in each step.

94

Instances of rules

Definition
An instance of a rule is the result of
replacing Γ and ∆ by multisets of concrete formulas
and F and G by concrete formulas.

Example

⇒ P ∧ Q,A,B

¬(P ∧ Q)⇒ A,B

is an instance of
Γ⇒ F ,∆

¬F , Γ⇒ ∆

setting F := P ∧ Q, Γ := ∅, ∆ := {A,B}

95

Proof trees

Definition (Proof tree)

A proof tree is a tree whose nodes are sequents and where each
parent-children fragment

S1 . . . Sn

S

is an instance of a proof rule.

(⇒ all leaves must be instances of axioms)

A sequent S is provable if there is a proof tree with root S .
Then we write `G S .

96

Proof trees

An alternative inductive definition of proof trees:

Definition (Proof tree)

If
S1 . . . Sn

S

is an instance of a proof rule
and there are proof trees T1, . . .Tn with roots S1, . . . ,Sn then

T1 . . . Tn

S

is a proof tree (with root S).

97

What does Γ⇒ ∆ “mean”?

Definition

|Γ⇒ ∆| = (
∧

Γ→
∨

∆)

Example: |{A,B} ⇒ {P,Q}| = (A ∧ B → P ∨ Q)

Remember:
∧
∅ = > and

∨
∅ = ⊥

Aim: `G S iff |S | is a tautology

Lemma (Rule Equivalence)

For every rule
S1 . . . Sn

S

I |S | ≡ |S1| ∧ . . . ∧ |Sn|
I |S | is a tautology iff all Si are tautologies

98

Theorem (Soundness of `G)

If `G S then |= |S |.
Proof by induction on the height of the proof tree for `G S .
Tree must end in rule instance

S1 . . . Sn

S

IH: |= Si for all i .
Thus |= |S | by the previous lemma.

99

Proof Search and Completeness

100

Proof search = growing a proof tree from the root

I Start from an initial sequent S0

I At each stage we have some potentially partial proof tree
with unproved leaves

I In each step, pick some unproved leaf S and some rule
instance

S1 . . . Sn

S

and extend the tree with that rule instance
(creating new unproved leaves S1, . . . ,Sn)

101

Proof search termintes if . . .

I there are no more unproved leaves — success

I there is some unproved leaf where no rule applies — failure
⇒ that leaf is of the form

P1, . . . ,Pk ⇒ Q1, . . . ,Ql

where all Pi and Qj are atoms, no Pi = Qj and no Pi = ⊥

Example (failed proof)

P ⇒ P
Ax

Q ⇒ P
P ∨ Q ⇒ P

∨L
P ⇒ Q Q ⇒ Q

Ax

P ∨ Q ⇒ Q
∨L

P ∨ Q ⇒ P ∧ Q
∧R

Falsifying assignments?

102

Proof search = Counterexample search

Can view sequent calculus as a search for a falsifying assignment
for |Γ⇒ ∆|:

Make Γ true and ∆ false

Some examples:
F ,G , Γ⇒ ∆

F ∧ G , Γ⇒ ∆
∧L

To make F ∧ G true, make both F and G true

Γ⇒ F ,∆ Γ⇒ G ,∆

Γ⇒ F ∧ G ,∆
∧R

To make F ∧ G false, make F or G false

103

Lemma (Search Equivalence)

At each stage of the search process,
if S1, . . . ,Sk are the unproved leaves, then |S0| ≡ |S1| ∧ . . . ∧ |Sk |
Proof by induction on the number of search steps.
Initially trivially true (base case).
When applying a rule instance

U1 . . . Un

Si

we have
|S0| ≡ |S1| ∧ . . . ∧ |Si | ∧ . . . ∧ |Sk | (by IH)

≡ |S1| ∧ · · · ∧ |Si−1| ∧ |U1| ∧ · · · ∧ |Un| ∧ |Si+1| ∧ . . . ∧ |Sk |
by Lemma Rule Equivalence.

104

Lemma
If proof search fails, |S0| is not a tautology.

Proof If proof search fails, there is some unproved leaf S =

P1, . . . ,Pk ⇒ Q1, . . . ,Ql

where no Pi = Qj and no Pi = ⊥.
This sequent can be falsified by setting A(Pi) := 1 (for all i)
and A(Qj) := 0 (for all j) and all other atoms to 0 or 1.
Thus A(|S |) = 0 and hence A(S0) = 0 by Lemma Search
Equivalence. �

Because of soundness of `G :

Corollary

Starting with some fixed S0, proof search cannot both fail (for
some choices) and succeed (for other choices).

⇒ no need for backtracking upon failure!

105

Lemma
Proof search terminates.

Proof In every step, one logical operator is removed.
⇒ size of sequent decreases by 1
⇒ Depth of proof tree is bounded by size of S0

but breadth only bounded by 2size of S0

Corollary

Proof search is a decision procedure: it either succeeds or fails.

Theorem (Completeness)

If |= |S | then `G S.

Proof by contraposition: if not `G S then proof seach must fail.
Therefore 6|= |S |.

106

Multisets versus sets

Termination only because of multisets.
With sets, the principal formula may get duplicated:

Γ⇒ F ,∆

¬F , Γ⇒ ∆
¬L

Γ:={¬F}

¬F ⇒ F ,∆

¬F ⇒ ∆

An alternative formulation of the set version:

Γ\{¬F} ⇒ F ,∆

¬F , Γ⇒ ∆

Gentzen used sequences (hence “sequent calculus”)

107

Admissible Rules and Cut Elimination

108

Admissible rules

Definition
A rule

S1 . . . Sn

S

is admissible if `G S1, . . . , `G Sn together imply `G S .

⇒ Admissible rules can be used in proofs like normal rules

Admissibility is often proved by induction.

Aim: prove admissibility of

Γ⇒ F ,∆ Γ,F ⇒ ∆

Γ⇒ ∆
cut

This is Gentzen’s Hauptsatz. Many applications.

109

Lemma (Non-atomic Ax)

The non-atomic axiom rule

F , Γ⇒ F ,∆ Ax ′

is admissible, i.e. `G F , Γ⇒ F ,∆.

Proof idea: decompose F , then use Ax .
Formally: proof by induction on (the structure of) F .
Case F1 → F2:

F1, Γ⇒ F1,F2,∆
IH

F1,F2, Γ⇒ F2,∆
IH

F1,F1 → F2, Γ⇒ F2,∆
→L

F1 → F2, Γ⇒ F1 → F2,∆
→R

The other cases are analogous.

110

Semantic proofs of admissibility

Admissibility of
S1 . . . Sn

S

can also be shown semantically (using `G = |=)
by proving that |= |S1|, . . . , |= |Sn| together imply |= |S |.

Semantic proofs are much simpler
and much less informative than syntactic proofs.
Syntactic proofs show how to eliminate admissible rules.
For examle, the admissibility proof of Ax ′ is a recursive procedure
that decomposes F . In particular it tells us that the elimination of
Ax ′ generates a proof of size O(

size of F

).

We focuses on proof theory

111

Weakening

Notation:
Γ⇒n ∆ means that there is a proof tree for Γ⇒ ∆ of depth ≤ n.

Lemma (Weakening)

If Γ⇒n ∆ then Γ′, Γ⇒n ∆′,∆.

Proof idea: take proof tree for Γ⇒ ∆
and add Γ′ everywhere on the left and ∆′ everywhere on the right.

General principal: transform proof trees

Notation:
D : Γ⇒ ∆ means that D is a proof tree for Γ⇒ ∆

112

Inversion rules

Lemma (Inversion rules)

∧L−1 If F ∧ G , Γ⇒n ∆ then F ,G , Γ⇒n ∆

∨R−1 If Γ⇒n F ∨ G ,∆ then Γ⇒n F ,G ,∆

∧R−1 If Γ⇒n F1 ∧ F2,∆ then Γ⇒n Fi ,∆ (i = 1, 2)

∨L−1 If F1 ∨ F 2, Γ⇒n ∆ then Fi , Γ⇒n ∆ (i = 1, 2)

→R−1 If Γ⇒n F → G ,∆ then F , Γ⇒n G ,∆

→L−1 If F → G , Γ⇒n ∆ then Γ⇒n F ,∆ and G , Γ⇒n ∆

F ,G , Γ⇒ ∆

F ∧ G , Γ⇒ ∆
∧L

Γ⇒ F ,G ,∆

Γ⇒ F ∨ G ,∆
∨R

Γ⇒ F ,∆ Γ⇒ G ,∆

Γ⇒ F ∧ G ,∆
∧R

F , Γ⇒ ∆ G , Γ⇒ ∆

F ∨ G , Γ⇒ ∆
∨L

F , Γ⇒ G ,∆

Γ⇒ F → G ,∆
→R

Γ⇒ F ,∆ G , Γ⇒ ∆

F → G , Γ⇒ ∆
→L

Negation?

113

Proof of →L−1

If F → G , Γ⇒n ∆ then Γ⇒n F ,∆ and G , Γ⇒n ∆

Proof by induction on n. Base case trivial because ⇒0 impossible.
Assume D : F → G , Γ⇒n+1 ∆
Let r be the last rule in D. Proof by cases.

Case r = Ax (r = ⊥L similar)

⇒ D =
F → G ,A, Γ′ ⇒1 A,∆′

where Γ = A, Γ′ and ∆ = A,∆′

⇒ Γ⇒1 F ,∆ and G , Γ⇒1 ∆

Otherwise there are two subcases.

1. F → G is the principal formula

⇒ D =
Γ⇒n F ,∆ G , Γ⇒n ∆

F → G , Γ⇒n+1 ∆
→L

114

Proof of →L−1

If F → G , Γ⇒n ∆ then Γ⇒n F ,∆ and G , Γ⇒n ∆

2. F → G is not the principal formula
Cases r :
Case r = ∨R

D =
F → G , Γ⇒n H1,H2,∆

′

F → G , Γ⇒n+1 H1 ∨ H2,∆
′

IH: Γ⇒n F ,H1,H2,∆
′

Γ⇒n+1 F ,∆
∨R

and G , Γ⇒n H1,H2,∆
′

G , Γ⇒n+1 ∆
∨R

Similar for all other rules because F → G is not principal

115

Contraction
F ,F , Γ⇒ ∆

F , Γ⇒ ∆

Γ⇒ F ,F ,∆

Γ⇒ F ,∆

Lemma (Contraction)

(i) If F ,F , Γ⇒n ∆ then F , Γ⇒n ∆

(ii) If Γ⇒n F ,F ,∆ then Γ⇒n F ,∆

Proof by induction on n. Base case trivial. Step: focus on (i).
Assume D : F ,F , Γ⇒n+1 ∆
Let r be the last rule in D. Proof by cases.

Case r =→L (other rules similar)
Two subcases:
1. F is not principal formula

⇒ D =
F ,F , Γ′ ⇒n G ,∆ F ,F ,H, Γ′ ⇒n ∆

F ,F ,G → H, Γ′ ⇒n+1 ∆
→L

IH: F , Γ′ ⇒n G ,∆ F ,H, Γ′ ⇒n ∆

F ,G → H, Γ′ ⇒n+1 ∆
→L

116

Contraction

2. F is principal formula

⇒ D =
G → H, Γ⇒n G ,∆ H,G → H, Γ⇒n ∆

G → H,G → H, Γ⇒n+1 ∆
→L

117

No ⊥R

Lemma
If `G Γ⇒ ∆ then `G Γ⇒ ∆− {⊥}
Proof idea:

I no rule expects ⊥ on the right

I no rule can move ⊥ from right to left.

⇒ no rule is disabled by removing ⊥ on the right
⇒ the same proof rules that prove Γ⇒ ∆ also prove
Γ⇒ ∆− {⊥}.
Formally: induction on the height of the proof tree for Γ⇒ ∆
= recursive transformation of proof tree.

118

Atomic cut

Lemma (Atomic cut)

If D1 : Γ⇒ A,∆ and D2 : A, Γ⇒ ∆ then `G Γ⇒ ∆

Proof by induction on the depth of D1.

119

Cut

Theorem (Cut)

If D1 : Γ⇒ F ,∆ and D2 : F , Γ⇒ ∆ then `G Γ⇒ ∆

Proof by induction on F .

120

Tableaux Calculus
Propositional Logic

A compact version of sequent calculus

121

The idea

What’s “wrong” with sequent calculus:

Why do we have to copy(?) Γ and ∆
with every rule application?

The answer: tableaux calculus.
The idea:

Describe backward sequent calculus rule application
but leave Γ and ∆ implicit/shared

Comparison:

Sequent Proof is a tree labeled by sequents,
trees grow upwards

Tableaux Proof is a tree labeled by formulas,
trees grow downwards

Terminology: tableau = tableaux calculus proof tree

122

Tableaux rules (examples)

Notation: +F ≈ F occurs on the right of ⇒
−F ≈ F occurs on the left of ⇒

S .C . Tab. Effect

F , Γ⇒ ∆

Γ⇒ ¬F ,∆
 +¬F

−F

+¬F
|
−F

Γ⇒ F ,G ,∆

Γ⇒ F ∨ G ,∆

+F ∨ G

+F
+G

+F ∨ G
|

+F
|

+G

Γ⇒ F ,∆ Γ⇒ G ,∆

Γ⇒ F ∧ G ,∆

+F ∧ G
+F | +G

+F ∧ G
/ \

+F + G
123

Interpretation of tableaux rule

F
FGH

if F matches the formula at some node in the tableau
extend the end of some branch starting at that node
according to FGH.

124

Example

− A→ B
− B → C
− A
+ C

A→ B,B → C ,A⇒ C

125

From tableau to sequents:

I Every path from the root to a leaf in a tableau
represents a sequent

I The set of all such sequents represents
the set of leaves of the corresponding sequent calculus proof

⇒
I A branch is closed (proved) if both +F and −F occur on it

or −⊥ occurs on it

I The root sequent is proved if all branches are closed

Algorithm to prove F1, . . .⇒ G1, . . . :

1. Start with the tableau −F1, . . . ,+G1,

2. while there is an open branch do
pick some non-atomic formula on that branch,
extend the branch according to the matching rule

126

Termination

No formula needs to be used twice on the same branch.
But possibly on different branches:

+¬A ∧ ¬B
+A ∨ B

A formula occurrence in a tableau can be deleted
if it has been used in every unclosed branch
starting from that occurrence

127

Tableaux rules

−¬F
+F

+¬F
−F

−F ∧ G

−F
−G

+F ∧ G
+F | +G

−F ∨ G
−F | −G

+F ∨ G

+F
+G

−F → G
+F | −G

+F → G

−F
+G

128

Natural Deduction
Propositional Logic

(See the book by Troelstra and Schwichtenberg)

129

Natural deduction (Gentzen 1935) aims at natural proofs

It formalizes good mathematical practice

Resolution but also sequent calculus aim at proof search

130

Main principles

1. For every logical operator ⊕ there are two kinds of rules:

Introduction rules: How to prove F ⊕ G

. . .
F ⊕ G

Elimination rules What can be proved from F ⊕ G

F ⊕ G . . .
. . .

Examples

A B
A ∧ B

∧I
F ∧ G

F
∧E1

F ∧ G
G

∧E2

131

Main principles

2. Proof can contain subproofs with local/closed assumptions

Example

If from the local assumption F we can prove G
then we can prove F → G .

The formal inference rule:

[F]
....

G
F → G

→I

A proof tree:
[P] Q

P ∧ Q
∧I

P → P ∧ Q
→I

Form the (open) assumption Q we can prove P → P ∧ Q.
In symbols: Q `N P → P ∧ Q 132

Growing the proof tree

Upwards:
[P] Q

P ∧ Q
∧I

P → P ∧ Q
→I

Downwards:
[P] Q

P ∧ Q
∧I

P → P ∧ Q
→I

133

ND proof trees

The nodes of a ND proof tree are labeled by formulas.
Leaf nodes represent assumptions.
The root node is the conclusion.
Assumptions can be open or closed.
Closed assumptions are written [F].

Intuition:

I Open assumptions are used in the proof of the conclusion

I Closed assumptions are local assumptions in a subproof
that have been closed (removed) by some proof rule like →I .

ND proof trees are defined inductively.

I Every F is a ND proof tree
(with open assumption F and conclusion F).
Reading: From F we can prove F .

I New proof trees are constructed by the rules of ND.

134

Natural Deduction rules

F G
F ∧ G

∧I
F ∧ G

F
∧E1

F ∧ G
G

∧E2

[F]
....

G
F → G

→I
F → G F

G
→E

F
F ∨ G

∨I1
G

F ∨ G
∨I2

F ∨ G

[F]
....

H

[G]
....

H
H

∨E

[¬F]
....
⊥
F
⊥

135

Natural Deduction rules

Rules for ¬ are special cases of rules for →:

[F]
....
⊥
¬F
¬I

¬F F
⊥ ¬E

136

Natural Deduction rules

How to read a rule

. . .

[F]
....

G . . .
. . . r

Forward:
Close all (or some) of the assumptions F in the proof of G
when applying rule r

Backward:
In the subproof of G you can use the local assumption [F].

Can use labels to show which rule application closed which
assumptions.

137

Soundness

Definition
Γ `N F if there is a proof tree with root F and open assumptions
contained in the set of formulas Γ.

Lemma (Soundness)

If Γ `N F then Γ |= F

Proof by induction on the depth of the proof tree for Γ `N F .

Base case: no rule, F ∈ Γ

Step: Case analysis of last rule

Case →E :
IH: Γ |= F → G Γ |= F
To show: Γ |= G
Assume A |= Γ ⇒IH A(F → G) = 1 and A(F) = 1 ⇒ A(G) = 1

138

Soundness

Case
[F]

....
G

F → G
→I

IH: Γ,F |= G
To show: Γ |= F → G
iff for all A, A |= Γ⇒ A |= F → G
iff for all A, A |= Γ⇒ (A |= F ⇒ A |= G)
iff for all A, A |= Γ and A |= F ⇒ A |= G
iff IH

139

Completeness

140

Towards completeness

ND can simulate truth tables

Lemma (Tertium non datur)

`N F ∨ ¬F

Corollary (Cases)

If F , Γ `N G and ¬F , Γ `N G then Γ `N G .

Definition

FA :=

{
F if A(F) = 1
¬F if A(F) = 0

141

Towards completeness

Lemma (1)

If atoms(F) ⊆ {A1, . . . ,An} then AA1 , . . . ,A
A
n `N FA

Proof by induction on F

Lemma (2)

If atoms(F) = {A1, . . . ,An} and |= F
then AA1 , . . . ,A

A
k `N F for all k ≤ n

Proof by (downward) induction on k = n, . . . , 0

142

Completeness

Theorem (Completeness)

If Γ |= F then Γ `N F

Proof

143

Relating

Sequent Calculs and Natural Deduction

144

Constructive approach to relating proof systems:

I Show how to transform proofs in one system into proofs in
another system

I Implicit in inductive (meta)proof

145

Theorem (ND can simulate SC)

If `G Γ⇒ ∆ then Γ,¬∆ `N ⊥ (where ¬{F1, . . . } = {¬F1, . . . })
Proof by induction on (the depth of) `G Γ⇒ ∆

146

Corollary (Completeness of ND)

If Γ |= F then Γ `N F

Proof If Γ |= F then Γ0 |= F for some finite Γ0 ⊆ Γ.

147

Two completness proofs

I Direct

I By simulating a complete system

148

Theorem (SC can simulate ND)

If Γ `N F and Γ is finite then `G Γ⇒ F

Proof by induction on Γ `N F

149

Corollary

If Γ `N F then there is some finite Γ0 ⊆ Γ such that `G Γ0 ⇒ F

150

Hilbert Systems
Propositional Logic

(See the book by Troelstra and Schwichtenberg)

151

Easy to define, hard to use
No context management

A Hilber system for propositional logic consists of

I a set of axioms (formulae)

I and a single infrence rule, →E or modus ponens:

F → G F
G

→E

Proof trees for some Hilbert system are labeled with formulas.
The only inference rule is →E .

Definition
We write Γ `H F if there is a proof tree with root F
whose leaves are either axioms or elements of Γ.

152

Alternative proof presentation

Proofs in Hilbert systems are freqently shown as lists of lines

1. F1 justification1

2. F2 justification2
...
i . Fi justificationi
...

justificationi is either
assumption, axiom or →E (j , k) where j , k < i

Like linearized tree but also allows sharing of subproofs

153

Notational convention:

F → G → H means F → (G → H)

Note: F → G → H ≡ F ∧ G → H
F → G → H 6≡ (F → G)→ H

154

Example (A simple Hilbert system)

Axioms: F → (G → F) (A1)
(F → G → H)→ (F → G)→ F → H (A2)

A proof of F → F :

→ (F → F)
→E

F → F
→E

⇒ `H F → F

155

Theorem (Deduction Theorem)

In any Hilbert-system that contains the axioms A1 and A2:

F , Γ `H G iff Γ `H F → G

Proof “⇐”:
Γ `H F → G
⇒ F , Γ `H F → G
⇒ F , Γ `H G by →E because F , Γ `H F

156

Theorem (Deduction Theorem)

In any Hilbert-system that contains the axioms A1 and A2:

F , Γ `H G iff Γ `H F → G

Proof “⇒”:
By induction on (the length/depth of) the proof of F , Γ `H G
Then by cases on the last proof step:

Case G = F : see proof of F → F from A1 and A2

Case G ∈ Γ or axiom: by A1 and . . .

Case →E from H → G and H:

(F → H → G)→ (F → H)→ F → G F → H → G

(F → H)→ F → G F → H

F → G

157

Hilbert System

From now on `H refers to the following set of axioms:

F → G → F (A1)
(F → G → H)→ (F → G)→ F → H (A2)
F → G → F ∧ G (A3)
F ∧ G → F (A4)
F ∧ G → G (A5)
F → F ∨ G (A6)
G → F ∨ G (A7)
F ∨ G → (F → H)→ (G → H)→ H (A8)
(¬F → ⊥)→ F (A9)

158

Relating

Hilbert and Natural Deduction

159

Theorem (Hilbert can simulate ND)

If Γ `N F then Γ `H F

Proof translation in two steps: `N `H + →I `H

1. Transform a ND-proof tree into a proof tree containing
Hilbert axioms, →E and →I
by replacing all other ND rules by Hilbert proofs incl. →I
Principle: ND rule 1 axiom + →I/E

2. Eliminate the →I rules by the Deduction Theorem

160

Lemma (ND can simulate Hilbert)

If Γ `H F then Γ `N F

Proof by induction on Γ `H F .

I Every Hilbert axiom is provable in ND (Exercise!)

I →E is also available in ND

Corollary

Γ `H F iff Γ `N F

Corollary (Soundness and completeness)

Γ `H F iff Γ |= F

161

First-Order Predicate Logic

Basics

162

Syntax of predicate logic: terms

A variable is a symbol of the form xi where i = 1, 2, 3

A function symbol is of the form f k
i where i = 1, 2, 3 . . . and

k = 0, 1, 2

A predicate symbol is of the form Pk
i where i = 1, 2, 3 . . . and

k = 0, 1, 2

We call i the index and k the arity of the symbol.

Terms are inductively defined as follows:

1. Variables are terms.

2. If f is a function symbol of arity k and t1, . . . , tk are terms
then f (t1, . . . , tk) is a term.

Function symbols of arity 0 are called constant symbols.
Instead of f 0

i () we write f 0
i .

163

Syntax of predicate logic: formulas

If P is a predicate symbol of arity k and t1, . . . , tk are terms then
P(t1, . . . , tk) is an atomic formula.
If k = 0 we write P instead of P().

Formulas (of predicate logic) are inductively defined as follows:

I Every atomic formula is a formula.

I If F is a formula, then ¬F is also a formula.

I If F and G are formulas,
then F ∧ G , F ∨ G and F → G are also formulas.

I If x is a variable and F is a formula,
then ∀x F and ∃x F are also formulas.
The symbols ∀ and ∃ are called the universal and the
existential quantifier.

164

Syntax trees and subformulas

Syntax trees are defined as before,
extended with the following trees for ∀xF and ∃xF :

∀x ∃x
| |
F F

Subformulas again correspond to subtrees.

165

Sructural induction of formulas

Like for propositional logic but

I Different base case: P(P(t1, . . . , tk))

I Two new induction steps:
prove P(∀x F) under the induction hypothesis P(F)
prove P(∃x F) under the induction hypothesis P(F)

166

Naming conventions

x , y , z , . . . instead of x1, x2, x3, . . .
a, b, c , . . . for constant symbols
f , g , h, . . . for function symbols of arity > 0

P,Q,R, . . . instead of Pk
i

167

Precedence of quantifiers

Quantifiers have the same precedence as ¬

Example

∀x P(x) ∧ Q(x) abbreviates (∀x P(x)) ∧ Q(x)
not ∀x (P(x) ∧ Q(x))

Similarly for ∨ etc.

[This convention is not universal]

168

Free and bound variables, closed formulas

A variable x occurs in a formula F if it occurs in some atomic
subformula of F .

An occurrence of a variable in a formula is either free or bound.

An occurrence of x in F is bound if it occurs in some subformula
of F of the form ∃xG or ∀xG ; the smallest such subformula is the
scope of the occurrence. Otherwise the occurrence is free.

A formula without any free occurrence of any variable is closed.

Example

∀x P(x)→ ∃y Q(a, x , y)

169

Exercise

Closed?

∀x P(a)

Y

∀x∃y (Q(x , y) ∨ R(x , y)) Y

∀x Q(x , x)→ ∃x Q(x , y) N

∀x P(x) ∨ ∀x Q(x , x) Y

∀x (P(y) ∧ ∀y P(x)) N

P(x)→ ∃x Q(x , f (x)) N

Formula?

∃x P(f (x))

Y

∃f P(f (x))

N

170

Semantics of predicate logic: structures

A structure is a pair A = (UA, IA)
where UA is an arbitrary, nonempty set called the universe of A,
and the interpretation IA is a partial function that maps

I variables to elements of the universe UA,

I function symbols of arity k to functions of type Uk
A → UA,

I predicate symbols of arity k to functions of type Uk
A → {0, 1}

(predicates) [or equivalently to subsets of Uk
A (relations)]

IA maps syntax (variables, functions and predicate symbols)
to their meaning (elements, functions and predicates)

The special case of arity 0 can be written more simply:

I constant symbols are mapped to elements of UA,

I predicate symbols of arity 0 are mapped to {0, 1}.

171

Abbreviations:

xA abbreviates IA(x)
f A abbreviates IA(f)
PA abbreviates IA(P)

Example

UA = N
IA(P) = PA = {(m, n) | m, n ∈ N and m < n}
IA(Q) = QA = {m | m ∈ N and m is prime}
IA(f) is the successor function: f A(n) = n + 1
IA(g) is the addition function: gA(m, n) = m + n
IA(a) = aA = 2

IA(z) = zA = 3

Intuition: is ∀x P(x , f (x)) ∧ Q(g(a, z)) true in this structure?

172

Evaluation of a term in a structure

Definition
Let t be a term and let A = (UA, IA) be a structure.
A is suitable for t if IA is defined for all variables and function
symbols occurring in t.

The value of a term t in a suitable structure A, denoted by A(t),
is defined recursively:

A(x) = xA

A(c) = cA

A(f (t1, . . . , tk)) = f A(A(t1), . . . ,A(tk))

Example

A(f (g(a, z))) =

173

Definition
Let F be a formula and let A = (UA, IA) be a structure.
A is suitable for F if IA is defined for all predicate and function
symbols occurring in F and for all variables occurring free in F .

174

Evaluation of a formula in a structure

Let A be suitable for F . The (truth)value of F in A, denoted by
A(F), is defined recursively:

A(¬F), A(F ∧ G), A(F ∨ G), A(F → G)
as for propositional logic

A(P(t1, . . . , tk)) =

{
1 if (A(t1), . . . ,A(tk)) ∈ PA

0 otherwise

A(∀x F) =

{
1 if for every d ∈ UA, (A[d/x])(F) = 1
0 otherwise

A(∃x F) =

{
1 if for some d ∈ UA, (A[d/x])(F) = 1
0 otherwise

A[d/x] coincides with A everywhere except that xA[d/x] = d .

175

Example

A(∀x P(x , f (x)) ∧ Q(g(a, z))) =

176

Notes

I During the evaluation of a formulas in a structure,
the structure stays unchanged
except for the interpretation of the variables.

I If the formula is closed,
the initial interpretation of the variables is irrelevant.

177

Coincidence Lemma

Lemma
Let A and A′ be two structures that coincide on all free variables,
on all function symbols and all predicate symbols that occur in F .
Then A(F) = A′(F).

Proof.
Exercise.

178

Relation to propositional logic

I Every propositional formula can be seen as a formula of
predicate logic where the atom Ai is replaced by the atom P0

i .

I Conversely, every formula of predicate logic
that does not contain quantifiers and variables
can be seen as a formula of propositional logic
by replacing atomic formulas by propositional atoms.

Example
F = (Q(a) ∨ ¬P(f (b), b) ∧ P(b, f (b)))
can be viewed as the propositional formula
F ′ = (A1 ∨ ¬A2 ∧ A3).

Exercise
F is satifiable/valid iff F ′ is satisfiable/valid

179

Predicate logic with equality

Predicate logic
+

distinguished predicate symbol “=” of arity 2

Semantics: A structure A of predicate logic with equality always
maps the predicate symbol = to the identity relation:

A(=) = {(d , d) | d ∈ UA}

180

Model, validity, satisfiability
Like in propositional logic

Definition
We write A |= F to denote that the structure A is suitable for the
formula F and that A(F) = 1.
Then we say that F is true in A or that A is a model of F .

If every structure suitable for F is a model of F ,
then we write |= F and say that F is valid.

If F has at least one model then we say that F is satisfiable.

181

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a)

x

∃x (¬P(x) ∨ P(a))

x

P(a)→ ∃x P(x)

x

P(x)→ ∃x P(x)

x

∀x P(x)→ ∃x P(x)

x

∀x P(x) ∧ ¬∀y P(y)

x

182

Consequence and equivalence
Like in propositional logic

Definition
A formula G is a consequence of a set of formulas M
if every structure that is a model of all F ∈ M and suitable for G
is also a model of G . Then we write M |= G .

Two formulas F and G are (semantically) equivalent
if every structure A suitable for both F and G satisfies
A(F) = A(G). Then we write F ≡ G .

183

Exercise

1. ∀x P(x) ∨ ∀x Q(x , x)

2. ∀x (P(x) ∨ Q(x , x))

3. ∀x (∀z P(z) ∨ ∀y Q(x , y))

Y N

1 |= 2

x

2 |= 3

x

3 |= 1

x

184

Exercise

1. ∃y∀x P(x , y)

2. ∀x∃y P(x , y)

Y N

1 |= 2

x

2 |= 1

x

185

Exercise

Y N

∀x∀y F ≡ ∀y∀x F

x

∀x∃y F ≡ ∃x∀y F

x

∃x∃y F ≡ ∃y∃x F

x

∀x F ∨ ∀x G ≡ ∀x (F ∨ G)

x

∀x F ∧ ∀x G ≡ ∀x (F ∧ G)

x

∃x F ∨ ∃x G ≡ ∃x (F ∨ G)

x

∃x F ∧ ∃x G ≡ ∃x (F ∧ G)

x

186

Equivalences

Theorem

1. ¬∀xF ≡ ∃x¬F
¬∃xF ≡ ∀x¬F

2. If x does not occur free in G then:
(∀xF ∧ G) ≡ ∀x(F ∧ G)
(∀xF ∨ G) ≡ ∀x(F ∨ G)
(∃xF ∧ G) ≡ ∃x(F ∧ G)
(∃xF ∨ G) ≡ ∃x(F ∨ G)

3. (∀xF ∧ ∀xG) ≡ ∀x(F ∧ G)
(∃xF ∨ ∃xG) ≡ ∃x(F ∨ G)

4. ∀x∀yF ≡ ∀y∀xF
∃x∃yF ≡ ∃y∃xF

187

Replacement theorem

Just like for propositional logic it can be proved:

Theorem
Let F ≡ G . Let H be a formula with an occurrence of F as a
subformula. Then H ≡ H ′, where H ′ is the result of replacing an
arbitrary occurrence of F in H by G .

188

First-Order Logic

Normal Forms

189

Abbreviations

We return to the abbreviations used in connection with resolution:

F1 → F2 abbreviates ¬F1 ∨ F2

> abbreviates P0
1 ∨ ¬P0

1

⊥ abbreviates P0
1 ∧ ¬P0

1

190

Substitution

I Substitutions replace free variables by terms.
(They are mappings from variables to terms)

I By [t/x] we denote the substitution that replaces x by t.

I The notation F [t/x] (“F with t for x”) denotes the result of
replacing all free occurrences of x in F by t.
Example
(∀x P(x) ∧ Q(x))[f (y)/x] = ∀x P(x) ∧ Q(f (y))

I Similarly for subsitutions in terms:
u[t/x] is the result of replacing x by t in term u.
Example
(f (x))[g(x)/x] = f (g(x))

191

Variable capture

Warning
If t contains a variable that is bound in F ,
substitution may lead to variable capture:

(∀x P(x , y))[f (x)/y] = ∀x P(x , f (x))

Variable capture should be avoided

192

Substitution lemmas

Lemma (Substitution Lemma)

If t contains no variable bound in F then
A(F [t/x]) = (A[A(t)/x])(F)

Proof by structural induction on F
with the help of the corresponding lemma on terms:

Lemma
A(u[t/x]) = (A[A(t)/x])(u)

Proof by structural induction on u

193

Warning

The notation .[./.] is heavily overloaded:

Substitution in syntactic objects

F [G/A] in propositional logic
F [t/x]
u[t/x] where u is a term

Function update

A[v/A] where A is a propositional assignment
A[d/x] where A is a structure and d ∈ UA

194

Aim:

Transform any formula into an equisatisfiable closed formula

∀x1 . . . ∀xn G

where G is quantifier-free.

195

Rectified Formulas

Definition
A formula is rectified if no variable occurs both bound and free
and if all quantifiers in the formula bind different variables.

Lemma
Let F = QxG be a formula where Q ∈ {∀,∃}.
Let y be a variable that does not occur in G .
Then F ≡ QyG [y/x].

Lemma
Every formula is equivalent to a rectified formula.

Example

∀x P(x , y) ∧ ∃x∃y Q(x , y) ≡ ∀x ′ P(x ′, y) ∧ ∃x∃y ′ Q(x , y ′)

196

Prenex form

Definition
A formula is in prenex form if it has the form

Q1y1 . . .Qnyn F

where Qi ∈ {∃, ∀}, n ≥ 0, and F is quantifier-free.

197

Prenex form

Theorem
Every formula is equivalent to a rectified formula in prenex form
(a formula in RPF).

Proof First construct an equivalent rectified formula.
Then pull the quantifiers to the front using the following
equivalences from left to right as long as possible:

¬∀x F ≡ ∃x ¬F

¬∃x F ≡ ∀x ¬F

Qx F ∧ G ≡ Qx (F ∧ G)

F ∧ Qx G ≡ Qx (F ∧ G)

Qx F ∨ G ≡ Qx (F ∨ G)

F ∨ Qx G ≡ Qx (F ∨ G)

For the last four rules note that the formula is rectified!

198

Skolem form

The Skolem form of a formula F in RPF is the result of applying
the following algorithm to F :

while F contains an existential quantifier do

Let F = ∀y1∀y2 . . . ∀yn∃z G
(the block of universal quantifiers may be empty)

Let f be a fresh function symbol of arity n
that does not occur in F .

F := ∀y1∀y2 . . . ∀yn G [f (y1, y2, . . . , yn)/z]

i.e. remove the outermost existential quantifier in F and
replace every occurrence of z in G by f (y1, y2, . . . , yn)

Example

∃x ∀y ∃z ∀u ∃v P(x , y , z , u, v)

199

Exercise

Which formulas are rectified, in prenex, or Skolem form?

R P S

∀x(T (x) ∨ C (x) ∨ D(x))

x x x

∃x∃y(C (y) ∨ B(x , y))

x x

¬∃xC (x)↔ ∀x¬C (x)

∀x(C (x)→ S(x))→ ∀y(¬C (y)→ ¬S(y))

x

200

Skolem form

Theorem
A formula in RPF and its Skolem form are equisatisfiable.

Proof Every iteration produces an equisatisfiable formula.
Let (for simplicity) F = ∀y∃z G and F ′ = ∀y G [f (y)/z].

1. F ′ |= F

Assume A is suitable for F ′ and A(F ′) = 1.

⇒ for all u ∈ UA, A[u/y](G [f (y)/z]) = 1

⇒ for all u ∈ UA, A[u/y][f A(u)/z](G) = 1

⇒ for all u ∈ UA there is a v ∈ UA s.t. A[u/y][v/z](G) = 1

⇒ A(F) = 1

201

Skolem form

Theorem
A formula in RPF and its Skolem form are equisatisfiable.

Proof Every iteration produces an equisatisfiable formula.
Let (for simplicity) F = ∀y∃z G and F ′ = ∀y G [f (y)/z].

2. If F has a model, so does F ′

Assume A is suitable for F and A(F) = 1.

Wlog A does not define f (because f is new)

⇒ for all u ∈ UA there is a v ∈ UA s.t. A[u/y][v/z](G) = 1 (∗)
Let A′ be A extended with a definition of f :
f A
′
(u) := v where v is chosen as in (∗)

⇒ A′(F ′) = 1 because for all u ∈ UA:

A′[u/y](G [f (y)/z])
= A′[u/y][f A

′
(u)/z](G)

= A′[u/y][v/z](G)
= 1

202

Summary: conversion to Skolem form

Input: a formula F

Output: an equisatisfiable, rectified, closed formula
in Skolem form ∀y1 . . . ∀yk G where G is quantifier-free

1. Rectify F by systematic renaming of bound variables.
The result is a formula F1 equivalent to F .

2. Let y1, y2, . . . , yn be the variables occurring free in F1.
Produce the formula F2 = ∃y1∃y2 . . . ∃yn F1.
F2 is equisatisfiable with F1, rectified and closed.

3. Produce a formula F3 in RPF equivalent to F2.

4. Eliminate the existential quantifiers in F3

by transforming F3 into its Skolem form F4.
The formula F4 is equisatisfiable with F3.

Convert into Skolem form:
F = ∀x P(y , f (x , y)) ∨ ¬∀y Q(g(x), y)

203

First-Order Logic

Herbrand Theory

204

Herbrand universe
The Herbrand universe T (F) of a closed formula F in Skolem form
is the set of all terms that can be constructed using the function
symbols in F .

In the special case that F contains no constants, we first pick an
arbitrary constant, say a, and then construct the terms.

Formally, T (F) is inductively defined as follows:

I All constants occurring in F belong to T (F);
if no constant occurs in F , then a ∈ T (F)
where a is some arbitrary constant.

I For every n-ary function symbol f occurring in F ,
if t1, t2, . . . , tn ∈ T (F) then f (t1, t2, . . . , tn) ∈ T (F).

Note: All terms in T (F) are variable-free by construction!

Example

F = ∀x∀y P(f (x), g(c , y))
205

Herbrand structure

Let F be a closed formula in Skolem form.
A structure A suitable for F is a Herbrand structure for F
if it satisfies the following conditions:

I UA = T (F), and

I for every n-ary function symbol f occurring in F
and every t1, . . . , tn ∈ T (F): f A(t1, . . . , tn) = f (t1, . . . , tn).

Fact
If A is a Herbrand structure, then A(t) = t for all t ∈ UA.

We call a Herbrand structure that is a model a Herbrand model.

206

Matrix of a formula

Definition
The matrix of a formula F is the result of removing all quantifiers
(all ∀x and ∃x) from F . The matrix is denoted by F ∗.

207

Fundamental theorem of predicate logic

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff it has a Herbrand model.

Proof If F has a Herbrand model then it is satisfiable.

For the other direction let A be an arbitrary model of F .
We define a Herbrand structure T as follows:

Universe UT = T (F)
Function symbols f T (t1, . . . , tn) = f (t1, . . . , tn)
If F contains no constant: aA = u for some arbitrary u ∈ UA
Predicate symbols (t1, . . . , tn) ∈ PT iff (A(t1), . . . ,A(tn)) ∈ PA

Claim: T is also a model of F .

208

Claim: T is also a model of F .

We prove a stronger assertion:
For every closed formula G in Skolem form
that contains the same fun. and pred. symbols as F :
if A |= G then T |= G

Proof By induction on the number n of universal quantifiers of G .

Basis n = 0. Then G has no quantifiers at all.
Therefore A(G) = T (G) (why?), and we are done.

209

Induction step: G = ∀x H.

A |= G
⇒ for every u ∈ UA: A[u/x](H) = 1
⇒ for every u ∈ UA of the form u = A(t)

where t ∈ T (F): A[u/x](H) = 1
⇒ for every t ∈ T (F): A[A(t)/x](H) = 1
⇒ for every t ∈ T (F): A(H[t/x]) = 1 (substitution lemma)
⇒ for every t ∈ T (F): T (H[t/x]) = 1 (induction hypothesis)
⇒ for every t ∈ T (F): T [T (t)/x](H) = 1 (substitution lemma)
⇒ for every t ∈ T (F): T [t/x](H) = 1 (T is Herbrand structure)
⇒ T (∀x H) = 1 (UT = T (F))
⇒ T |= G

210

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff it has a Herbrand model.

What goes wrong if F is not closed or not in Skolem form?

211

Herbrand expansion

Let F = ∀y1 . . . ∀ynF ∗ be a closed formula in Skolem form.
The Herbrand expansion of F is the set of formulas

E (F) = {F ∗[t1/y1] . . . [tn/yn] | t1, . . . , tn ∈ T (F)}

Informally: the formulas of E (F) are the result of substituting
terms from T (F) for the variables of F ∗ in every possible way.

Example

E (∀x∀y P(f (x), g(c, y)) =

Note The Herbrand expansion can be viewed as a set of
propositional formulas.

212

Gödel-Herbrand-Skolem Theorem

Theorem
Let F be a closed formula in Skolem form.
Then F is satisfiable iff its Herbrand expansion E (F) is satisfiable
(in the sense of propositional logic).

Proof By the fundamental theorem, it suffices to show:
F has a Herbrand model iff E (F) is satisfiable.

Let F = ∀y1 . . . ∀ynF ∗.

A is a Herbrand model of F
iff for all t1, . . . , tn ∈ T (F), A[t1/y1] . . . [tn/yn](F ∗) = 1
iff for all t1, . . . , tn ∈ T (F), A(F ∗[t1/y1] . . . [tn/yn]) = 1
iff for all G ∈ E (F), A(G) = 1
iff A is a model of E (F)

213

Herbrand’s Theorem

Theorem
Let F be a closed formula in Skolem form.
F is unsatisfiable iff some finite subset of E (F) is unsatisfiable.

Proof Follows immediately from the Gödel-Herbrand-Skolem
Theorem and the Compactness Theorem.

214

Gilmore’s Algorithm

Let F be a closed formula in Skolem form
and let F1,F2,F3, . . . be a computable enumeration of E (F).

Input: F

n := 0;
repeat n := n + 1;
until (F1 ∧ F2 ∧ . . . ∧ Fn) is unsatisfiable;
return “unsatisfiable”

The algorithm terminates iff F is unsatisfiable.

215

Semi-decidability Theorems

Theorem

(a) The unsatisfiability problem of predicate logic is (only)
semi-decidable.

(b) The validity problem of predicate logic is (only)
semi-decidable.

Proof
(a) Gilmore’s algorithm is a semi-decision procedure.
(The problem is undecidable. Proof later)
(b) F valid iff ¬F unsatisfiable.

216

Löwenheim-Skolem Theorem

Theorem
Every satisfiable formula of first-order predicate logic
has a model with a countable universe.

Proof Let F0 be a formula with free variables x1, . . . , xn. Define
F := ∃x1 . . . ∃xn F0 and observe that F0 has a model with universe
U iff F has a model with universe U. Let G be an equisatisfiable,
closed formula in Skolem form as produced by the Normal Form
transformations starting with F .
Fact: Every model of G is a model of F . (Check this!)

F0 satisfiable ⇒ F satisfiable
⇒ G satisfiable
⇒ G has a Herbrand model T
⇒ F also has that model T
⇒ F0 has a countable model

(Herbrand universes are countable)

217

Löwenheim-Skolem Theorem

Formulas of first-order logic cannot enforce uncountable models

Formulas of first-order logic cannot axiomatize the real numbers
because there will always be countable models

218

First-Order Logic

Resolution

219

Resolution for first-order logic

Gilmore’s algorithm is correct and complete,
but useless in practice.

We upgrade resolution to make it work for predicate logic.

220

Recall: resolution in propositional logic

Resolution step:

{L1, . . . , Ln,A} {L′1, . . . , L′m,¬A}

{L1, . . . , Ln, L
′
1, . . . , L

′
m}

Resolution graph:

{¬A,B} {A} {¬B}

{B}

�

A set of clauses is unsatisfiable iff the empty clause can be derived.

221

Adapting Gilmore’s Algorithm

Gilmore’s Algorithm:

Let F be a closed formula in Skolem form
and let F1,F2,F3, . . . be an enumeration of E (F).

n := 0;
repeat n := n + 1
until (F1 ∧ F2 ∧ . . . ∧ Fn) is unsatisfiable;

– this can be checked with any calculus for propositional logic
return “unsatisfiable”

“any calculus” use resolution for the unsatisfiability test

222

Terminology

Literal/clause/CNF is defined as for propositional logic
but with the atomic formulas of predicate logic.

A ground term/formula/etc is a term/formula/etc
that does not contain any variables.

An instance of a term/formula/etc
is the result of applying a substitution to a term/formula/etc.

A ground instance
is an instance that does not contain any variables.

223

Clause Herbrand expansion

Let F = ∀y1 . . . ∀yn F ∗ be a closed formula in Skolem form with
F ∗ in CNF, and let C1, . . . ,Cm be the clauses of F ∗.

The clause Herbrand expansion of F is the set of ground clauses

CE (F) =
m⋃

i=1

{Ci [t1/y1] . . . [tn/yn] | t1, . . . , tn ∈ T (F)}

Lemma
CE (F) is unsatisfiable iff E (F) is unsatisfiable.

Proof Informally speaking, “CE (F) ≡ E (F)”.

224

Ground resolution algorithm

Let F be a closed formula in Skolem form with F ∗ in CNF.

Let C1,C2,C3, . . . be an enumeration of CE (F).

n := 0;
S := ∅;
repeat

n := n + 1;
S := S ∪ {Cn};

until S `Res �

return “unsatisfiable”

Note: The search for � can be performed incrementally every
time S is extended.

Example

F ∗ = {{¬P(x),¬P(f (a)),Q(y)}, {P(y)}, {¬P(g(b, x)),¬Q(b)}}

225

Ground resolution theorem

The correctness of the ground resolution algorithm can be
rephrased as follows:

Theorem
A formula F = ∀y1 . . . ∀yn F ∗ with F ∗ in CNF is unsatisfiable iff
there is a sequence of ground clauses C1, . . . ,Cm = � such that
for every i = 1, . . . ,m

I either Ci is a ground instance of a clause C ∈ F ∗,
i.e. Ci = C [t1/y1] . . . [tn/yn] where t1, . . . , tn ∈ T (F),

I or Ci is a resolvent of two clauses Ca,Cb with a < i and b < i

226

Where do the ground substitutions come from?

Better:

I allow substitutions with variables

I only instantiate clauses enough to allow one (new kind of)
resolution step

Example

Resolve {P(x),Q(x)} and {¬P(f (y)),R(y)}

227

Substitutions as functions

Substitutions are functions from variables to terms:
[t/x] maps x to t (and all other variales to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition:
[t1/x][t2/y] first substitutes t1 for x and then substitutes t2 for y .

Example

(P(x , y))[f (y)/x][b/y] = (P(f (y), y))[b/y] = P(f (b), b)

Similarly we can compose arbitrary substitutions σ1 and σ2:
σ1σ2 is the substitution that applies σ1 first and then σ2.

Substitutions are functions. Therefore

σ1 = σ2 iff for all variables x , xσ1 = xσ2

228

Substitutions as functions

Definition
The domain of a substitution: dom(σ) = {x | xσ 6= x}

Example

dom([a/x][b/y]) = {x , y}

Substitutions are defined to have finite domain.
Therefore every substitution can be written as a
simultaneous substitution [t1/x1, . . . , tn/xn].

229

Unifier and most general unifier

Let L = {L1, . . . , Lk} be a set of literals.

A substitution σ is a unifier of L if

L1σ = L2σ = · · · = Lkσ

i.e. if |Lσ| = 1, where Lσ = {L1σ, . . . , Lkσ}.

A unifier σ of L is a most general unifier (mgu) of L if
for every unifier σ′ of L there is a substitution δ such that σ′ = σδ.

· σ //

σ′

·
δ
��
·

230

Exercise

Unifiable? Yes No

P(f (x)) P(g(y)) x

P(x) P(f (y)) x

P(x) P(f (x)) x

P(x , f (y)) P(f (u), f (z)) x

P(x , f (x)) P(f (y), y) x

P(x , g(x), g 2(x)) P(f (z),w , g(w)) x

P(x , f (y)) P(g(y), f (a)) P(g(a), z) x

231

Unification algorithm

Input: a set L 6= ∅ of literals

σ := [] (the empty substitution)

while |Lσ| > 1 do

Find the first position at which two literals L1, L2 ∈ Lσ differ

if none of the two characters at that position is a variable
then return “non-unifiable”
else let x be the variable and t the term starting at that position

if x occurs in t
then return “non-unifiable”
else σ := σ [t/x]

return σ

Example

{ ¬P(f (z , g(a, y)), h(z)),
¬P(f (f (u, v),w), h(f (a, b))) }

232

Correctness of the unification algorithm

Lemma
The unification algorithm terminates.

Proof Every iteration of the while-loop (possibly except the last)
replaces a variable x by a term t not containing x , and so the
number of variables occurring in Lσ decreases by one.

Lemma
If L is non-unifiable then the algorithm returns “non-unifiable”.

Proof If L is non-unifiable then the algorithm can never exit the
loop normally.

233

Correctness/completeness of the unification algorithm

Lemma
If L is unifiable then the algorithm returns the mgu of L
(and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations
of the loop on input L.

Let σ0 = [], for 1 ≤ i ≤ n let σi be the value of σ after the i-th
iteration of the loop.

We prove for every 0 ≤ i ≤ n:

(a) If 1 ≤ i , the i-th iteration does not return “non-unifiable”.

(b) For every unifier σ′ of L there is a substitution δi such that
σ′ = σi δi .

By (a) the algorithm exits the loop normally after n iterations.
By (b) it returns a most general unifier.

234

Correctness/completeness of the unification algorithm
Proof of (a) and (b) by induction on i :

Basis (i = 0): For (a) there is nothing to prove.
For (b) take δ0 = σ′.

Step (i ⇒ i + 1)

For (a), since |Lσi | > 1 and Lσi unifiable, x and t exist
and x does not occur in t, and so “non-unifiable” is not returned.

For (b): Let σ′ be a unifier of L. IH: σ′ = σiδi for some δi .
δi must be of the form [t1/x1, . . . , tk/xk , u/x] where x1, . . . , xk , x
are distinct. Define δi+1 = [t1/x1, . . . , tk/xk].
Note u = xδi = tδi = tδi+1 (σiδi is unifier (IH), x not in t)

σi+1 δi+1

= σi [t/x] δi+1 (algorithm extends σi with [t/x])
= σi [t1/x1, . . . , tk/xk , tδi+1/x]
= σi [t1/x1, . . . , tk/xk , u/x] (Note u = tδi+1)
= σi δi

= σ′ (IH)
235

The standard view of unification

A unification problem is a pair of terms s =? t
(or a set of pairs {s1 =? t1, . . . , sn =? tn})

A unifier is a substitution σ such that sσ = tσ
(or s1σ = t1σ, . . . , snσ = tnσ)

236

Renaming

Definition
A substitution ρ is a renaming if for every variable x , xρ is a
variable and ρ is injective on dom(ρ).

237

Resolvents for first-order logic

A clause R is a resolvent of two clauses C1 and C2 if the following
holds:

I There is a renaming ρ such that
no variable occurs in both C1 and C2 ρ and
ρ is injective on the set of variables in C2

I There are literals L1, . . . , Lm ∈ C1 (m ≥ 1)
and literals L′1, . . . , L

′
n ∈ C2 ρ (n ≥ 1) such that

L = {L1, . . . , Lm, L
′
1, . . . , L

′
n}

is unifiable. Let σ be an mgu of L.

I R = ((C1 − {L1, . . . , Lm}) ∪ (C2 ρ− {L′1, . . . , L′n}))σ

Example

C1 = { P(x), Q(x), P(g(y)) } and C2 = { ¬P(x), R(f (x), a) }

238

Exercise

How many resolvents are there?

C1 C2 Resolvents

{P(x),Q(x , y)} {¬P(f (x))}

1

{Q(g(x)),R(f (x))} {¬Q(f (x))}

0

{P(x),P(f (x))} {¬P(y),Q(y , z)}

2

239

Why renaming?

Example

∀x(P(x) ∧ ¬P(f (x)))

240

Resolution for first-order logic

As for propositional logic, F `Res C means that clause C can be
derived from a set of clauses F by a sequence of resolution steps,
i.e. that there is a sequence of clauses C1, . . . ,Cm = C
such that for every Ci

I either Ci ∈ F

I or Ci is the resolvent of Ca and Cb where a, b < i .

Questions:

Correctness Does F `Res � imply that F is unsatisfiable?

Completeness Does unsatisfiability of F imply F `Res �?

241

Exercise

Derive � from the following clauses:

1. {¬P(x),Q(x),R(x , f (x))}
2. {¬P(x),Q(x), S(f (x))}
3. {T (a)}
4. {P(a)}
5. {¬R(a, z),T (z)}
6. {¬T (x),¬Q(x)}
7. {¬T (y),¬S(y)}

242

Correctness of Resolution for First-Order Logic

Definition
The universal closure of a formula H with free variables x1, . . . , xn:

∀H = ∀x1∀x2 . . . ∀xnH

Theorem
Let F be a closed formula in Skolem form with matrix F ∗ in CNF.
If F ∗ `Res � then F is unsatisfiable.

243

Theorem
Let F be a closed formula in Skolem form with matrix F ∗ in CNF.
If F ∗ `Res � then F is unsatisfiable.

Proof Let C1, . . . ,Cm be the sequence of clauses leading to �.
By induction on i : if ∀F ∗ |= ∀Ci . Trivial if Ci ∈ F ∗.
Let Ci be a resolvent of Ca and Cb (a, b < i). We prove

∀Ca,∀Cb |= ∀Ci (∗)
Thus ∀F ∗ |= ∀Ci because ∀F ∗ |= ∀Ca and ∀F ∗ |= ∀Cb by IH.

Proof of (∗): Assume A(∀Ca) = A(∀Cb) = 1 (∗∗)
Ci = ((Ca − {L1, . . . }) ∪ (Cbρ− {L′1, . . . }))σ

= (Caσ − {L}) ∪ (Cbρσ − {L})
Indirect proof of A(∀Ci) = 1. Assume A(∀Ci) = 0.
⇒ A′(Ci) = 0 where A′ = A[u1/x1, . . .] for some ui ∈ UA
⇒ A′(Caσ − {L}) = A′(Cbρσ − {L}) = 0
⇒ A′(L) = A′(L) = 1 becs. A′(Caσ) = A′(Cbρσ) = 1 becs. (∗∗)
Contradiction

244

Completeness: The idea

Simulate ground resolution because that is complete

Lift the resolution proof from the ground resolution proof

245

Lifting Lemma

Let C1,C2 be two clauses and
let C ′1,C

′
2 be two ground instances

with (propositional) resolvent R ′.

Then there is a resolvent R of C1,C2

such that R ′ is a ground instance of R.

C1

��

C2

��

C ′1 R

��

C ′2

R ′

→: Substitution
—: Resolution

246

Lifting Lemma: example

{¬P(f (x)),Q(x)}

[g(a)/x]
��

{P(f (g(y)))}

[a/y]
��

{¬P(f (g(a))),Q(g(a))} {Q(g(y))}

[a/y]
��

{P(f (g(a)))}

{Q(g(a))}

247

Proof of Lifting Lemma.
(1) C ′1,C

′
2 are ground instances of C1,C2

(2) R ′ is propositional resolvent of C ′1 and C ′2
We prove that R ′ is an instance of a resolvent of C1 and C2

(3) Let ρ be a renaming s.t. C1 and C2ρ have no common variables
(1) ⇒ C ′2 is a ground instance of C2ρ. Thus there are σ1, σ2 s.t.
C ′1 = C1σ1 and C ′2 = C2ρσ2 and dom(σ1) ∩ dom(σ2) = ∅
⇒ C ′1 = C1σ and C ′2 = C2ρσ where σ = σ1 ∪ σ2

(2) ⇒ R ′ = (C ′1 − {L}) ∪ (C ′2 − {L}) where L ∈ C ′1 and L ∈ C ′2
⇒ there are {L1, . . . } ⊆ C1 and {L′1, . . . } ⊆ C2ρ
s.t. σ is a unifier of {L1, . . . , L

′
1, . . . } =: M.

Let σ0 be an mgu of M and let σ = σ0δ for some δ
⇒ A resolvent of C1 and C2:
R := ((C1 − {L1, . . . }) ∪ (C2ρ− {L′1, . . . }))σ0

Rδ = ((C1 − {L1, . . . }) ∪ (C2ρ− {L′1, . . . }))σ
= (C1σ − {L}) ∪ (C2ρσ − {L})
= (C ′1 − {L}) ∪ (C ′2 − {L})
= R ′

248

Completeness of Resolution for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F ∗ in CNF.
If F is unsatisfiable then F ∗ `Res �.

Proof If F is unsatisfiable, there is a ground resolution proof
C ′1, . . . ,C

′
n = �. We transform this step by step into a resolution

proof C1, . . . ,Cn = � such that C ′i is a ground instance of Ci .

If C ′i is a ground instance of some clause C ∈ F ∗:
Set Ci = C

If C ′i is a resolvent of C ′a,C
′
b (a, b < i):

C ′a,C
′
b have been transformed already into Ca,Cb s.t. C ′a,C

′
b are

ground instances of Ca,Cb. By the Lifting Lemma there is a
resolvent R of Ca,Cb s.t. C ′i is a ground instance of R.
Set Ci = R.

249

Resolution Theorem for First-Order Logic

Theorem
Let F be a closed formula in Skolem form with matrix F ∗ in CNF.
Then F is unsatisfiable iff F ∗ `Res �.

250

A resolution algorithm
Input: A closed formula F in Skolem form with matrix S in CNF,
i.e. S is a finite set of clauses

while � /∈ S and
there are clauses Ca,Cb ∈ S and resolvent R of Ca and Cb

such that R /∈ S (modulo renaming)
do S := S ∪ {R}

The selection of resolvents must be fair:
every resolvent is added eventually

Three possible behaviours:

I The algorithm terminates and � ∈ S
⇒ F is unsatisfiable

I The algorithm terminates and � /∈ S
⇒ F is satisfiable

I The algorithm does not terminate
(⇒ F is satisfiable)

251

Refinements of resolution

Problems of resolution:

I Branching degree of the search space too large

I Too many dead ends

I Combinatorial explosion of the search space

Solution:
Strategies and heuristics: forbid certain resolution steps, which
narrows the search space.

But: Completeness must be preserved!

252

First-Order Logic

Equality

253

Predicate logic with equality

Predicate logic
+

distinguished predicate symbol “=” of arity 2

Semantics: A structure A of predicate logic with equality always
maps the predicate symbol = to the identity relation:

A(=) = {(d , d) | d ∈ UA}

254

Expressivity

Fact
A structure is model of ∃x∀y x=y iff its universe is a singleton.

Theorem
Every satisfiable formula of predicate logic
has a countably infinite model.

Proof Let F be satisfiable. We assume w.l.o.g. that
F = ∀x1 . . . ∀xnF ∗ and the variables occurring in F ∗ are exactly
x1, . . . , xn. (If necessary bring F into closed Skolem form).
We consider two cases:
n = 0. Exercise.
n > 0. Let G = ∀x1 . . . ∀xnF ∗[f (x1)/x1], where f is a function
symbol that does not occur in F ∗. G is satisfiable (why?).
If G has a model M with universe U, then F has a model with
universe {f M(u) | u ∈ (U)}. Because G has a Herbrand model
with countably infinite universe T (G) (by the Fundamental
Theorem), F also has a model with countably infinite universe
{f (t) | t ∈ T (G)}. 255

Modelling equality

Let F be a formula of predicate logic with equality.
Let Eq be a predicate symbol that does not occur in F .
Let EF be the conjunction of the following formulas:

∀x Eq(x , x)

∀x∀y (Eq(x , y)→ Eq(y , x))

∀x∀y∀z ((Eq(x , y) ∧ Eq(y , z))→ Eq(x , z))

For every function symbol f in F of arity n and every 1 ≤ i ≤ n:
∀x1 . . . ∀xn∀y (Eq(xi , y)→

Eq(f (x1, . . . , xi , . . . xn), f (x1, . . . , y , . . . , xn)))

For every predicate symbol P in F of arity n and every 1 ≤ i ≤ n:
∀x1 . . . ∀xn∀y(Eq(xi , y)→

(P(x1, . . . , xi , . . . , xn)↔ P(x1, . . . , y , . . . , xn)))

EF expresses that Eq is a congruence relation on the symbols in F .

256

Quotient structure

Definition
Let A be a structure and ∼ an equivalence relation on UA that is
a congruence relation for all the predicate and function symbols
defined by IA. The quotient structure A/∼ is defined as follows:

I UA/∼ = {[u]∼ | u ∈ UA} where [u]∼ = {v ∈ UA | u ∼ v}
I For every function symbol f defined by IA:

f A/∼([d1]∼, . . . , [dn]∼) = [f A(d1, . . . , dn)]∼
I For every predicate symbol P defined by IA:

PA/∼([d1]∼, . . . , [dn]∼) = PA(d1, . . . , dn)

I For every variable x defined by IA: xA/∼ = [xA]∼

Lemma
A/∼(t) = [A(t)]∼

Lemma
A/∼(F) = A(F)

257

Theorem
The formulas F and EF ∧ F [Eq/=] are equisatisfiable.

Proof We show that if EF ∧ F [Eq/=] is sat., then F is satisfiable.
Assume A |= EF ∧ F [Eq/=].
⇒ EqA is an congruence relation.

Let B = A/EqA (extended with = interpreted as identity).
⇒ B |= F [Eq/=]

By construction EqB is identity:
EqB([a], [a′]) = EqA(a, a′) = ([a]EqA = [a′]EqA)

⇒ B(F [Eq/=]) = B(F)
⇒ B |= F

Conversely, it is easy to see that any model of F can be turned
into a model of EF ∧ F [Eq/=] by interpreting Eq as equality.

258

First-Order Logic

Undecidability
[Cutland, Computability, Section 6.5.]

259

I Aim:
Show that validity of first-order formulas is undecidable

I Method:
Reduce the halting problem to validity of formulas
by expressing program behaviour as formulas

Logical formulas can talk about computations!

260

Register machine programs (RMPs)
A register machine program is a sequence of instructions I1, . . . , It .
The instructions manipulate registers Ri (i = 1, 2, . . .)
that contain (unbounded!) natural numbers.
There are 4 instructions:

Rn := 0
Rn := Rn + 1
Rn := Rm

IF Rm = Rn GOTO p

Assumption: all jumps in a program go to 1, . . . , t + 1;
execution terminates when the PC is t + 1.

Let r be the maximal index of any register used in a program P.
Then the state of P during execution can be described by a tuple
of natural numbers

(n1, . . . , nr , k)

where ni is the contents of Ri and k is the PC (the number of the
next instruction to be executed).

261

Undecidability

Theorem (Undecidability of the halting problem for RMPs)

It is undecidable if a given register machine program terminates
when started in state (0, . . . , 0, 1).

We reduce the halting problem for RMPs to the validity problem
for first-order formulas.

Notation:
P(0) ↓ = “RMP P started in state (0, . . . , 0, 1) terminates”

Theorem
Given an RMP P we can effectively construct a closed formula ϕP

such that P(0) ↓ iff |= ϕP .

262

Proof by construction of ϕP from P = I1, . . . , It .
Funct. symb.: z , s. Abbr.: 0 = z , 1 = s(z), 2 = s(s(z)), . . .
Pred. symb.: R (arity: r + 1) “reachable”

Aim: if R(n1, . . . nr , k) then (0, . . . , 0, 1)
P
 (n1, . . . , nr , k)

For every Ii construct closed formula Ψi :

Ii = (Rn := 0): Ψi := ∀x1 . . . xr (R(x1, . . . , xn, . . . , xr , i)→
R(x1, . . . , z , . . . , xr , s(i))

Ii = (Rn := Rn + 1): the same except s(xn) instead of z

Ii = (Rn := Rm): the same except xm instead of z

Ii = (IF Rm = Rn GOTO p):
Ψi := ∀x1 . . . xr (R(x1, . . . , xr , i)→ (xm = xn → R(x1, . . . , xr , p))∧

(xm 6= xn → R(x1, . . . , xr , s(i)))

ΨP := Ψ ∧ R(z , . . . , z , s(z)) ∧Ψ1 ∧ · · · ∧Ψt

Ψ enforces that every model is similar to N:
Ψ := ∀x∀y(s(x) = s(y)→ x = y) ∧ ∀x(z 6= s(x))
(How can models of Ψ differ from N?)

263

ϕP := ΨP → τ where τ := ∃x1 . . . xr R(x1, . . . , xr , s(t))

Claim: P(0) ↓ iff |= ϕP

“⇒”: Assume P(0) ↓, show |= ϕP . Assume A |= ΨP .

Lemma
If (0, . . . , 0, 1)

P
 (n1, . . . , nr , k) then A |= R(n1, . . . , nr , k)

Proof by induction on the length of the execution using A |= ΨP .

Thus A |= τ because P(0) ↓.
“⇐”: |= ϕP ⇒ N |= ϕP ⇒ (N |= ΨP ⇒ N |= τ) ⇒ P(0) ↓
where UN := N, zN := 0 sN (n) := n + 1,

RN := {s | (0, . . . , 0, 1)
P
 s}

264

First-Order Logic

Compactness
[Harrison, Section 3.16]

265

More Herbrand Theory

Recall Gödel-Herbrand-Skolem:

Theorem
Let F be a closed formula in Skolem form. Then F is satisfiable iff
its Herbrand expansion E (F) is (propositionally) satisfiable.

Can easily be generalized:

Theorem (1)

Let S be a set of closed formulas in Skolem form.
Then S is satisfiable iff E (S) is (propositionally) satisfiable.

266

Transforming sets of formulas

Recall the transformation of single formulas into equisatisfiable
Skolem form: close, RPF, skolemize

Theorem (2)

Let S be a countable set of closed formulas. Then we can
transform it into an equisatisfiable set T of closed formulas in
Skolem form.
We call this transformation function skolem.

I Can all formulas in S be transformed in parallel?

I Why countable?

267

Transforming sets of formulas

1. Put all formulas in S into RPF.

Problem in Skolemization step: How do we generate new
function symbols if all of them have been used already in S?

2. Rename all function symbols in S : f k
i 7→ f k

2i

The result: equisatisfiable countable set {F0,F1, . . . }.

Unused symbols: all f k
2i+1

3. Skolemize the Fi one by one using the f k
2i+1 not used in the

Skolemization of F0, . . . ,Fi−1

Result is equisatisfiable with initial S .

268

Compactness

Theorem
Let S be a countable set of closed formulas.
If every finite subset of S is satisfiable, then S is satisfiable.

Proof every fin. F ⊆ S is sat.
⇒ every fin. F ⊆ skolem(S) is sat. by Theorem (2)

(fin. F ⊆ skolem(S) ⇒ F ⊆ skolem(S0) for some fin. S0 ⊆ S)
⇒ for every fin. F ⊆ skolem(S), E (F) is prop. sat. by Theorem(1)
⇒ every fin. F ′ ⊆ E (skolem(S)) is prop. sat.

(there must exist a fin. F ⊆ skolem(S) s.t. F ′ ⊆ E (F))
⇒ E (skolem(S)) is prop. sat. by prop. compactness
⇒ skolem(S) is sat. by Theorem (1)
⇒ S is sat. by Theorem (2)

269

First-Order Logic

The Classical Decision Problem

270

Validity/satisfiability of arbitrary first-order formulas is
undecidable.

What about subclasses of formulas?

Examples

∀x∃y (P(x)→ P(y))
Satisfiable? Resolution?

∃x∀y (P(x)→ P(y))
Satisfiable? Resolution?

271

The ∃∗∀∗ class

Definition
The ∃∗∀∗ class is the class of closed formulas of the form

∃x1 . . . ∃xm∀y1 . . . ∀yn F

where F is quantifier-free and contains no function symbols of arity
> 0.

This is also called the Bernays-Schönfinkel class.

Corollary

Unsatisfiability is decidable for formulas in the ∃∗∀∗ class.

272

What if a formula is not in the ∃∗∀∗ class?
Try to transform it into the ∃∗∀∗ class!

Example

∀y∃x (P(x) ∧ Q(y))

Heuristic transformation procedure:

1. Put formula into NNF

2. Push all quantifiers into the formula as far as possible
(“miniscoping”)

3. Pull out ∃ first and ∀ afterwards

273

Miniscoping

Perform the following transformations bottom-up,
as long as possible:

I (∃x F) ≡ F if x does not occur free in F

I ∃x (F ∨ G) ≡ (∃x F) ∨ (∃x G)

I ∃x (F ∧ G) ≡ (∃x F) ∧ G if x is not free in G

I ∃x F where F is a conjunction,
x occurs free in every conjunct,
and the DNF of F is of the form F1 ∨ · · · ∨ Fn, n ≥ 2:
∃x F ≡ ∃x (F1 ∨ · · · ∨ Fn)

Together with the dual transformations for ∀

Example

∃x (P(x) ∧ ∃y (Q(y) ∨ R(x)))

Warning: Complexity!

274

The monadic class

Definition
A formula is monadic if it contains only unary (monadic) predicate
symbols and no function symbol of arity > 0.

Examples

All men are mortal. Sokrates is a man. Sokrates is mortal.

275

The monadic class is decidable

Theorem
Satisfiability of monadic formulas is decidable.

Proof Put into NNF. Perform miniscoping.
The result has no nested quantifiers (Exercise!).
First pull out all ∃, then all ∀.
Existentially quantify free variables.
The result is in the ∃∗∀∗ class.

Corollary

Validity of monadic formulas is decidable.

276

The finite model property

Definition
A formula F has the finite model property (for satisfiability) if
F has a model iff F has a finite model.

Theorem
If a formula has the finite model property, satisfiability is decidable.

Theorem
Monadic formulas have the finite model property.

277

The finite model property

Theorem
Monadic formulas have the finite model property.

Proof A satisfiable monadic formula F
with k different monadic predicate symbols P1, . . . ,Pk

has a model of size ≤ 2k .
Given a model A of F , define ∼ such that |UA/∼ | ≤ 2k :

u ∼ v iff for all i , PAi (u) = PAi (v)

Why |UA/∼ | ≤ 2k ?
Every class [u]∼ can be viewed as a bit-vector of length k :
(PA1 (u), . . . ,PAk (u))

Obvious: ∼ is an equivalence.
∼ is a congruence: if u ∼ v then PAi (u) = PAi (u) for all i

278

Classification by quantifier prefix of prenex form

There is a complete classification of decidable and undecidable
classes of formulas based on

I the form of the quantifier prefix of the prenex form

I the arity of the predicate and function symbols allowed

I whether “=” is allowed or not.

279

A complete classification

Only formulas without function symbols of arity > 0,
no restrictions on predicate symbols.

Satisfiability is decidable:

∃∗∀∗ (Bernays, Schönfinkel 1928, Ramsey 1930)

∃∗∀∃∗ (Ackermann 1928)

∃∗∀2∃∗ (Gödel 1932)

Satsifiability is undecidable:

∀3∃ (Surányi 1959)

∀∃∀ (Kahr, Moore, Wang 1962)

Why complete?

Famous mistake by Gödel: ∃∗∀2∃∗ with “=” is undecidable
(Goldfarb 1984)

280

First-Order Logic

Basic Proof Theory

281

Gebundene Namen sind Schall und Rauch

We permit ourselves to identifty formulas that differ only in the
names of bound variables.

Example

∀x∃y P(x , y) = ∀u∃v P(u, v)

The renaming must not capture free variables:
∀x P(x , y) 6= ∀y P(y , y)

Substitution F [t/x] assumes that bound variables in F are
automatically renamed to avoid capturing free variables in t.

Example

(∀x P(x , y))[f (x)/y] = ∀x ′ P(x ′, f (x))

282

All proof systems below are extensions
of the corresponding propositional systems

283

Sequent Calculus

284

Sequent Calculus rules

F [t/x],∀x F , Γ⇒ ∆

∀x F , Γ⇒ ∆
∀L

Γ⇒ F [y/x],∆

Γ⇒ ∀x F ,∆
∀R(∗)

F [y/x], Γ⇒ ∆

∃x F , Γ⇒ ∆
∃L(∗)

Γ⇒ F [t/x], ∃x F ,∆

Γ⇒ ∃x F ,∆
∃R

(∗): y not free in the conclusion of the rule

Note: ∀L and ∃R do not delete the principal formula

285

Soundness

Lemma

For every quantifier rule
S ′

S , |S | and |S ′| are equivalid.

Theorem (Soundness)

If `G S then |= |S |.
Proof induction on the size of the proof of `G S
using the above lemma and the corresponding propositional lemma
(|S | ≡ |S1| ∧ . . . ∧ |Sn|).

286

Completeness Proof

Construct counter model
from (possibly infinite!) failed proof search

Let e0, e1, . . . be an enumeration of all terms
(over some given set of function symbols and variables)

287

Proof search

Construct proof tree incrementally:

1. Pick some uproved leaf Γ⇒ ∆
such that some rule is applicable.

2. Pick some principal formula in Γ⇒ ∆ fairly and apply rule.

∀R, ∃L: pick some arbitrary new y
∀L, ∃R:

t =


e0 if the p.f. has never been instantiated

(on the path to the root)
ei+1 if the previous instantiation of the p.f.

(on the path to the root) used ei

Failed proof search: there is a branch A such that
A ends in a sequent where no rule is applicable
or A is infinite.

288

Construction of Herbrand countermodel A from A

UA = all terms over the function symbols and variables in A

f A(t1, . . . , tn) = f (t1, . . . , tn)

PA = {(t1, . . . , tn) | P(t1, . . . , tn) ∈ Γ for some Γ⇒ ∆ ∈ A}

289

Theorem

For all Γ⇒ ∆ ∈ A: A(F) =

{
1 if F ∈ Γ
0 if F ∈ ∆

Proof by induction on the structure of F
F = P(t1, . . . , tn):
F ∈ Γ⇒ A(F) = 1 by def
F ∈ ∆⇒ F /∈ any Γ ∈ A, (A would end in Ax) ⇒ A(F) = 0

F not atomic ⇒ F must be p.f. in some Γ⇒ ∆ ∈ A (fairness!)
Let Γ′ ⇒ ∆′ be the next sequent in A

F = ¬G : F ∈ Γ iff G ∈ ∆′ iff A(G) = 0 (IH) iff A(F) = 1

F = G1 ∧ G2:
F ∈ Γ ⇒ G1,G2 ∈ Γ′ ⇒ A(G1) = A(G2) = 1 (IH) ⇒ A(F) = 1
F ∈ ∆ ⇒ G1 ∈ ∆′ or G2 ∈ ∆′ ⇒ A(G1) = 0 or A(G2) = 0 (IH)
⇒ A(F) = 0

F = ∀x G : F ∈ ∆ ⇒ G [y/x] ∈ ∆′ ⇒ A(G [y/x]) = 0 (IH)
⇒ A[A(y)/x](G) = 0 ⇒ A(F) = 0

290

Completeness

Corollary

If proof search with root Γ⇒ ∆ fails,
then there is a structure A such that A(

∧
Γ→

∨
∆) = 0.

Example

∃x P(x)⇒ ∀x P(x)

Corollary (Completeness)

If |= |Γ→ ∆| then `G Γ⇒ ∆

Proof by contradiction. If not `G Γ⇒ ∆ then proof search fails.
Then there is an A such that A(

∧
Γ→

∨
∆) = 0.

Therefore not |= |Γ→ ∆|.

291

Natural Deduction

292

Natural Deduction rules

F [y/x]

∀x F
∀I (∗) ∀x F

F [t/x]
∀E

F [t/x]

∃x F
∃I

∃x F

[F [y/x]]
....

H
H

∃E (∗∗)

(∗): (y = x or y /∈ fv(F)) and
y not free in an open assumption in the proof of F [y/x]

(∗∗): (y = x or y /∈ fv(F)) and
y not free in H or in an open assumption in the proof of the
second premise, except for F [y/x]

293

Theorem (Soundness)

If Γ `N F then Γ |= F

Proof as before, with additional cases:

∃x F

[F [y/x]]
....

H
H

∃E (∗∗)
IH: Γ |= ∃xF and F [y/x], Γ |= H

Show Γ |= H. Assume A |= Γ.
⇒ A |= ∃x F (by IH) ⇒ there is a u ∈ UA s.t. A[u/x] |= F
⇒ A[u/y] |= F [y/x] because y = x or y /∈ fv(F)
A[u/y] |= Γ because y not free in Γ

⇒ A[u/y] |= H by IH
⇒ A |= H because y not free in H

294

Theorem (ND can simulate SC)

If `G Γ⇒ ∆ then Γ,¬∆ `N ⊥ (where ¬{F1, . . . } = {¬F1, . . . })
Proof by induction on (the depth of) `G Γ⇒ ∆

295

Corollary (Completeness of ND)

If Γ |= F then Γ `N F

Proof as before: compactness, completeness of `G , translation to `N

Translation from `N to `G also as before: I 7→ R, E 7→ L + cut

296

Equality

297

Hilbert System

298

Hilbert System

Additional rule ∀I :
if F is provable then ∀y F [y/x] is provable
provided x not free in the assumptions and (y = x or y /∈ fv(F))

Additional axioms:
∀x F → F [t/x]
F [t/x]→ ∃x F
∀x(G → F)→ (G → ∀y F [y/x]) (∗)
∀x(F → G)→ (∃y F [y/x]→ G) (∗)

(∗) if x /∈ fv(G) and (y = x or y /∈ fv(F))

299

Equivalence of Hilbert and ND

As before, with additional cases.

300

First-order Predicate Logic

Theories

301

Definitions

Definition
A signature Σ is a set of predicate and function symbols.

A Σ-formula is a formula that contains only predicate and function
symbols from Σ.

A Σ-structure is a structure that interprets all predicate and
function symbols from Σ.

Definition
A sentence is a closed formula.

In the sequel, S is a set of sentences.

302

Theories

Definition
A theory is a set of sentences S such that S is closed under
consequence: If S |= F and F is closed, then F ∈ S .

Let A be a Σ-structure:
Th(A) is the set of all sentences true in A:
Th(A) = {F | F Σ-sentence and A |= F}

Lemma
Let A be a Σ-structure and F a Σ-sentence.
Then A |= F iff Th(A) |= F .

Corollary

Th(A) is a theory.

303

Lemma
Let A be a Σ-structure and F a Σ-sentence.
Then A |= F iff Th(A) |= F .

Proof
“⇒”: A |= F ⇒ F ∈ Th(A) ⇒ Th(A) |= F

“⇐”:
Assume Th(A) |= F
⇒ for all B, if B |= Th(A) then B |= F
⇒ A |= F because A |= Th(A)

304

Example

Notation: (Z,+,≤) denotes the structure with universe Z and the
standard interpretations for the symbols + and ≤.
The same notation is used for other standard structures where the
interpretation of a symbol is clear from the symbol.

Example (Linear integer arithmetic)

Th(Z,+,≤) is the set of all sentences over the signature {+,≤}
that are true in the structure (Z,+,≤).

305

Famous numerical theories

Th(R,+,≤) is called linear real arithmetic.
It is decidable.

Th(R,+, ∗,≤) is called real arithmetic.
It is decidable.

Th(Z,+,≤) is called linear integer arithmetic or Presburger
arithmetic.
It is decidable.

Th(Z,+, ∗,≤) is called integer arithmetic.
It is not even semidecidable (= r.e.).

Decidability via special algorithms.

306

Consequences

Definition
Let S be a set of Σ-sentences.

Cn(S) is the set of consequences of S :
Cn(S) = {F | F Σ-sentence and S |= F}

Examples

Cn(∅) is the set of valid sentences.
Cn({∀x∀y∀z (x ∗ y) ∗ z = x ∗ (y ∗ z)}) is the set of sentences
that are true in all semigroups.

Lemma
If S is a set of Σ-sentences, Cn(S) is a theory.

Proof Assume F is closed and Cn(S) |= F . Show F ∈ Cn(S), i.e.
S |= F . Assume A |= S . Thus A |= Cn(S) (*) and hence A |= F ,
i.e. S |= F . (*): Assume G ∈ Cn(S), i.e. S |= G . With A |= S the
desired A |= G follows.

307

Axioms

Definition
Let S be a set of Σ-sentences.

A theory T is axiomatized by S if T = Cn(S)

A theory T is axiomatizable if there is some decidable or
recursively enumerable S that axiomatizes T .

A theory T is finitely axiomatizable
if there is some finite S that axiomatizes T .

308

Completeness and elementary equivalence

Definition
A theory T is complete if for every sentence F , T |= F or T |= ¬F .

Fact
Th(A) is complete.

Example

Cn({∀x∀y∀z (x ∗ y) ∗ z = x ∗ (y ∗ z)}) is incomplete:
neither ∀x∀y x ∗ y = y ∗ x nor its negation are present.

Definition
Two structures A and B are elementarily equivalent if
Th(A) = Th(B).

Theorem
A theory T is complete iff all its models are elementarily equivalent.

309

Theorem
A theory T is complete iff all its models are elementarily equivalent.

Proof If T is unsatisfiable, then T is complete (because T |= F
for all F) and all models are elementarily equivalent.
Now assume T has a model M.
“⇒”
Assume T is complete. Let F ∈ Th(M).
We cannot have T |= ¬F because M |= T would imply M |= ¬F
but M |= F because F ∈ Th(M). Thus T |= F by completeness.
Therefore every formula that is true in some model of T
is true in all models of T .
“⇐”
Assume all models of T are elem.eq. Let F be closed.
Either M |= F or M |= ¬F . By elem.eq. T |= F or T |= ¬F .
Why? Assume M |= F (similar for M |= ¬F).
To show T |= F , assume A |= T and show A |= F .
⇒ Th(A) = Th(M) by elem.eq.
⇒ for all closed F , A |= F iff M |= F
⇒ A |= F because M |= F

310

Quantifier Elimination

311

Helpful lemmas

Let S be a set of sentences.

Lemma
S |= F iff S |= ∀F

Lemma
If S |= F ↔ G then S |= H[F]↔ H[G],
i.e. one can replace a subformula F of H by G .

312

Quantifier elimination

Definition
If T |= F ↔ F ′ we say that F and F ′ are T -equivalent.

Definition
A theory T admits quantifier elimination if for every formula F
there is a quantifier-free T -equivalent formula G such that
fv(G) ⊆ fv(F). We call G a quantifier-free T -equivalent of F .

Examples

In linear real arithmetic:
∃x∃y (3 ∗ x + 5 ∗ y = 7) ↔ ?
∀y (x < y ∧ y < z) ↔ ?
∃y (x < y ∧ y < z) ↔ ?

313

Quantifier elimination

A quantifier-elimination procedure (QEP) for a theory T and a set
of formulas F is a function that computes for every F ∈ F a
quantifier-free T -equivalent.

Lemma
Let T be a theory such that

I T has a QEP for all formulas and

I for all ground formulas G , T |= G or T |= ¬G ,
and it is decidable which is the case.

Then T is decidable and complete.

314

Simplifying quantifier elimination: one ∃

Fact
If T has a QEP for all ∃x F where F is quantifier-free,
then T has a QEP for all formulas.

Essence: It is sufficient to be able to eliminate a single ∃

Construction:

Given: a QEP qe1 for formulas of the form ∃x F where F is
quantifier-free

Define: a QEP for all formulas
Method: Eliminate quantifiers bottom-up by qe1, use ∀ ≡ ¬∃¬

315

Simplifying quantifier elimination: ∃x
∧
literals

Lemma
If T has a QEP for all ∃x F where F is a conjunction of literals,
all of which contain x,
then T has a QEP for all ∃x F where F is quantifier-free.

Construction:

Given: a QEP qe1c for formulas of the form ∃x (L1 ∧ · · · ∧ Ln)
where each Li is a literal that contains x

Define: qe1(∃x F) where F is quantifier-free
Method: DNF; miniscoping; qe1c

This is the end of the generic part of quantifier elimination.
The rest is theory specific.

316

Eliminating “¬”

Motivation: ¬x < y ↔ y < x ∨ y = x for linear orderings

Assume that there is a computable function aneg that maps every
negated atom to a quantifier-free and negation-free T -equivalent
formula.

Lemma
If T has a QEP for all ∃x F where F is a conjunction of atoms,
all of which contain x,
then T has a QEP for all ∃x F where F is quantifier-free.

Construction:

Given: a QEP qe1ca for formulas of the form ∃x (A1 ∧ · · · ∧ An)
where each atom Ai contains x

Define: qe1(∃x F) where F quantifier-free
Method: NNF; aneg ; DNF; miniscoping; qe1ca

317

Quantifier Elimination

Dense Linear Orders
Without Endpoints

318

Dense Linear Orders Without Endpoints
Σ = {<,=}
Let DLO stand for “dense linear order without endpoints”
and for the following set of axioms:

∀x∀y∀z (x < y ∧ y < z → x < z)

∀x ¬(x < x)

∀x∀y (x < y ∨ x = y ∨ y < x)

∀x∀z (x < z → ∃y (x < y ∧ y < z)

∀x∃y x < y

∀x∃y y < x

Models of DLO?

Theorem
All countable DLOs are isomorphic.

319

Quantifier elimination example

Example

DLO |= ∃y (x < y ∧ y < z) ↔

320

Eliminiation of “¬”

Elimination of negative literals (function aneg):
DLO |= ¬x = y ↔ x < y ∨ y < x
DLO |= ¬x < y ↔ x = y ∨ y < x

321

Quantifier elimination for conjunctions of atoms
QEP qe1ca(∃x (A1 ∧ · · · ∧ An) where x occurs in all Ai :

1. Eliminate “=”: Drop all Ai of the form x = x .
If some Ai is of the form x = y (x and y different), eliminate ∃x :

∃x (x = t ∧ F) ≡ F [t/x] (x does not occur in t)

Otherwise:

2. Eliminate x < x : return ⊥
3. Separate atoms into lower and upper bounds for x and use

DLO |= ∃x(
m∧

i=1

li < x ∧
n∧

j=1

x < uj) ↔
m∧

i=1

n∧
j=1

li < uj

Special case:
∧0

k=1 Fk = >
Examples

∃x (x < z ∧ y < x ∧ x < y ′) ↔ ?
∀x (x < y) ↔ ?
∃x∃y∃z (x < y ∧ y < z ∧ z < x) ↔ ?

322

Complexity

Quadratic blow-up with each elimination step

⇒ Eliminating all ∃ from

∃x1 . . . ∃xm F

where F has length n needs O(

n2m

), assuming F is DNF.

323

Consequences

I Cn(DLO) has quantifier elimination

I Cn(DLO) is decidable and complete

I All models of DLO (for example (Q, <) and (R, <))
are elementarily equivalent:
you cannot distinguish models of DLO by first-order formulas.

324

Quantifier Elimination

Linear real arithmetic

325

Linear real arithmetic

R+ = (R, 0, 1,+, <,=), R+ = Th(R+)

For convenience we allow the following additional function symbols:
For every c ∈ Q:

I c is a constant symbol

I c ·, multiplication with c , is a unary function symbol

A term in normal form: c1 · x1 + . . .+ cn · xn + c
where ci 6= 0, xi 6= xj if i 6= j .

Every atom A is R+-equivalent to an atom 0 ./ t in normal form
(NF) where ./ ∈ {<,=} and t is in normal form.

An atom is solved for x if it is of the form x < t, x = t or t < x
where x does not occur in t.
Any atom A in normal form that contains x can be transformed
into an R+-equivalent atom solved for x .
Function solx (A) solves A for x .

326

Eliminiation of “¬”

Elimination of negative literals (function aneg):
R+ |= ¬x = y ↔ x < y ∨ y < x
R+ |= ¬x < y ↔ x = y ∨ y < x

327

Fourier-Motzkin Elimination
QEP qe1ca(∃x (A1 ∧ · · · ∧ An), all Ai in NF and contain x :

1. Let S = {solx (A1), . . . , solx (An)}
2. Eliminate “=”:
If (x = t) ∈ S for some t, eliminate ∃x :

∃x (x = t ∧ F) ≡ F [t/x] (x does not occur in t)

Otherwise return ∧
(l<x)∈S

∧
(x<u)∈S

l < u

Special case: empty
∧

is >

All returned formulas are implicitly put into NF.

Examples

∃x∃y (3x + 5y < 7 ∧ 2x − 3y < 2) ↔ ?
∃x∀y (3y ≤ x ∨ x ≤ 2y) ↔ ?

328

Can DNF be avoided?

329

Ferrante and Rackoff’s theorem

Theorem
Let F be quantifier-free and negation-free and assume all atoms
that contain x are solved for x. Let Sx be the set of atoms in F
that contain x. Let L = {l | (l < x) ∈ Sx},
U = {u | (x < u) ∈ Sx}, E = {t | (x = t) ∈ Sx}. Then

R+ |= ∃x F ↔ F [−∞/x] ∨ F [∞/x] ∨∨
t∈E

F [t/x] ∨
∨
l∈L

∨
u∈U

F [0.5(l + u)/x]

(note: empty
∨

is ⊥) where F [−∞/x] (F [∞/x]) is the following
transformation of all solved atoms in F : x < t 7→ > (⊥)

t < x 7→ ⊥ (>)
x = t 7→ ⊥ (⊥)

Examples

∃x (y < x ∧ x < z) ↔ ?
∃x x < y ↔ ?

330

Ferrante and Rackoff’s procedure

Define qe1(∃x F):

1. Put F into NNF, eliminate all negations,
put all atoms into normal form,
solve those atoms for x that contain x .

2. Apply Ferrante and Rackoff’s theorem.

Theorem
Eliminating all quantifiers with Ferrante and Rackoff’s procedure
from a formula of size n takes space O(2cn) and time O(22dn

).

331

Quantifier Elimination

Presburger Arithmetic
See [Harrison] or [Enderton] under “Presburger”

332

Presburger Arithmetic
Linear integer arithmetic: Z+ := (Z,+, 0, 1,≤)

A problem with Z+:

Z+ |= ∃x x + x = y ↔ ?

Fact Linear integer arithmetic does not have quantifier elimination

Presburger Arithmetic is linear integer arithmetic extended with
the unary functions “2 | .”, “3 | .”, . . .

(Alternative: “. = . (mod 2)”, “. = . (mod 3)”, . . .)

Notation: P := Z+ extended with “k | .”
For convenience: add constants c ∈ Z and multiplication with
constants c ∈ Z
Normal form of atoms:
0 ≤ c1 · x1 + . . .+ cn · xn + c
k | c1 · x1 + . . .+ cn · xn + c
where ci 6= 0 and k ≥ 1

Where necessary, atoms are put into normal form
333

Presburger Arithmetic

Elimination of ¬:

Z+ |= ¬ s ≤ t ↔ t + 1 ≤ s

Z+ |= ¬ k | t ↔ k | t + 1 ∨ k | t + 2 ∨ · · · ∨ k | t + (k − 1)

Elimination of ¬ | expensive and not really necessary.
Can treat ¬ | like |

334

Quantifier Elimination for P
Step 1

qe1ca(∃x F)
where F = A1 ∧ · · · ∧ Al

where all Ai are atoms in normal form which contain x

Step 1: Set all coeffs of x in F to 1 or -1:

1. Set all coeffs of x in F to the lcm m of all coeffs of x

2. Set all coeffs of x to 1 or -1 and add ∧m | x

335

Quantifier Elimination for P
Step 1

qe1ca(∃x A1 ∧ · · · ∧ Al)

Step 1: Set all coeffs of x in F to 1 or -1
The details, in one step:

Let m be the (positive) lcm of all coeffs of x (eg lcm {−6, 9} = 18)
Let R be coeff 1(A1) ∧ · · · ∧ coeff 1(Al) ∧m | x (result)
where
coeff 1(0 ≤ c1 ·x1 + . . .+cn ·xn +c) = (0 ≤ c ′1 ·x1 + . . .+c ′n ·xn +c ′)
coeff 1(d | c1 ·x1 + . . .+ cn ·xn + c) = (d ′ | c ′1 ·x1 + . . .+ c ′n ·xn + c ′)
xk = x
m′ = m/|ck |
c ′i = m′ · ci if i 6= k
c ′k = if ck > 0 then 1 else − 1
c ′ = m′ · c
d ′ = m′ · d

Lemma P |= (∃x F)↔ (∃x R)
336

Quantifier Elimination for P
Step 2

AL := set of all 0 ≤ x + t in R L := {−t | (0 ≤ x + t) ∈ AL}
AU := set of all 0 ≤ −x + t in R U := {t | (0 ≤ −x + t) ∈ AU}

D := the set of all d | t in R

m := the (pos.) lcm of {d | (d | t) ∈ D for some t}

The quantifier-free result:

R ′ := if L = ∅
then

∨m−1
i=0

∧
D[i/x]

else
∨m−1

i=0

∨
l∈L R[l + i/x]

Optimisation: use U instead of L

Lemma (Periodicity Lemma)

If A ∈ D, i.e. A = (d | x + t) and x /∈ fv(t), and i ≡ j (mod d)
then P |= A[i/x]↔ A[j/x].

337

Incompleteness of (Integer) Arithmetic
[Schöning, Theoretische Informatik]

338

Kurt Gödel. Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I. 1931.

Kurt Gödel
1906 (Brünn) –
1978 (Princeton)

339

http://en.wikipedia.org/wiki/Kurt_G~C3~B6del

Syntax of arithmetic:

Variablen: V → x | y | z | . . .
Zahlen: N → 0 | 1 | 2 | . . .
Terme: T → V | N | (T + T) | (T ∗ T)

Formeln: F → (T = T) | ¬F | (F ∧ F) | (F ∨ F) | ∃V .F

We consider ∀x .F as an abberviation for ¬∃x .¬F .

Definition
An occurrence of a variable x in a formula F is bound iff the
occurrence is in a subformula of the form ∃x .F ′ within F ′.
An occurrence is free iff it is not bound.

340

Notation: F (x1, . . . , xk) denotes a formula in which at most the
variables x1, . . . , xk occur free.

If n1, . . . , nk ∈ N then F (n1, . . . , nk) is the result of substituting
n1, . . . , nk for the free occurrences of x1, . . . , xk .

Example

F (x , y) = (x = y ∧ ∃x . x = y)

F (5, 7) = (5 = 7 ∧ ∃x . x = 7)

A sentence is a formula without free variables.

Example

∃x . ∃y . x = y

S is the set of arithmetic sentences.

341

Definition
W is the set of true sentences of arithmetic:

(t1 = t2) ∈W iff t1 and t2 have the same value.

¬F ∈W iff F /∈W

(F ∧ G) ∈W iff F ∈W and G ∈W

(F ∨ G) ∈W iff F ∈W or G ∈W

∃x .F (x) ∈W iff there is some n ∈ N s.t. F (n) ∈W

Fact
For every sentence F : F ∈W iff ¬F /∈W ,

NB If a formula with free variables is true or not can depend on
the value of the free variables:

∃x . x + x = y

Therefore absolute truth only makes sense for sentences.

342

Formulas can represent functions and relations.

Examples

F (x , y) = (∃z . y = x + z + 1)

represents “x < y”: t1 < t2 is an abbreviation of F (t1, t2).

F (x , y , z) = (∃k . x = k ∗ y + z ∧ z < y)

represents “z = x mod y”

343

Definition
A partial function f : Nk → N is arithmetically representable iff
there is a formula F (x1, . . . , xk , y) s.t. for all n1, . . . , nk ,m ∈ N:

f (n1, . . . , nk) = m iff F (n1, . . . , nk ,m) ∈W

Theorem
Every WHILE-computable function is arithmetically representable.

344

Theorem
W is not decidable.

Proof.
Let U ⊆ N be a semi-decidabe but not decidable set.
⇒ χ′U is WHILE-computable
⇒ χ′U is arithmetically representable by some F (x , y)
⇒ n ∈ U iff χ′U(n) = 1 iff F (n, 1) ∈W
⇒ W is not decidable.

Corollary

W is not semi-decidable.

345

What is a proof system? Minimal requirement:
It must decidable if a given text is a poof of a given formula.

We code proofs as natural numbers.

Definition
A proof system for arithmetic is a decidable predicate

Prf : N× S → {0, 1}

where Prf (p,F) means ”‘p is a proof for the sentence F ”’.
A proof system Prf is correct iff

Prf (p,F)⇒ F ∈W .

A proof system Prf is complete iff

F ∈W ⇒ there exists a p with Prf (p,F).

346

Theorem (Gödel)

There is no correct and complete proof system for arithmetic.

Proof.
With every correct and complete proof system
χ′W (F) can be programmed:

p := 0
while Prf (p,F) = 0 do p := p + 1
output(1)

347

Hilbert’s 10th Problem
Given a diophantine equation: To devise a process accord-
ing to which it can be determined by a finite number of
operations whether the equation is solvable in integers.

Hilbert, ICM, Paris, 1900

Theorem (Yuri Matiyasevich, Julia Robinson, Martin Davis,
Hilary Putnam, 1949-1970)

It is in general undecidable if a diophantine equation has a solution.

348

An Isabelle Proof

J. Bayer, M. David, B. Stock, A. Pal, D. Schleicher.
Diophantine Equations and the DPRM Theorem.
Archive of Formal Proofs. 2022.

DPRM = Davis, Putnam, Robinson, Matiyasevich

349

https://www.isa-afp.org/entries/DPRM_Theorem.html

Higher-Order Logic (HOL)

350

Types and Terms

Simly typed λ-terms

Types:

τ ::= bool | . . .
| (τ → τ)
| α | β . . .

Terms
t ::= c | d | · · · | f | h | . . .
| (t t)
| (λx . t)

We assume that every variable and constant has an attached type.
We consider only well-typed terms:

t1 : τ → τ ′ t2 : τ

t1 t2 : τ ′
t : τ ′

λx :τ. t : τ → τ ′

351

Base logic

Formula = term of type bool

Theorems: Γ ` F

Base constants: = : α→ α→ bool
→ : bool → bool → bool

352

Inference rules

F ` F
assume

` t = t
refl

` (λx . t) u = u[t/x]
β

` λx . (t x) = t
η if x /∈ fv(t)

Γ1 ` s = t Γ2 ` F [s/x]

Γ1 ∪ Γ2 ` F [t/x]
subst

Γ ` s = t
Γ ` (λx . s) = (λx . t)

abs if x /∈ fv(Γ)

353

Inference rules

Γ ` F
Γ ` F [τ1/α1, . . .]

inst

if α1, . . . do not occur in Γ

354

Inference rules

Γ ` G
Γ\{F} ` F → G

→ I

Γ1 ` F → G Γ2 ` F
Γ1 ∪ Γ2 ` G

→ E

Γ1 ` F → G Γ2 ` G → F
Γ1 ∪ Γ2 ` F = G

=I

355

Definitions of standard logical symbols

` > = ((λx . x) = (λx . x))

all : (α→ bool)→ bool
Notation: ∀x . F abbreviates all(λx . F)

` all = (λP. P = (λx . >))

` ⊥ = (∀F . F)

` ¬ = (λF . F → ⊥)

` (∧) = (λF . λG . ∀H. (F → G → H)→ H)

` (∨) = (λF . λG . ∀H. (F → H)→ (G → H)→ H)

356

Definitions of standard logical symbols

ex : (α→ bool)→ bool
Notation: ∃x . F abbreviates ex(λx . F)

` ex = (λP. ∀G . (∀x . (P x → G)→ G))

357

The method of postulating what we want has many
advantages; they are the same as the advantages of theft
over honest toil.

Bertrand Russel

358

Classical logic

` F ∨ ¬F

359

Hilbert’s ε

Informally: ε x .F = an arbitrary but fixed x that satisfies F

Examples

(ε x . x = 5) = 5
(ε n. 0 ≤ n ≤ 2) ∈ {0, 1, 2}
(ε x .⊥) ???

Formally: eps : (α→ bool)→ α
ε x .F appreviates eps(λx .F)
Axiom: P x → P(eps P)

360

