Propositional Logic Basics

Syntax of propositional logic

Definition

An atomic formula (or atom) has the form A_i where i = 1, 2, 3, ...Formulas are defined inductively:

- \perp ("False") and \top ("True") are formulas
- All atomic formulas are formulas
- For all formulas F, $\neg F$ is a formula.
- For all formulas F und G, (F ∘ G) is a formula, where ∘ ∈ {∧, ∨, →, ↔}
 - ¬ is called negation
 - \land is called conjunction
 - \lor is called disjunction
 - \rightarrow is called implication
 - $\leftrightarrow \quad \text{is called} \quad \text{bi-implication}$

Parentheses

Precedence of logical operators in decreasing order:

$$\neg \land \lor \to \leftrightarrow$$

Operators with higher precedence bind more strongly.

Example

Instead of $(A \rightarrow ((B \land \neg (C \lor D)) \lor E))$ we can write $A \rightarrow B \land \neg (C \lor D) \lor E$.

Outermost parentheses can be dropped.

Syntax tree of a formula

Every formula can be represented by a syntax tree.

Example

$$F = \neg((\neg A_4 \lor A_1) \land A_3)$$

Subformulas

The subformulas of a formula are the formulas corresponding to the subtrees of its syntax tree.

Induction on formulas

Proof by induction on the structure of a formula:

In order to prove some property $\mathcal{P}(F)$ for all formulas F it suffices to prove the following:

Base cases:

prove $\mathcal{P}(\perp)$, prove $\mathcal{P}(\top)$, and prove $\mathcal{P}(A_i)$ for all atoms A_i

- ► Induction step for ¬: prove P(¬F) under the induction hypothesis P(F)
- Induction step for all ∘ ∈ {∧, ∨, →, ↔}: prove P(F ∘ G) under the induction hypotheses P(F) and P(G)

Operators that are merely abbreviations need not be considered!

Semantics of propositional logic (I)

- The elements of the set $\{0,1\}$ are called truth values. (You may call 0 "false" and 1 "true")
- An assignment is a function $\mathcal{A} : Atoms \rightarrow \{0, 1\}$ where Atoms is the set of all atoms.

We extend \mathcal{A} to a function $\hat{\mathcal{A}}$: *Formulas* $\rightarrow \{0, 1\}$

Semantics of propositional logic (II)

$$\begin{aligned} \hat{\mathcal{A}}(A_i) &= \mathcal{A}(A_i) \\ \hat{\mathcal{A}}(\neg F) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 0 \\ 0 & \text{otherwise} \end{cases} \\ \hat{\mathcal{A}}(F \land G) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ and } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases} \\ \hat{\mathcal{A}}(F \lor G) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ or } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases} \\ \hat{\mathcal{A}}(F \to G) &= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 0 \text{ or } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Instead of $\hat{\mathcal{A}}$ we simply write \mathcal{A}

Using arithmetic:
$$\mathcal{A}(F \land G) = min(\mathcal{A}(F), \mathcal{A}(G))$$

 $\mathcal{A}(F \lor G) = max(\mathcal{A}(F), \mathcal{A}(G))$

Truth tables (I)

We can compute $\hat{\mathcal{A}}$ with the help of truth tables.

	A	A	\vee	В	Α	\wedge	B		Α	\rightarrow	В
1	0	0	0	0	 0	0	0	_	0	1	0
0	1	0	1	1	0	0	1		0	1	1
	,	1	1	0	1	0	0		1	0	0
		1	1	1	1	1	1		1	1	1

Abbreviations

 $\begin{array}{lll} A,B,C,\\ P,Q,R, \, {\rm or} \, \dots & {\rm instead} \, {\rm of} & A_1,A_2,A_3\dots \end{array}$ $\begin{array}{lll} F_1 \leftrightarrow F_2 & {\rm abbreviates} & (F_1 \wedge F_2) \vee (\neg F_1 \wedge \neg F_2) \\ & \bigvee_{i=1}^n F_i & {\rm abbreviates} & (\dots ((F_1 \vee F_2) \vee F_3) \vee \dots \vee F_n) \\ & & \bigwedge_{i=1}^n F_i & {\rm abbreviates} & (\dots ((F_1 \wedge F_2) \wedge F_3) \wedge \dots \wedge F_n) \end{array}$

Special cases:

$$\bigvee_{i=1}^{0} F_{i} = \bigvee \emptyset = \bot \qquad \bigwedge_{i=1}^{0} F_{i} = \bigwedge \emptyset = \top$$

Truth tables (II)

Α	\leftrightarrow	B
0	1	0
0	0	1
1	0	0
1	1	1

Coincidence Lemma

Lemma Let A_1 and A_2 be two assignments. If $A_1(A_i) = A_2(A_i)$ for all atoms A_i in some formula F, then $A_1(F) = A_2(F)$. Proof.

Exercise.

Models

If
$$\mathcal{A}(F) = 1$$
 then we write $\mathcal{A} \models F$
and say F is true under \mathcal{A}
or \mathcal{A} is a model of F

If $\mathcal{A}(F) = 0$ then we write $\mathcal{A} \not\models F$ and say F is false under \mathcal{A} or \mathcal{A} is not a model of F

Validity and satisfiability

Definition (Validity)

A formula F is valid (or a tautology) if *every* assignment is a model of F. We write $\models F$ if F is valid, and $\not\models F$ otherwise.

Definition (Satisfiability)

A formula F is satisfiable if it has at least one model; otherwise F is unsatisfiable.

A (finite or infinite!) set of formulas S is satisfiable if there is an assignment that is a model of every formula in S.

Exercise

	Valid	Satisfiable	Unsatisfiable
A			
$A \lor B$			
$A \lor \neg A$			
$A \wedge \neg A$			
$A \rightarrow \neg A$			
A ightarrow (B ightarrow A)			
$A \rightarrow (A \rightarrow B)$			
$A \leftrightarrow \neg A$			

Exercise

Which of the following statements are true?

		Y	C.ex.
If F is valid,	then F is satisfiable		
If F is satisfiable,	then $\neg F$ is satisfiable		
If F is valid,	then $\neg F$ is unsatisfiable		
If F is unsatisfiable,	then $\neg F$ is unsatisfiable		

Mirroring principle

all propositional formulas

Consequence

Definition

A formula G is a (semantic) consequence of a set of formulas M if every model \mathcal{A} of all $F \in M$ is also a model of G. Then we write $M \models G$.

In a nutshell:

"Every model of M is a model of G."

Example

 $A \lor B, \ A \to B, \ B \land R \to \neg A, \ R \models (R \land \neg A) \land B$

Consequence

Example

$$\underbrace{A \lor B, \ A \to B, \ B \land R \to \neg A, \ R}_{M} \models (R \land \neg A) \land B$$

Proof:

Assume $\mathcal{A} \models F$ for all $F \in M$. We need to prove $\mathcal{A} \models (R \land \neg A) \land B$. From $\mathcal{A} \models A \lor B$ and $\mathcal{A} \models A \to B$ follows $\mathcal{A} \models B$: Proof by cases: If $\mathcal{A}(A) = 0$ then $\mathcal{A}(B) = 1$ because $\mathcal{A} \models A \lor B$ If $\mathcal{A}(A) = 1$ then $\mathcal{A}(B) = 1$ because $\mathcal{A} \models A \to B$ From $\mathcal{A} \models B$ and $\mathcal{A} \models R$ follows $\mathcal{A} \models \neg A$ because ... From $\mathcal{A} \models B$, $\mathcal{A} \models R$, and $\mathcal{A} \models \neg A$ follows $\mathcal{A} \models (R \land \neg A) \land B$

Exercise

М	F	$M \models F$?
A	$A \lor B$	
A	$A \wedge B$	
A, B	$A \lor B$	
A, B	$A \wedge B$	
$A \wedge B$	A	
$A \lor B$	A	
$A, A \rightarrow B$	В	

Consequence

Exercise

The following statements are equivalent:

1.
$$F_1, \ldots, F_k \models G$$

2. $\models (\bigwedge_{i=1}^k F_i) \rightarrow G$

Proof of "if $F_1, \ldots, F_k \models G$ then $\models \underbrace{(\bigwedge_{i=1}^k F_i) \to G}_{H}$ ".

Assume $F_1, \ldots, F_k \models G$. We need to prove $\models H$, i.e. $\mathcal{A}(H) = 1$ for all \mathcal{A} . We pick an arbitrary \mathcal{A} and show $\mathcal{A}(H) = 1$. Proof by cases. If $\mathcal{A}(\bigwedge F_i) = 0$ then $\mathcal{A}(H) = 1$ because $H = \bigwedge F_i \to G$ If $\mathcal{A}(\bigwedge F_i) = 1$ then $\mathcal{A}(F_i) = 1$ for all *i*. Therefore \mathcal{A} is a model of F_1, \ldots, F_k . Therefore $\mathcal{A} \models G$ because $F_1, \ldots, F_k \models G$. Therefore $\mathcal{A}(H) = 1$

Validity and satisfiability

Exercise

The following statements are equivalent:

- 1. $F \rightarrow G$ is valid.
- 2. $F \land \neg G$ is unsatisfiable.

Exercise

Let M be a set of formulas, and let F and G be formulas. Which of the following statements hold?

	Y/N	C.ex.
If <i>F</i> satisfiable then $M \models F$.		
If F valid then $M \models F$.		
If $F \in M$ then $M \models F$.		
If $F \models G$ then $\neg F \models \neg G$.		

Notation

Warning: The symbol \models is overloaded: $\mathcal{A} \models F$ $\models F$ $\mathcal{M} \models F$

Convenient variations for set of formulas S:

$$\mathcal{A} \models S$$
 means that for all $F \in S$, $\mathcal{A} \models F$
 $\models S$ means that for all $F \in S$, $\models F$
 $\mathcal{M} \models S$ means that for all $F \in S$, $\mathcal{M} \models F$

Propositional Logic Equivalences

Equivalence

Definition (Equivalence)

Two formulas F and G are (semantically) equivalent if $\mathcal{A}(F) = \mathcal{A}(G)$ for every assignment \mathcal{A} .

We write $F \equiv G$ to denote that F and G are equivalent.

Which of the following equivalences hold?

$$(A \land (A \lor B)) \equiv A$$
$$(A \land (B \lor C)) \equiv ((A \land B) \lor C)$$
$$(A \to (B \to C)) \equiv ((A \to B) \to C)$$
$$(A \to (B \to C)) \equiv ((A \land B) \to C)$$

The following connections hold:

$$\models F \to G \quad \text{iff} \quad F \models G \\ \models F \leftrightarrow G \quad \text{iff} \quad F \equiv G$$

NB: "iff" means "if and only if"

Reductions between problems (I)

Reductions between problems (II)

► Validity to Equivalence:

F valid iff $F \equiv \top$

Equivalence to Validity:

 $F \equiv G$ iff $F \leftrightarrow G$ valid

Properties of semantic equivalence

- Semantic equivalence is an equivalence relation between formulas.
- Semantic equivalence is closed under operators:

If
$$F_1 \equiv F_2$$
 and $G_1 \equiv G_2$
then $(F_1 \land G_1) \equiv (F_2 \land G_2)$,
 $(F_1 \lor G_1) \equiv (F_2 \lor G_2)$ and
 $\neg F_1 \equiv \neg F_2$

Equivalence relation + Closure under Operations = Congruence relation

Replacement theorem

Theorem

Let $F \equiv G$. Let H be a formula with an occurrence of F as a subformula. Let H' be the result of replacing an arbitrary occurrence of F in H by G. Then $H \equiv H'$.

Proof by induction on the structure of *H*. We consider only the case $H = \neg H_0$. We analyse where *F* occurs in *H*. If F = H then H' = G and thus $H = F \equiv G = H'$. Otherwise *F* is a subformula of H_0 . Let H'_0 be the result of replacing *F* by *G* in H_0 . IH: $H_0 \equiv H'_0$ Thus $H = \neg H_0 \equiv \neg H'_0 = H'$

Equivalences (I)

Theorem $\begin{array}{rcl} (F \land F) &\equiv F \\ (F \lor F) &\equiv F \\ (F \land G) &\equiv (G \land F) \\ (F \lor G) &\equiv (G \lor F) \\ ((F \land G) \land H) &\equiv (F \land (G \land H)) \\ ((F \land G) \land H) &\equiv (F \lor (G \lor H)) \\ ((F \land G) \lor H) &\equiv (F \lor (G \lor H)) \\ (F \land (F \lor G)) &\equiv F \\ (F \lor (F \land G)) &\equiv F \\ (Absorption) \end{array}$

Equivalences (II)

$$\begin{array}{rcl} (F \land (G \lor H)) &\equiv & ((F \land G) \lor (F \land H)) \\ (F \lor (G \land H)) &\equiv & ((F \lor G) \land (F \lor H)) & (\text{Distributivity}) \\ \neg \neg F &\equiv & F & (\text{Double negation}) \\ \neg (F \land G) &\equiv & (\neg F \lor \neg G) & (\text{deMorgan's Laws}) \\ \neg (F \lor G) &\equiv & (\neg F \land \neg G) & (\text{deMorgan's Laws}) \\ \neg \top &\equiv & \bot & \\ \neg \bot &\equiv & \top & \\ (\top \lor G) &\equiv & T & \\ (\top \land G) &\equiv & G & \\ (\bot \lor G) &\equiv & & \\ (\bot \land G) &\equiv & & \bot & \end{array}$$

Warning

The symbols \models and \equiv are not operators in the language of propositional logic but part of the meta-language for talking about logic.

Examples:

 $\mathcal{A} \models F$ and $F \equiv G$ are not propositional formulas. $(\mathcal{A} \models F) \equiv G$ and $(F \equiv G) \leftrightarrow (G \equiv F)$ are nonsense. Propositional Logic Normal Forms
Abbreviations

Until further notice:

- $F_1 \rightarrow F_2$ abbreviates $\neg F_1 \lor F_2$
 - \top abbreviates $A_1 \lor \neg A_1$
 - \bot abbreviates $A_1 \land \neg A_1$

Literals

Definition

A literal is an atom or the negation of an atom. In the former case the literal is positive, in the latter case it is negative.

Negation Normal Form (NNF)

Definition

A formula is in negation formal form (NNF)

if negation (\neg) occurs only directly in front of atoms.

Example

In NNF: $\neg A \land \neg B$ Not in NNF: $\neg (A \lor B)$

Transformation into NNF

Any formula can be transformed into an equivalent formula in NNF by pushing \neg inwards. Apply the following equivalences from left to right as long as possible:

$$\neg \neg F \equiv F$$

$$\neg (F \land G) \equiv (\neg F \lor \neg G)$$

$$\neg (F \lor G) \equiv (\neg F \land \neg G)$$

Example

$$(\neg (A \land \neg B) \land C) \equiv ((\neg A \lor \neg \neg B) \land C) \equiv ((\neg A \lor B) \land C)$$

Warning: " $F \equiv G \equiv H$ " is merely an abbreviation for
" $F \equiv G$ and $G \equiv H$ "

Does this process always terminate? Is the result unique?

CNF and DNF

Definition

A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals:

$$F = (\bigwedge_{i=1}^{n} (\bigvee_{j=1}^{m_i} L_{i,j})),$$

where $L_{i,j} \in \{A_1, A_2, \cdots\} \cup \{\neg A_1, \neg A_2, \cdots\}$

Definition

A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals:

$$F = (\bigvee_{i=1}^{n} (\bigwedge_{j=1}^{m_i} L_{i,j})),$$

where $L_{i,j} \in \{A_1, A_2, \cdots\} \cup \{\neg A_1, \neg A_2, \cdots\}$

Transformation into CNF and DNF

Any formula can be transformed into an equivalent formula in CNF or DNF in two steps:

- 1. Transform the initial formula into its NNF
- 2. Transform the NNF into CNF or DNF:
 - Transformation into CNF. Apply the following equivalences from left to right as long as possible:

$$(F \lor (G \land H)) \equiv ((F \lor G) \land (F \lor H)) ((F \land G) \lor H) \equiv ((F \lor H) \land (G \lor H))$$

Transformation into DNF. Apply the following equivalences from left to right as long as possible:

$$(F \land (G \lor H)) \equiv ((F \land G) \lor (F \land H)) ((F \lor G) \land H) \equiv ((F \land H) \lor (G \land H))$$

Termination

Why does the transformation into NNF and CNF terminate? **Challenge Question:** Find a weight function $w :: formula \rightarrow \mathbb{N}$ such that w(l.h.s.) > w(r.h.s.) for the equivalences

$$\neg \neg F \equiv F$$

$$\neg (F \land G) \equiv (\neg F \lor \neg G)$$

$$\neg (F \lor G) \equiv (\neg F \land \neg G)$$

$$(F \lor (G \land H)) \equiv ((F \lor G) \land (F \lor H))$$

$$((F \land G) \lor H) \equiv ((F \lor H) \land (G \lor H))$$

Define *w* recursively:

$$w(A_i) = \dots$$

 $w(\neg F) = \dots w(F) \dots$
 $w(F \land G) = \dots w(F) \dots w(G) \dots$
 $w(F \lor G) = \dots w(F) \dots w(G) \dots$

Complexity considerations

The CNF and DNF of a formula of size n can have size 2^n

Can we do better? Yes, if we do not instist on \equiv .

Definition Two formulas F and G are equisatisfiable if F is satisfiable iff G is satisfiable.

Theorem For every formula F of size n there is an equisatisfiable CNF formula G of size O(n). Propositional Logic Definitional CNF

Definitional CNF

The definitional CNF of a formula is obtained in 2 steps:

- Repeatedly replace a subformula G of the form ¬A', A' ∧ B' or A' ∨ B' by a new atom A and conjoin A ↔ G. This replacement is not applied to the "definitions" A ↔ G but only to the (remains of the) original formula.
- 2. Translate all the subformulas $A \leftrightarrow G$ into CNF.

Example

$$\begin{array}{c} \neg (A_1 \lor A_2) \land A_3 \\ \hline \neg \\ \neg A_4 \land A_3 \\ \hline A_5 \land A_3 \\ \land (A_4 \leftrightarrow (A_1 \lor A_2)) \\ \hline A_5 \land A_3 \\ \land (A_4 \leftrightarrow (A_1 \lor A_2)) \land (A_5 \leftrightarrow \neg A_4) \\ \end{array}$$

 $\sim \rightarrow$

 $A_5 \land A_3 \land \textit{CNF}(A_4 \leftrightarrow (A_1 \lor A_2)) \land \textit{CNF}(A_5 \leftrightarrow \neg A_4)$

Definitional CNF: Complexity

Let the initial formula have size n.

1. Each replacement step increases the size of the formula by a constant.

There are at most as many replacement steps as subformulas, linearly many.

2. The conversion of each $A \leftrightarrow G$ into CNF increases the size by a constant.

There are only linearly many such subformulas.

Thus the definitional CNF has size O(n).

Notation

Definition

The notation F[G/A] denotes the result of replacing all occurrences of the atom A in F by G. We pronounce it as "F with G for A".

Example

$$(A \land B)[(A \to B)/B] = (A \land (A \to B))$$

Definition

The notation $\mathcal{A}[v/A]$ denotes a modified version of \mathcal{A} that maps A to v and behaves like \mathcal{A} otherwise:

$$(\mathcal{A}[v/A])(A_i) = \left\{ egin{array}{cc} v & ext{if } A_i = A \ \mathcal{A}(A_i) & ext{otherwise} \end{array}
ight.$$

Substitution Lemma

Lemma $\mathcal{A}(F[G/A]) = \mathcal{A}'(F)$ where $\mathcal{A}' = \mathcal{A}[\mathcal{A}(G)/A]$

Example

 $\mathcal{A}((A_1 \wedge A_2)[G/A_2]) = \mathcal{A}'(A_1 \wedge A_2)$ where $\mathcal{A}' = \mathcal{A}[\mathcal{A}(G)/A_2]$

Proof by structural induction on *F*. Case *F* is an atom: If F = A: $\mathcal{A}(F[G/A]) = \mathcal{A}(G) = \mathcal{A}'(F)$ If $F \neq A$: $\mathcal{A}(F[G/A]) = \mathcal{A}(F) = \mathcal{A}'(F)$ Case $F = F_1 \land F_2$: $\mathcal{A}(F[G/A]) =$ $\mathcal{A}(F_1[G/A] \land F_2[G/A]) =$ $min(\mathcal{A}(F_1[G/A]), \mathcal{A}(F_2[G/A])) \stackrel{lH}{=}$ $min(\mathcal{A}'(F_1), \mathcal{A}'(F_2)) = \mathcal{A}'(F_1 \land F_2) = \mathcal{A}'(F)$

Definitional CNF: Correctness

Each replacement step produces an equisatisfiable formula:

Lemma

Let A be an atom that does not occur in G.

Then F[G/A] is equisatisfiable with $F \land (A \leftrightarrow G)$.

Proof If F[G/A] is satisfiable by some assignment A, then by the Substitution Lemma, A' = A[A(G)/A] is a model of F. Moreover $A' \models (A \leftrightarrow G)$ because A'(A) = A(G) and A(G) = A'(G) by the Coincidence Lemma (Exercise 1.2).

Thus $F \land (A \leftrightarrow G)$ is satsifiable (by \mathcal{A}'). Conversely we actually have $F \land (A \leftrightarrow G) \models F[G/A]$. Suppose $\mathcal{A} \models F \land (A \leftrightarrow G)$. This implies $\mathcal{A}(A) = \mathcal{A}(G)$. Therefore $\mathcal{A}[\mathcal{A}(G)/A] = \mathcal{A}$. Thus $\mathcal{A}(F[G/A]) = (\mathcal{A}[\mathcal{A}(G)/A])(F) = \mathcal{A}(F) = 1$ by the Substitution Lemma.

Does $F[G/A] \models F \land (A \leftrightarrow G)$ hold?

Summary

Theorem For every formula F of size nthere is an equisatisfiable CNF formula G of size O(n).

Similarly it can be shown:

Theorem For every formula F of size nthere is an equivalid DNF formula G of size O(n). Validity of formulas in CNF can be checked in linear time. A formula in CNF is valid iff all its disjunctions are valid. A disjunction is valid iff it contains both an atomic A and $\neg A$ as literals.

Example

Valid:
$$(A \lor \neg A \lor B) \land (C \lor \neg C)$$

Not valid: $(A \lor \neg A) \land (\neg A \lor C)$

Satisfiability of formulas in DNF can be checked in linear time. A formula in DNF is satisfiable iff at least one of its conjunctions is satisfiable. A conjunction is satisfiable iff it does not contain both an atomic A and $\neg A$ as literals.

Example

Satisfiable: $(\neg B \land A \land B) \lor (\neg A \land C)$ Unsatisfiable: $(A \land \neg A \land B) \lor (C \land \neg C)$ Satisfiability/validity of DNF and CNF

Theorem *Satisfiability of formulas in CNF is NP-complete.*

Theorem

Validity of formulas in DNF is co-NP-complete.

The standard decision procedure for vailidity of F:

- 1. Transform $\neg F$ into an equisat. formula G in def. CNF
- 2. Apply efficient CNF-based SAT solver to G

Propositional Logic Horn Formulas

Efficient satisfiability checks

In the following:

- A very efficient satisfiability check for the special class of Horn formulas.
- Efficient satisfiability checks for arbitrary formulas in CNF: resolution (later).

Horn formulas

Definition

A formula F in CNF is a Horn formula if every disjunction in F contains at most one positive literal.

A disjunction in a Horn formula can equivalently be viewed as an implication $K \rightarrow B$ where K is a conjunction of atoms or $K = \top$ and B is an atom or $B = \bot$:

$$(\neg A \lor \neg B \lor C) \equiv (A \land B \to C) \ (\neg A \lor \neg B) \equiv (A \land B \to \bot) \ A \equiv (\top \to A)$$

Satisfiablity check for Horn formulas

```
Input: a Horn formula F.
```

```
Algorithm building a model (assignment) \mathcal{M}:
```

```
for all atoms A_i in F do \mathcal{M}(A_i) := 0;
```

```
while F has a subformula K \to B
such that \mathcal{M}(K) = 1 and \mathcal{M}(B) = 0
do
if B = \bot then return "unsatisfiable"
```

```
else \mathcal{M}(B) := 1
```

```
return "satisfiable"
```

Maximal number of iterations of the while loop: number of implications in *F*

```
Each iteration requires at most O(|F|) steps.
```

```
Overall complexity: O(|F|^2)
```

[Algorithm can be improved to O(|F|). See Schöning.]

Correctness of the model building algorithm

Theorem

The algorithm returns "satisfiable" iff F is satisfiable.

Proof Observe: if the algorithm sets $\mathcal{M}(B) = 1$, then $\mathcal{A}(B) = 1$ for every assignment \mathcal{A} such that $\mathcal{A}(F) = 1$. This is an invariant. (a) If "unsatisfiable" then unsatisfiable. We prove unsatisfiability by contradiction. Assume $\mathcal{A}(F) = 1$ for some \mathcal{A} . Let $(A_{i_1} \land \ldots \land A_{i_k} \rightarrow \bot)$ be the subformula causing "unsatisfiable". Since $\mathcal{M}(A_{i_1}) = \cdots = \mathcal{M}(A_{i_k}) = 1$, $\mathcal{A}(A_{i_1}) = \ldots = \mathcal{A}(A_{i_k}) = 1$.

Then $\mathcal{A}(A_{i_1} \land \ldots \land A_{i_k} \to \bot) = 0$ and so $\mathcal{A}(F) = 0$, contradiction. So *F* has no satisfying assignments. (b) If "satisfiable" then satisfiable. After termination with "satisfiable", for every subformula $K \to B$ of F, $\mathcal{M}(K) = 0$ or $\mathcal{M}(B) = 1$. Therefore $\mathcal{M}(K \to B) = 1$ and thus $\mathcal{M} \models F$. In fact, the invariant shows that \mathcal{M} is the minimal model of F.

60

Propositional Logic Compactness

Compactness Theorem

Theorem A set S of formulas is satisfiable iff every finite subset of S is satisfiable.

Equivalent formulation: A set S of formulas is unsatisfiable iff some finite subset of S is unsatisfiable.

An application: Graph Coloring

Definition

A 4-coloring of a graph (V, E) is a map $c : V \to \{1, 2, 3, 4\}$ such that $(x, y) \in E$ implies $c(x) \neq c(y)$.

Theorem (4CT)

An finite planar graph has a 4-coloring.

Theorem

An planar graph G = (V, E) with countably many vertices $V = \{v_1, v_2, \ldots\}$ has a 4-coloring.

Proof $G \rightsquigarrow$ set of formulas S s.t. S is sat. iff G is 4-col.

G is planar

- \Rightarrow every finite subgraph of G is planar and 4-col. (by 4CT)
- \Rightarrow every finite subset of S is sat.
- \Rightarrow *S* is sat. (by Compactness)
- \Rightarrow *G* is 4-col.

Proof details

 $G \rightsquigarrow S$:

For simplicity:

atoms are of the form A^c_i where $c \in \{1, \dots, 4\}$ and $i \in \mathbb{N}$

$$S := \begin{array}{ll} \{A_i^1 \lor A_i^2 \lor A_i^3 \lor A_i^4 \mid i \in \mathbb{N}\} \cup \\ \{A_i^c \to \neg A_i^d \mid i \in \mathbb{N}, \ c, d \in \{1, \dots, 4\}, \ c \neq d\} \cup \\ \{\neg (A_i^c \land A_j^c) \mid (v_i, v_j) \in E, \ c \in \{1, \dots, 4\}\} \end{array}$$

Subgraph corresponding to some $T \subseteq S$: $V_T := \{v_i \mid A_i^c \text{ occurs in } T \text{ (for some } c)\}$ $E_T := \{(v_i, v_j) \mid \neg (A_i^c \land A_j^c) \in T \text{ (for some } c)\}$

Proof of Compactness

Theorem A set S of formulas is satisfiable iff every finite subset of S is satisfiable.

Proof

 \Rightarrow : If S is satisfiable then every finite subset of S is satisfiable. Trivial.

 $\Leftarrow: \text{ If every finite subset of } S \text{ is satisfiable then } S \text{ is satisfiable.}$ We prove that S has a model.

Proof of Compactness

Terminology: \mathcal{A} is a b_1, \ldots, b_n model of T(where $b_1, \ldots, b_n \in \{0, 1\}^*$ and T is a set of formulas) if $\mathcal{A}(\mathcal{A}_i) = b_i$ (for $i = 1, \ldots, n$) and $\mathcal{A} \models T$.

Define an infinite sequence b_1, b_2, \ldots recursively as follows:

$$b_{n+1}$$
 = some $b \in \{0, 1\}$ s.t.
all finite $T \subseteq S$ have a b_1, \ldots, b_n, b model.

Claim 1: For all *n*, all finite $T \subseteq S$ have a b_1, \ldots, b_n model. **Proof** by induction on *n*.

Case n = 0: because all finite $T \subseteq S$ are satisfiable.

Case n + 1: We need to show that a suitable b exists. Proof by contradiction. Assume there is no suitable b. Then there is a finite $T_0 \subseteq S$ that has no $b_1, \ldots, b_n, 0$ model (0) and there is a finite $T_1 \subseteq S$ that has no $b_1, \ldots, b_n, 1$ model (1). Therefore $T_0 \cup T_1$ has no b_1, \ldots, b_n model A: $A(A_{n+1}) = 0$ contradicts (0), $A(A_{n+1}) = 1$ contradicts (1). But by IH: $T_0 \cup T_1$ has a b_1, \ldots, b_n model — Contradiction!

Proof of Compactness

Define $\mathcal{B}(A_i) = b_i$ for all *i*. **Claim 2:** $\mathcal{B} \models S$ We show $\mathcal{B} \models F$ for all $F \in S$. Let *m* be the maximal index of all atoms in *F*. By Claim 1, $\{F\}$ has a b_1, \ldots, b_m model \mathcal{A} . Hence $\mathcal{B} \models F$ because \mathcal{A} and \mathcal{B} agree on all atoms in *F*.

Corollary

Corollary If $S \models F$ then there is a finite subset $M \subseteq S$ such that $M \models F$. Propositional Logic Resolution Clause representation of CNF formulas

CNF:

$$(L_{1,1} \vee \ldots \vee L_{1,n_1}) \wedge \ldots \wedge (L_{k,1} \vee \ldots \vee L_{1,n_k})$$

Representation as set of sets of literals:

$$\{\underbrace{\{L_{1,1},\ldots,L_{1,n_1}\}}_{clause},\ldots,\{L_{k,1},\ldots,L_{1,n_k}\}\}$$

- Clause = set of literals (disjunction).
- A formula in CNF can be viewed as a set of clauses
- Degenerate cases:
 - The empty clause stands for \perp .
 - ► The empty set of clauses stands for T.

The joy of sets

We get "for free":

Commutativity:

 $A \lor B \equiv B \lor A$, both represented by $\{A, B\}$

Associativity: (A ∨ B) ∨ C ≡ A ∨ (B ∨ C), both represented by {A, B, C}

Idempotence:

$$(A \lor A) \equiv A$$
, both represented by $\{A\}$

Sets are a convenient representation of conjunctions and disjunctions that build in associativity, commutativity and itempotence

Resolution — The idea

Input: Set of clauses *F* Question: Is *F* unsatisfiable?

Algorithm:

Keep on "resolving" two clauses from ${\it F}$ and adding the result to ${\it F}$ until the empty clause is found

Correctness:

If the empty clause is found, the initial F is unsatisfiable Completeness:

If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution) w.r.t. semantic property (unsatisfiability)
Resolvent

Definition Let L be a literal. Then \overline{L} is defined as follows:

$$\overline{L} = \begin{cases} \neg A_i & \text{if } L = A_i \\ A_i & \text{if } L = \neg A_i \end{cases}$$

Definition

Let C_1 , C_2 be clauses and let L be a literal such that $L \in C_1$ and $\overline{L} \in C_2$. Then the clause

$$(C_1-\{L\})\cup (C_2-\{\overline{L}\})$$

is a resolvent of C_1 and C_2 .

The process of deriving the resolvent is called a resolution step.

Graphical representation of resolvent:

$$C_1 \quad C_2$$
 R

If $C_1 = \{L\}$ and $C_2 = \{\overline{L}\}$ then the empty clause is a resolvent of C_1 and C_2 . The special symbol \Box denotes the empty clause.

Recall: \Box represents \bot .

Resolution proof

Definition

A resolution proof of a clause C from a set of clauses F

- is a sequence of clauses C_0, \ldots, C_n such that
 - ▶ $C_i \in F$ or C_i is a resolvent of two clauses C_a and C_b , a, b < i,

$$\blacktriangleright$$
 $C_n = C$

Then we can write $F \vdash_{Res} C$.

Note: F can be finite or infinite

Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as the leaves and C as the root:

Example

A linear resolution proof

0:
$$\{P, Q\}$$

1: $\{P, \neg Q\}$
2: $\{\neg P, Q\}$
3: $\{\neg P, \neg Q\}$
4: $\{P\}$ (0, 1)
5: $\{Q\}$ (0, 2)
6: $\{\neg P\}$ (3, 5)
7: \Box (4, 6)

Correctness of resolution

Lemma (Resolution Lemma)

Let *R* be a resolvent of two clauses C_1 and C_2 . Then $C_1, C_2 \models R$. **Proof** By definition $R = (C_1 - \{L\}) \cup (C_2 - \{\overline{L}\})$ (for some *L*). Let $\mathcal{A} \models C_1$ and $\mathcal{A} \models C_2$. There are two cases. If $\mathcal{A} \models L$ then $\mathcal{A} \models C_2 - \{\overline{L}\}$ (because $\mathcal{A} \models C_2$), thus $\mathcal{A} \models R$. If $\mathcal{A} \not\models L$ then $\mathcal{A} \models C_1 - \{L\}$ (because $\mathcal{A} \models C_1$), thus $\mathcal{A} \models R$.

Theorem (Correctness of resolution)

Let F be a set of clauses. If $F \vdash_{Res} C$ then $F \models C$.

Proof Assume there is a resolution proof $C_0, \ldots, C_n = C$. By induction on *i* we show $F \models C_i$. IH: $F \models C_j$ for all j < i. If $C_i \in F$ then $F \models C_i$ is trivial. If C_i is a resolvent of C_a and C_b , a, b < i, then $F \models C_a$ and $F \models C_b$ by IH and $C_a, C_b \models C_i$ by the resolution lemma. Thus $F \models C_i$.

Corollary

Let F be a set of clauses. If $F \vdash_{Res} \Box$ then F is unsatisfiable.

Completeness of resolution

Theorem Let F be a finite set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Proof If F is infinite, there must be a finite unsatisfiable subset of F (by the Compactness Theorem); in that case let F be that finite subset and apply the previous theorem.

Corollary

A set of clauses F is unsatisfiable iff $F \vdash_{Res} \Box$.

Completeness proof

Theorem

Let F be a finite set of clauses. If F is unsatisfiable then $F \vdash_{Res} \Box$.

Proof The proof of $F \vdash_{Res} \Box$ is by induction on the number *n* of distinct atoms in *F*.

Basis: If n = 0 then $F = \{\}$ (but F is unsat.) or $F = \{\Box\}$.

Step:

IH: For every unsat. set of clauses F with n dist. atoms, $F \vdash_{Res} \Box$. Let F contain n + 1 distinct atoms. Pick some atom A in F. Idea: $F_0 = F$ with A replaced by \bot

 $F_1 := F$ with A replaced by \top

 $F_0 :=$ take F, remove all clauses with $\neg A$, remove all A $F_1 :=$ take F, remove all clauses with A, remove all $\neg A$ F_0 and F_1 contain n distinct atoms. F_0 is unsat: if $A \models F_0$ then $A[0/A] \models F$

 F_1 is unsat: if $\mathcal{A} \models F_1$ then $\mathcal{A}[1/\mathcal{A}] \models F$

Completeness proof

By IH: there are res. proofs $C_0, \ldots, C_m = \Box$ from F_0 and $D_0, \ldots, D_n = \Box$ from F_1 . Now transform C_0, \ldots, C_m into a proof C'_0, \ldots, C'_m from F by adding A back into the clauses it was removed from. Then

• either
$$C'_m = \{A\}$$

• or
$$C'_m = \Box$$
 (and we are done).

Similarly we transform D_0, \ldots, D_n into a proof D'_0, \ldots, D'_n from F (by adding $\neg A$ back in). Then $D'_n = \{\neg A\}$ or $D'_n = \Box$ (and we are done). If $C'_m = \{A\}$ and $D'_n = \{\neg A\}$ then $F \vdash_{Res} A$ and $F \vdash_{Res} \neg A$ and thus $F \vdash_{Res} \Box$. Resolution is only refutation complete

Not everything that is a consequence of a set of clauses can be derived by resolution.

Exercise Find F and C such that $F \models C$ but not $F \vdash_{Res} C$.

> How to prove $F \models C$ by resolution? Prove $F \cup \{\neg C\} \vdash_{Res} \Box$

A resolution algorithm

Input: A CNF formula F, i.e. a finite set of clauses

while there are clauses $C_a, C_b \in F$ and resolvent R of C_a and C_b such that $R \notin F$ do $F := F \cup \{R\}$

Lemma

The algorithm terminates.

Proof There are only finitely many clauses over a finite set of atoms.

Theorem

The initial F is unsatisfiable iff \Box is in the final F **Proof** F_{init} is unsat. iff $F_{init} \vdash_{Res} \Box$ iff $\Box \in F_{final}$ because the algorithm enumerates all R such that $F_{init} \vdash R$.

Corollary

The algorithm is a decision procedure for unsatisfiability of CNF formulas.

Basic Proof Theory Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Proof rules and proof systems

Proof systems are defined by (proof or inference) rules of the form

$$\frac{T_1 \quad \dots \quad T_n}{T} \text{ rule-name}$$

where T_1, \ldots, T_n (premises) and T (conclusion) are syntactic objects (eg formulas).

Intuitive reading: If T_1, \ldots, T_n are provable, then T is provable.

Degenerate case: If n = 0 the rule is called an axiom and the horizontal line is sometimes omitted.

If some U is provable, we write $\vdash U$.

Proof trees

Proofs (also: derivations) are drawn as trees of nested proof rules. Example (Proof/derivation tree)

$$\frac{\overline{T_1} \quad \frac{\overline{U}}{\overline{T_2}}}{\frac{S_1}{R}} \quad \frac{\overline{T_3}}{\frac{S_2}{R}}$$

We sometimes omit the names of proof rules in a proof tree if they are obvious or for space reasons. *You* should always show them! Every fragment

$$\frac{T_1 \quad \dots \quad T_n}{T}$$

of a proof tree must be (an instance of) a proof rule. All proofs must start with axioms.

The depth of a proof tree is the number of rules on the longest branch of the tree. Thus ≥ 1

Abbreviations

Until further notice:

 \perp , \neg , \wedge , \vee , \rightarrow are primitives.

 \top abbreviates $\neg \bot$

A possible simplification:

 $\neg F \quad \text{abbreviates} \quad F \to \bot$

We now consider three important proof systems:

- Sequent Calculus
- Natural Deduction
- Hilbert Systems

Sequent Calculus Propositional Logic

Sequent Calculus

Invented by Gerhard Gentzen in 1935. Birth of proof theory. Proof rules

$$\frac{S_1 \dots S_n}{S}$$

where S_1, \ldots, S_n and S are sequents

$$\Gamma \Rightarrow \Delta$$

where Γ and Δ are finite multisets of formulas. (Multiset = set with possibly repeated elements) (Could use sets instead of multisets but this causes some complications)

Important: \Rightarrow is just a separator Formally, a sequent is a pair of finite multisets.

Intuition: $\Gamma \Rightarrow \Delta$ is provable iff $\bigwedge \Gamma \rightarrow \bigvee \Delta$ is a tautology

Sequents: Notation

- ▶ We use set notation for multisets, eg $\{A, B \rightarrow C, A\}$
- ▶ Drop {}: $F_1, \ldots, F_m \Rightarrow G_1, \ldots, G_n$
- ► F, Γ abbreviates $\{F\} \cup \Gamma$ (similarly for Δ)
- Γ_1, Γ_2 abbreviates $\Gamma_1 \cup \Gamma_2$ (similarly for Δ)

Sequent Calculus rules

Intuition: read backwards as proof search rules

Every rule decomposes its principal formula

Example

$$\frac{\overline{P, Q \vee \neg R \Rightarrow P, Q} Ax}{\frac{P, Q \vee \neg R \Rightarrow P, Q}{R, Q \vee \neg R \Rightarrow P, Q} Ax} \xrightarrow{\overline{R, Q \Rightarrow P, Q} Ax} \frac{\overline{R \Rightarrow R, P, Q}}{R, Q \vee \neg R \Rightarrow P, Q} \xrightarrow{\neg L} \\ \vee L$$

$$\frac{\overline{P \vee R, Q \vee \neg R \Rightarrow P, Q}}{\frac{P \vee R, Q \vee \neg R \Rightarrow P \vee Q}{P \vee R, Q \vee \neg R \Rightarrow P \vee Q} \vee R} \xrightarrow{(P \vee R) \wedge (Q \vee \neg R) \Rightarrow P \vee Q} \wedge L$$

$$\frac{\overline{(P \vee R) \wedge (Q \vee \neg R) \Rightarrow P \vee Q}}{\Rightarrow (P \vee R) \wedge (Q \vee \neg R) \Rightarrow P \vee Q} \xrightarrow{\wedge L}$$

$$\frac{\overline{F, \Gamma \Rightarrow G, \Delta}}{\Gamma \Rightarrow F \rightarrow G, \Delta} \rightarrow R \xrightarrow{F, G, \Gamma \Rightarrow \Delta} \wedge L \xrightarrow{\Gamma \Rightarrow F, G, \Delta} \xrightarrow{\Gamma \Rightarrow F \vee G, \Delta}$$

Proof search properties

- ► For every logical operator (¬ etc) there is one left and one right rule
- Every formula in the premise of a rule is a subformula of the conclusion of the rule. This is called the subformula property.
 ⇒ no need to guess anything when applying a rule backward
- Backward rule application terminates because one operator is removed in each step.

Instances of rules

Definition An instance of a rule is the result of replacing Γ and Δ by multisets of concrete formulas and F and G by concrete formulas.

Example

$$\frac{\Rightarrow P \land Q, A, B}{\neg (P \land Q) \Rightarrow A, B}$$

is an instance of

$$\frac{\Gamma \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta}$$

setting $F := P \land Q$, $\Gamma := \emptyset$, $\Delta := \{A, B\}$

Proof trees

Definition (Proof tree)

A proof tree is a tree whose nodes are sequents and where each parent-children fragment

$$\frac{S_1 \dots S_n}{S}$$

is an instance of a proof rule.

 $(\Rightarrow$ all leaves must be instances of axioms)

A sequent S is provable if there is a proof tree with root S. Then we write $\vdash_G S$.

Proof trees

An alternative inductive definition of proof trees: Definition (Proof tree) If

$$\frac{S_1 \quad \dots \quad S_n}{S}$$

is an instance of a proof rule and there are proof trees T_1, \ldots, T_n with roots S_1, \ldots, S_n then

$$\frac{T_1 \quad \dots \quad T_n}{S}$$

is a proof tree (with root S).

What does $\Gamma \Rightarrow \Delta$ "mean"?

Definition

$$|\Gamma \Rightarrow \Delta| = (\bigwedge \Gamma \rightarrow \bigvee \Delta)$$

Example: $|\{A, B\} \Rightarrow \{P, Q\}| = (A \land B \rightarrow P \lor Q)$ Remember: $\bigwedge \emptyset = \top$ and $\bigvee \emptyset = \bot$

Aim: $\vdash_G S$ iff |S| is a tautology Lemma (Rule Equivalence) For every rule $S_1 \dots S_n$ $|S| \equiv |S_1| \land \dots \land |S_n|$ |S| is a tautology iff all S_i are tautologies Theorem (Soundness of \vdash_G)

If $\vdash_G S$ then $\models |S|$.

Proof by induction on the height of the proof tree for $\vdash_G S$. Tree must end in rule instance

$$\frac{S_1 \dots S_n}{S}$$

IH: $\models S_i$ for all *i*. Thus $\models |S|$ by the previous lemma.

Proof Search and Completeness

Proof search = growing a proof tree from the root

- ▶ Start from an initial sequent S₀
- At each stage we have some potentially *partial* proof tree with unproved leaves
- In each step, pick some unproved leaf S and some rule instance

$$\frac{S_1 \quad \dots \quad S_n}{S}$$

and extend the tree with that rule instance (creating new unproved leaves S_1, \ldots, S_n)

Proof search termintes if ...

- there are no more unproved leaves success
- ► there is some unproved leaf where no rule applies failure ⇒ that leaf is of the form

$$P_1,\ldots,P_k\Rightarrow Q_1,\ldots,Q_l$$

where all P_i and Q_j are atoms, no $P_i = Q_j$ and no $P_i = \bot$

Example (failed proof)

$$\frac{\overline{P \Rightarrow P} \quad Ax \quad Q \Rightarrow P}{\frac{P \lor Q \Rightarrow P}{P \lor Q \Rightarrow P} \lor L} \quad \frac{P \Rightarrow Q \quad \overline{Q \Rightarrow Q}}{P \lor Q \Rightarrow Q} \quad \overset{Ax}{\lor L}$$

Falsifying assignments?

Proof search = Counterexample search

Can view sequent calculus as a search for a falsifying assignment for $|\Gamma \Rightarrow \Delta| {\rm :}$

Make Γ true and Δ false

Some examples:

$$\frac{F,G,\Gamma \Rightarrow \Delta}{F \land G,\Gamma \Rightarrow \Delta} \land L$$

To make $F \wedge G$ true, make both F and G true

$$\frac{\Gamma \Rightarrow F, \Delta \quad \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F \land G, \Delta} \land R$$

To make $F \wedge G$ false, make F or G false

Lemma (Search Equivalence)

At each stage of the search process, if S_1, \ldots, S_k are the unproved leaves, then $|S_0| \equiv |S_1| \land \ldots \land |S_k|$

Proof by induction on the number of search steps.

Initially trivially true (base case).

When applying a rule instance

$$\frac{U_1 \quad \dots \quad U_n}{S_i}$$

we have $\begin{aligned} |S_0| &\equiv |S_1| \land \ldots \land |S_i| \land \ldots \land |S_k| \qquad \text{(by IH)} \\ &\equiv |S_1| \land \cdots \land |S_{i-1}| \land |U_1| \land \cdots \land |U_n| \land |S_{i+1}| \land \ldots \land |S_k| \end{aligned}$ by Lemma Rule Equivalence.

Lemma

If proof search fails, $|S_0|$ is not a tautology.

Proof If proof search fails, there is some unproved leaf S =

$$P_1,\ldots,P_k\Rightarrow Q_1,\ldots,Q_l$$

where no $P_i = Q_j$ and no $P_i = \bot$. This sequent can be falsified by setting $\mathcal{A}(P_i) := 1$ (for all *i*) and $\mathcal{A}(Q_j) := 0$ (for all *j*) and all other atoms to 0 or 1. Thus $\mathcal{A}(|S|) = 0$ and hence $\mathcal{A}(S_0) = 0$ by Lemma Search Equivalence.

Because of soundness of \vdash_G :

Corollary

Starting with some fixed S_0 , proof search cannot both fail (for some choices) and succeed (for other choices).

 \Rightarrow no need for backtracking upon failure!

Lemma

Proof search terminates.

Proof In every step, one logical operator is removed.

- \Rightarrow size of sequent decreases by 1
- \Rightarrow Depth of proof tree is bounded by size of S_0 but breadth only bounded by $2^{\text{size of } S_0}$

Corollary

Proof search is a decision procedure: it either succeeds or fails.

Theorem (Completeness)

If $\models |S|$ then $\vdash_G S$.

Proof by contraposition: if not $\vdash_G S$ then proof seach must fail. Therefore $\not\models |S|$.

Multisets versus sets

Termination only because of multisets. With sets, the principal formula may get duplicated:

$$\frac{\Gamma \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta} \neg L \xrightarrow{\Gamma := \{\neg F\}} \frac{\neg F \Rightarrow F, \Delta}{\neg F \Rightarrow \Delta}$$

An alternative formulation of the set version:

$$\frac{\Gamma \setminus \{\neg F\} \Rightarrow F, \Delta}{\neg F, \Gamma \Rightarrow \Delta}$$

Gentzen used sequences (hence "sequent calculus")

Admissible Rules and Cut Elimination
Admissible rules

Definition A rule

$$\frac{S_1 \quad \dots \quad S_n}{S}$$

is admissible if $\vdash_G S_1, \ldots, \vdash_G S_n$ together imply $\vdash_G S$. \Rightarrow Admissible rules can be used in proofs like normal rules

Admissibility is often proved by induction.

Aim: prove admissibility of

$$\frac{\Gamma \Rightarrow F, \Delta \quad \Gamma, F \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \ cut$$

This is Gentzen's Hauptsatz. Many applications.

Lemma (Non-atomic Ax)

The non-atomic axiom rule

$$\overline{F,\Gamma\Rightarrow F,\Delta} \ Ax'$$

is admissible, i.e. $\vdash_{G} F, \Gamma \Rightarrow F, \Delta$.

Proof idea: decompose *F*, then use *Ax*. Formally: proof by induction on (the structure of) *F*. Case $F_1 \rightarrow F_2$:

$$\frac{\overline{F_{1},\Gamma \Rightarrow F_{1},F_{2},\Delta} \quad H}{\frac{F_{1},F_{2},\Gamma \Rightarrow F_{2},\Delta}{F_{1},F_{1} \rightarrow F_{2},\Gamma \Rightarrow F_{2},\Delta}} \xrightarrow{H}{\rightarrow L}$$

The other cases are analogous.

Semantic proofs of admissibility

Admissibility of

$$\frac{S_1 \dots S_n}{S}$$

can also be shown semantically (using $\vdash_G = \models$) by proving that $\models |S_1|, \ldots, \models |S_n|$ together imply $\models |S|$.

Semantic proofs are *much simpler* and much less informative than syntactic proofs. Syntactic proofs show *how* to eliminate admissible rules. For examle, the admissibility proof of Ax' is a recursive procedure that decomposes F. In particular it tells us that the elimination of Ax' generates a proof of size O().

We focuses on proof theory

Weakening

Notation:

 $\Gamma \Rightarrow_n \Delta$ means that there is a proof tree for $\Gamma \Rightarrow \Delta$ of depth $\leq n$.

Lemma (Weakening) If $\Gamma \Rightarrow_n \Delta$ then $\Gamma', \Gamma \Rightarrow_n \Delta', \Delta$. **Proof** idea: take proof tree for $\Gamma \Rightarrow \Delta$ and add Γ' everywhere on the left and Δ' everywhere on the right.

General principal: transform proof trees

Notation:

 $D: \Gamma \Rightarrow \Delta$ means that D is a proof tree for $\Gamma \Rightarrow \Delta$

Inversion rules

Lemma (Inversion rules) $\wedge L^{-1} \quad \text{If } F \wedge G, \Gamma \Rightarrow_n \Delta \quad \text{then } F, G, \Gamma \Rightarrow_n \Delta \\ \vee R^{-1} \quad \text{If } \Gamma \Rightarrow_n F \vee G, \Delta \quad \text{then } \Gamma \Rightarrow_n F, G, \Delta \\ \wedge R^{-1} \quad \text{If } \Gamma \Rightarrow_n F_1 \wedge F_2, \Delta \quad \text{then } \Gamma \Rightarrow_n F_i, \Delta \quad (i = 1, 2) \\ \vee L^{-1} \quad \text{If } F_1 \vee F2, \Gamma \Rightarrow_n \Delta \quad \text{then } F_i, \Gamma \Rightarrow_n \Delta \quad (i = 1, 2) \\ \rightarrow R^{-1} \quad \text{If } \Gamma \Rightarrow_n F \to G, \Delta \quad \text{then } F, \Gamma \Rightarrow_n G, \Delta \\ \rightarrow L^{-1} \quad \text{If } F \to G, \Gamma \Rightarrow_n \Delta \quad \text{then } \Gamma \Rightarrow_n F, \Delta \text{ and } G, \Gamma \Rightarrow_n \Delta$

$$\frac{F, G, \Gamma \Rightarrow \Delta}{F \land G, \Gamma \Rightarrow \Delta} \land L \frac{\Gamma \Rightarrow F, G, \Delta}{\Gamma \Rightarrow F \lor G, \Delta} \lor R \frac{\Gamma \Rightarrow F, \Delta \quad \Gamma \Rightarrow F, \Delta}{\Gamma \Rightarrow F \land G}$$

Negation?

Proof of $\rightarrow L^{-1}$

If $F \to G, \Gamma \Rightarrow_n \Delta$ then $\Gamma \Rightarrow_n F, \Delta$ and $G, \Gamma \Rightarrow_n \Delta$

Proof by induction on *n*. Base case trivial because \Rightarrow_0 impossible. Assume $D: F \rightarrow G, \Gamma \Rightarrow_{n+1} \Delta$ Let *r* be the last rule in *D*. Proof by cases.

Case
$$r = Ax$$
 $(r = \perp L \text{ similar})$
 $\Rightarrow D = \frac{1}{F \to G, A, \Gamma' \Rightarrow_1 A, \Delta'}$ where $\Gamma = A, \Gamma'$ and $\Delta = A, \Delta'$
 $\Rightarrow \overline{\Gamma \Rightarrow_1 F, \Delta}$ and $\overline{G, \Gamma \Rightarrow_1 \Delta}$

Otherwise there are two subcases.

1.
$$F \to G$$
 is the principal formula

$$\Rightarrow D = \frac{\Gamma \Rightarrow_n F, \Delta \quad G, \Gamma \Rightarrow_n \Delta}{F \to G, \Gamma \Rightarrow_{n+1} \Delta} \to L$$

Proof of $\rightarrow L^{-1}$

If $F \to G, \Gamma \Rightarrow_n \Delta$ then $\Gamma \Rightarrow_n F, \Delta$ and $G, \Gamma \Rightarrow_n \Delta$

2.
$$F \to G$$
 is not the principal formula
Cases r :
Case $r = \lor R$
$$D = \frac{F \to G, \Gamma \Rightarrow_n H_1, H_2, \Delta'}{F \to G, \Gamma \Rightarrow_{n+1} H_1 \lor H_2, \Delta'}$$
IH: $\frac{\Gamma \Rightarrow_n F, H_1, H_2, \Delta'}{\Gamma \Rightarrow_{n+1} F, \Delta} \lor R$ and $\frac{G, \Gamma \Rightarrow_n H_1, H_2, \Delta'}{G, \Gamma \Rightarrow_{n+1} \Delta} \lor R$

Similar for all other rules because $F \rightarrow G$ is not principal

Contraction

$F, F, \Gamma \Rightarrow \Delta$	$\Gamma \Rightarrow F, F, \Delta$
$F,\Gamma\Rightarrow\Delta$	$\Gamma \Rightarrow F, \Delta$

Lemma (Contraction)

(i) If
$$F, F, \Gamma \Rightarrow_n \Delta$$
 then $F, \Gamma \Rightarrow_n \Delta$
(ii) If $\Gamma \Rightarrow_n F, F, \Delta$ then $\Gamma \Rightarrow_n F, \Delta$

Proof by induction on *n*. Base case trivial. Step: focus on (i). Assume $D : F, F, \Gamma \Rightarrow_{n+1} \Delta$ Let *r* be the last rule in *D*. Proof by cases. Case $r = \rightarrow L$ (other rules similar)

Two subcases:

1. F is not principal formula

$$\Rightarrow D = \frac{F, F, \Gamma' \Rightarrow_n G, \Delta \quad F, F, H, \Gamma' \Rightarrow_n \Delta}{F, F, G \to H, \Gamma' \Rightarrow_{n+1} \Delta} \to L$$

$$\mathsf{IH:} \frac{F, \Gamma' \Rightarrow_n G, \Delta \quad F, H, \Gamma' \Rightarrow_n \Delta}{F, G \to H, \Gamma' \Rightarrow_{n+1} \Delta} \to L$$

Contraction

2. *F* is principal formula

$$\Rightarrow D = \frac{G \to H, \Gamma \Rightarrow_n G, \Delta \quad H, G \to H, \Gamma \Rightarrow_n \Delta}{G \to H, G \to H, \Gamma \Rightarrow_{n+1} \Delta} \to L$$

No $\perp R$

Lemma

If $\vdash_{G} \Gamma \Rightarrow \Delta$ then $\vdash_{G} \Gamma \Rightarrow \Delta - \{\bot\}$

Proof idea:

- no rule expects \perp on the right
- no rule can move \perp from right to left.
- $\begin{array}{l} \Rightarrow \text{ no rule is disabled by removing } \bot \text{ on the right} \\ \Rightarrow \text{ the same proof rules that prove } \Gamma \Rightarrow \Delta \text{ also prove} \\ \Gamma \Rightarrow \Delta \{\bot\}. \end{array}$

Formally: induction on the height of the proof tree for $\Gamma \Rightarrow \Delta$

= recursive transformation of proof tree.

Atomic cut

Lemma (Atomic cut)

If $D_1: \Gamma \Rightarrow A, \Delta$ and $D_2: A, \Gamma \Rightarrow \Delta$ then $\vdash_G \Gamma \Rightarrow \Delta$

Proof by induction on the depth of D_1 .

Cut

Theorem (Cut) If $D_1 : \Gamma \Rightarrow F, \Delta$ and $D_2 : F, \Gamma \Rightarrow \Delta$ then $\vdash_G \Gamma \Rightarrow \Delta$ **Proof** by induction on *F*.

Tableaux Calculus Propositional Logic

A compact version of sequent calculus

The idea

What's "wrong" with sequent calculus:

Why do we have to $copy(?) \ \Gamma$ and Δ with every rule application?

The answer: tableaux calculus. The idea:

Describe backward sequent calculus rule application but leave Γ and Δ implicit/shared

Comparison:

Sequent Proof is a tree labeled by sequents, trees grow upwards

Tableaux Proof is a tree labeled by formulas, trees grow downwards

Terminology: tableau = tableaux calculus proof tree

Tableaux rules (examples)

Notation: $+F \approx F$ occurs on the right of \Rightarrow $-F \approx F$ occurs on the left of \Rightarrow S.C. Tab. Effect $+\neg F$ $\frac{F,\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \neg F,\Delta}$ -F+G $+F \wedge G$ $\frac{\Gamma \Rightarrow F, \Delta \quad \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F \land G, \Delta} \quad \rightsquigarrow \quad \frac{+F \land G}{+F \mid +G} \quad \rightsquigarrow \quad \begin{array}{c} / \ \backslash \\ +F \quad +G \end{array}$ Interpretation of tableaux rule

F FGH

if F matches the formula at some node in the tableau extend the end of some branch starting at that node according to FGH.

Example

$$-A \rightarrow B$$
$$-B \rightarrow C$$
$$-A$$
$$+ C$$

$$A \rightarrow B, B \rightarrow C, A \Rightarrow C$$

From tableau to sequents:

 \Rightarrow

- Every path from the root to a leaf in a tableau represents a sequent
- The set of all such sequents represents the set of leaves of the corresponding sequent calculus proof
- A branch is closed (proved) if both +F and −F occur on it or −⊥ occurs on it
- The root sequent is proved if all branches are closed

Algorithm to prove $F_1, \ldots \Rightarrow G_1, \ldots$:

- 1. Start with the tableau $-F_1, \ldots, +G_1, \ldots$
- while there is an open branch do pick some non-atomic formula on that branch, extend the branch according to the matching rule

Termination

No formula needs to be used twice on the same branch. But possibly on *different* branches:

> $+\neg A \land \neg B$ $+A \lor B$

A formula occurrence in a tableau can be deleted if it has been used in every unclosed branch starting from that occurrence Tableaux rules

$\frac{-\neg F}{+F}$	$\frac{+\neg F}{-F}$
$\frac{-F \wedge G}{-F} \\ -G$	$\frac{+F \wedge G}{+F \mid +G}$
$\frac{-F \lor G}{-F \mid -G}$	$\frac{+F \lor G}{+F} \\ +G$
$\frac{-F \to G}{+F \mid -G}$	$\frac{+F \to G}{-F} \\ +G$

Natural Deduction Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Natural deduction (Gentzen 1935) aims at *natural* proofs It formalizes good mathematical practice

Resolution but also sequent calculus aim at proof search

Main principles

1. For every logical operator \oplus there are two kinds of rules: Introduction rules: How to prove $F \oplus G$

Elimination rules What can be proved from $F \oplus G$

$$\underline{F \oplus G \quad \dots }$$

 $\frac{\dots}{F \oplus G}$

Examples

$$\frac{A \quad B}{A \land B} \land I \qquad \frac{F \land G}{F} \land E_1 \qquad \frac{F \land G}{G} \land E_2$$

Main principles

2. Proof can contain subproofs with *local/closed* assumptions

Example

If from the local assumption F we can prove G then we can prove $F \rightarrow G$.

The formal inference rule:

$$\begin{bmatrix} F \\ \vdots \\ G \\ F \to G \end{bmatrix} \to I$$

A proof tree:

$$\frac{[P] \quad Q}{P \land Q} \land I$$

$$\xrightarrow{P \land Q} P \land Q \rightarrow I$$

Form the (open) assumption Q we can prove $P \to P \land Q$. In symbols: $Q \vdash_N P \to P \land Q$

Growing the proof tree

Upwards:

$$\frac{[P] \quad Q}{P \land Q} \land I \\ \overline{P \to P \land Q} \to I$$

Downwards:

$$\frac{[P] \quad Q}{P \land Q} \land I$$
$$\frac{P \land Q}{P \to P \land Q} \to I$$

ND proof trees

The nodes of a ND proof tree are labeled by formulas.

Leaf nodes represent assumptions.

The root node is the conclusion.

Assumptions can be open or closed.

Closed assumptions are written [F].

Intuition:

- Open assumptions are used in the proof of the conclusion
- Closed assumptions are local assumptions in a subproof that have been closed (removed) by some proof rule like →1.

ND proof trees are defined inductively.

 Every F is a ND proof tree (with open assumption F and conclusion F). Reading: From F we can prove F.

New proof trees are constructed by the rules of ND.

Natural Deduction rules

$$\frac{F}{F \wedge G} \land I \qquad \qquad \frac{F \wedge G}{F} \land E_1 \quad \frac{F \wedge G}{G} \land E_2$$

$$\begin{bmatrix}
F\\
\vdots\\
G\\
F \rightarrow G
\end{bmatrix} \rightarrow I \qquad \qquad \frac{F \rightarrow G \quad F}{G} \rightarrow E$$

$$\begin{bmatrix}
F\\
F \rightarrow G
\end{bmatrix} \lor I_1 \qquad \frac{G}{F \vee G} \lor I_2 \qquad \frac{F \vee G \quad H \quad H}{H} \lor E$$

$$\begin{bmatrix}
[\neg F]\\
\vdots\\
F & \bot
\end{bmatrix}$$

Natural Deduction rules

Rules for \neg are special cases of rules for $\rightarrow:$

$$\begin{bmatrix} F \\ \vdots \\ \frac{\bot}{\neg F} \neg I & \frac{\neg F F}{\bot} \neg E \end{bmatrix}$$

Natural Deduction rules

How to read a rule

Forward:

Close all (or some) of the assumptions F in the proof of G when applying rule r

Backward:

In the subproof of G you can use the local assumption [F].

Can use labels to show which rule application closed which assumptions.

Soundness

Definition

 $\Gamma \vdash_N F$ if there is a proof tree with root F and open assumptions contained in the set of formulas Γ .

Lemma (Soundness)

If $\Gamma \vdash_N F$ then $\Gamma \models F$

Proof by induction on the depth of the proof tree for $\Gamma \vdash_N F$. Base case: no rule, $F \in \Gamma$ Step: Case analysis of last rule Case $\rightarrow E$: IH: $\Gamma \models F \rightarrow G$ $\Gamma \models F$ To show: $\Gamma \models G$ Assume $\mathcal{A} \models \Gamma \Rightarrow^{IH} \mathcal{A}(F \rightarrow G) = 1$ and $\mathcal{A}(F) = 1 \Rightarrow \mathcal{A}(G) = 1$

Soundness

Case

$$\begin{bmatrix} F \\ \vdots \\ G \\ F \to G \end{bmatrix}$$
IH: $\Gamma, F \models G$
To show: $\Gamma \models F \to G$
iff for all $\mathcal{A}, \ \mathcal{A} \models \Gamma \Rightarrow \mathcal{A} \models F \to G$
iff for all $\mathcal{A}, \ \mathcal{A} \models \Gamma \Rightarrow (\mathcal{A} \models F \Rightarrow \mathcal{A} \models G)$
iff for all $\mathcal{A}, \ \mathcal{A} \models \Gamma$ and $\mathcal{A} \models F \Rightarrow \mathcal{A} \models G$
iff IH

Completeness

Towards completeness

ND can simulate truth tables

Lemma (Tertium non datur) $\vdash_N F \lor \neg F$

Corollary (Cases) If $F, \Gamma \vdash_N G$ and $\neg F, \Gamma \vdash_N G$ then $\Gamma \vdash_N G$.

Definition

$$F^{\mathcal{A}} := \begin{cases} F & \text{if } \mathcal{A}(F) = 1\\ \neg F & \text{if } \mathcal{A}(F) = 0 \end{cases}$$

Towards completeness

Lemma (1) If $atoms(F) \subseteq \{A_1, \ldots, A_n\}$ then $A_1^{\mathcal{A}}, \ldots, A_n^{\mathcal{A}} \vdash_N F^{\mathcal{A}}$ **Proof** by induction on FLemma (2)

If $atoms(F) = \{A_1, \dots, A_n\}$ and $\models F$ then $A_1^{\mathcal{A}}, \dots, A_k^{\mathcal{A}} \vdash_N F$ for all $k \leq n$

Proof by (downward) induction on k = n, ..., 0

Completeness

Theorem (Completeness) If $\Gamma \models F$ then $\Gamma \vdash_N F$ **Proof**

Relating Sequent Calculs and Natural Deduction
Constructive approach to relating proof systems:

- Show how to transform proofs in one system into proofs in another system
- Implicit in inductive (meta)proof

Theorem (ND can simulate SC) If $\vdash_G \Gamma \Rightarrow \Delta$ then $\Gamma, \neg \Delta \vdash_N \bot$ (where $\neg \{F_1, ...\} = \{\neg F_1, ...\}$) **Proof** by induction on (the depth of) $\vdash_G \Gamma \Rightarrow \Delta$

Corollary (Completeness of ND) If $\Gamma \models F$ then $\Gamma \vdash_N F$ **Proof** If $\Gamma \models F$ then $\Gamma_0 \models F$ for some finite $\Gamma_0 \subseteq \Gamma$.

Two completness proofs

Direct

By simulating a complete system

Theorem (SC can simulate ND) If $\Gamma \vdash_N F$ and Γ is finite then $\vdash_G \Gamma \Rightarrow F$ **Proof** by induction on $\Gamma \vdash_N F$ Corollary If $\Gamma \vdash_N F$ then there is some finite $\Gamma_0 \subseteq \Gamma$ such that $\vdash_G \Gamma_0 \Rightarrow F$

Hilbert Systems Propositional Logic

(See the book by Troelstra and Schwichtenberg)

Easy to define, hard to use No context management

A Hilber system for propositional logic consists of

- a set of axioms (formulae)
- ▶ and a single infrence rule, $\rightarrow E$ or modus ponens:

$$\frac{F \to G \quad F}{G} \to E$$

Proof trees for some Hilbert system are labeled with formulas. The only inference rule is $\rightarrow E$.

Definition

We write $\Gamma \vdash_H F$ if there is a proof tree with root F whose leaves are either axioms or elements of Γ .

Alternative proof presentation

Proofs in Hilbert systems are freqently shown as lists of lines

- 1. F₁ justification₁
- 2. F₂ justification₂
- i. F_i justification_i

```
justification<sub>i</sub> is either
assumption, axiom or \rightarrow E(j, k) where j, k < i
```

Like linearized tree but also allows sharing of subproofs

Notational convention:

$$F \to G \to H \quad \text{means} \quad F \to (G \to H)$$

Note:
$$F \to G \to H \equiv F \land G \to H$$
$$F \to G \to H \not\equiv (F \to G) \to H$$

Example (A simple Hilbert system)Axioms: $F \rightarrow (G \rightarrow F)$ (A1) $(F \rightarrow G \rightarrow H) \rightarrow (F \rightarrow G) \rightarrow F \rightarrow H$ (A2)

A proof of $F \rightarrow F$:

 $\Rightarrow \vdash_H F \rightarrow F$

Theorem (Deduction Theorem)

In any Hilbert-system that contains the axioms A1 and A2:

 $F, \Gamma \vdash_H G \quad iff \quad \Gamma \vdash_H F \to G$

```
Proof "\Leftarrow":

\Gamma \vdash_H F \to G

\Rightarrow F, \Gamma \vdash_H F \to G

\Rightarrow F, \Gamma \vdash_H G by \to E because F, \Gamma \vdash_H F
```

Theorem (Deduction Theorem)

In any Hilbert-system that contains the axioms A1 and A2:

 $F, \Gamma \vdash_H G \quad iff \quad \Gamma \vdash_H F \to G$

Proof " \Rightarrow ": By induction on (the length/depth of) the proof of $F, \Gamma \vdash_H G$ Then by cases on the last proof step:

Case G = F: see proof of $F \to F$ from A1 and A2 Case $G \in \Gamma$ or axiom: by A1 and ...

Case $\rightarrow E$ from $H \rightarrow G$ and H:

$$\frac{(F \to H \to G) \to (F \to H) \to F \to G \quad F \to H \to G}{(F \to H) \to F \to G} \quad F \to H}{F \to G}$$

Hilbert System

From now on \vdash_{H} refers to the following set of axioms:

$$\begin{array}{ll} F \rightarrow G \rightarrow F & (A1) \\ (F \rightarrow G \rightarrow H) \rightarrow (F \rightarrow G) \rightarrow F \rightarrow H & (A2) \\ F \rightarrow G \rightarrow F \wedge G & (A3) \\ F \wedge G \rightarrow F & (A4) \\ F \wedge G \rightarrow G & (A5) \\ F \rightarrow F \lor G & (A5) \\ G \rightarrow F \lor G & (A7) \\ F \lor G \rightarrow (F \rightarrow H) \rightarrow (G \rightarrow H) \rightarrow H & (A8) \\ (\neg F \rightarrow \bot) \rightarrow F & (A9) \end{array}$$

Relating Hilbert and Natural Deduction

Theorem (Hilbert can simulate ND)

If $\Gamma \vdash_N F$ then $\Gamma \vdash_H F$

Proof translation in two steps: $\vdash_N \quad \rightsquigarrow \quad \vdash_H \quad + \rightarrow I \quad \rightsquigarrow \quad \vdash_H$

- Transform a ND-proof tree into a proof tree containing Hilbert axioms, →E and →I by replacing all other ND rules by Hilbert proofs incl. →I Principle: ND rule → 1 axiom + →I/E
- 2. Eliminate the \rightarrow *I* rules by the Deduction Theorem

Lemma (ND can simulate Hilbert) If $\Gamma \vdash_H F$ then $\Gamma \vdash_N F$ **Proof** by induction on $\Gamma \vdash_H F$.

Every Hilbert axiom is provable in ND (Exercise!)

 $\blacktriangleright \rightarrow E$ is also available in ND

 $\begin{array}{l} \mathsf{Corollary} \\ \Gamma \vdash_H F \quad iff \ \Gamma \vdash_N F \end{array}$

Corollary (Soundness and completeness) $\Gamma \vdash_H F$ iff $\Gamma \models F$ First-Order Predicate Logic Basics

Syntax of predicate logic: terms

A variable is a symbol of the form x_i where $i = 1, 2, 3 \dots$

A function symbol is of the form f_i^k where i = 1, 2, 3... and k = 0, 1, 2...

A predicate symbol is of the form P_i^k where i = 1, 2, 3... and k = 0, 1, 2...

We call i the index and k the arity of the symbol.

Terms are inductively defined as follows:

- 1. Variables are terms.
- 2. If f is a function symbol of arity k and t_1, \ldots, t_k are terms then $f(t_1, \ldots, t_k)$ is a term.

Function symbols of arity 0 are called constant symbols. Instead of $f_i^0()$ we write f_i^0 .

Syntax of predicate logic: formulas

If *P* is a predicate symbol of arity *k* and t_1, \ldots, t_k are terms then $P(t_1, \ldots, t_k)$ is an atomic formula. If k = 0 we write *P* instead of P().

Formulas (of predicate logic) are inductively defined as follows:

- Every atomic formula is a formula.
- If F is a formula, then $\neg F$ is also a formula.
- ▶ If *F* and *G* are formulas, then $F \land G$, $F \lor G$ and $F \to G$ are also formulas.
- If x is a variable and F is a formula, then ∀x F and ∃x F are also formulas. The symbols ∀ and ∃ are called the universal and the existential quantifier.

Syntax trees are defined as before, extended with the following trees for $\forall xF$ and $\exists xF$:

Subformulas again correspond to subtrees.

Sructural induction of formulas

Like for propositional logic but

- Different base case: $\mathcal{P}(P(t_1, \ldots, t_k))$
- ► Two new induction steps: prove P(∀x F) under the induction hypothesis P(F) prove P(∃x F) under the induction hypothesis P(F)

Naming conventions

x, y, z, ...instead of $x_1, x_2, x_3, ...$ a, b, c, ...forconstant symbolsf, g, h, ...forfunction symbols of arity > 0P, Q, R, ...instead of P_i^k

Precedence of quantifiers

Quantifiers have the same precedence as \neg

Example

 $\begin{array}{ll} \forall x \ P(x) \land Q(x) & \text{abbreviates} & (\forall x \ P(x)) \land Q(x) \\ & \text{not} & \forall x \ (P(x) \land Q(x)) \\ \\ \text{Similarly for } \lor \text{ etc.} \end{array}$

[This convention is not universal]

Free and bound variables, closed formulas

A variable x occurs in a formula F if it occurs in some atomic subformula of F.

An occurrence of a variable in a formula is either free or bound.

An occurrence of x in F is bound if it occurs in some subformula of F of the form $\exists xG$ or $\forall xG$; the smallest such subformula is the scope of the occurrence. Otherwise the occurrence is free.

A formula without any free occurrence of any variable is closed.

Example

 $\forall x \ P(x) \to \exists y \ Q(a, x, y)$

Exercise

	Closed?
$\forall x \ P(a)$	
$\forall x \exists y \ (Q(x,y) \lor R(x,y))$	Y
$\forall x \ Q(x,x) \to \exists x \ Q(x,y)$	N
$\forall x \ P(x) \lor \forall x \ Q(x,x)$	Y
$\forall x \ (P(y) \land \forall y \ P(x))$	N
$P(x) \rightarrow \exists x \ Q(x, f(x))$	Ν

	Formula?
$\exists x \ P(f(x))$	
$\exists f \ P(f(x))$	

Semantics of predicate logic: structures

A structure is a pair $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}})$

where U_A is an arbitrary, nonempty set called the universe of A, and the interpretation I_A is a partial function that maps

- variables to elements of the universe U_A ,
- function symbols of arity k to functions of type $U_{\mathcal{A}}^k \to U_{\mathcal{A}}$,
- predicate symbols of arity k to functions of type U^k_A → {0,1} (predicates) [or equivalently to subsets of U^k_A (relations)]

 I_A maps syntax (variables, functions and predicate symbols) to their meaning (elements, functions and predicates)

The special case of arity 0 can be written more simply:

- constant symbols are mapped to elements of U_A ,
- ▶ predicate symbols of arity 0 are mapped to {0,1}.

Abbreviations:

$x^{\mathcal{A}}$	abbreviates	$I_{\mathcal{A}}(x)$
$f^{\mathcal{A}}$	abbreviates	$I_{\mathcal{A}}(f)$
$P^{\mathcal{A}}$	abbreviates	$I_{\mathcal{A}}(P)$

Example

$$U_{\mathcal{A}} = \mathbb{N}$$

$$I_{\mathcal{A}}(P) = P^{\mathcal{A}} = \{(m, n) \mid m, n \in \mathbb{N} \text{ and } m < n\}$$

$$I_{\mathcal{A}}(Q) = Q^{\mathcal{A}} = \{m \mid m \in \mathbb{N} \text{ and } m \text{ is prime}\}$$

$$I_{\mathcal{A}}(f) \text{ is the successor function: } f^{\mathcal{A}}(n) = n + 1$$

$$I_{\mathcal{A}}(g) \text{ is the addition function: } g^{\mathcal{A}}(m, n) = m + n$$

$$I_{\mathcal{A}}(a) = a^{\mathcal{A}} = 2$$

$$I_{\mathcal{A}}(z) = z^{\mathcal{A}} = 3$$
Intuition: is, $\forall x \in P(x, f(x)) \land O(g(a, z))$, true in this strue

Intuition: is $\forall x \ P(x, f(x)) \land Q(g(a, z))$ true in this structure?

Evaluation of a term in a structure

Definition

Let t be a term and let $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}})$ be a structure.

 \mathcal{A} is suitable for t if $I_{\mathcal{A}}$ is defined for all variables and function symbols occurring in t.

The value of a term t in a suitable structure A, denoted by A(t), is defined recursively:

$$\begin{array}{rcl} \mathcal{A}(x) &=& x^{\mathcal{A}} \\ \mathcal{A}(c) &=& c^{\mathcal{A}} \\ \mathcal{A}(f(t_1,\ldots,t_k)) &=& f^{\mathcal{A}}(\mathcal{A}(t_1),\ldots,\mathcal{A}(t_k)) \end{array}$$

Example $\mathcal{A}(f(g(a, z))) =$

Definition

Let *F* be a formula and let $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}})$ be a structure. \mathcal{A} is suitable for *F* if $I_{\mathcal{A}}$ is defined for all predicate and function symbols occurring in *F* and for all variables occurring free in *F*.

Evaluation of a formula in a structure

Let \mathcal{A} be suitable for F. The (truth)value of F in \mathcal{A} , denoted by $\mathcal{A}(F)$, is defined recursively:

$$\begin{array}{lll} \mathcal{A}(\neg F), \ \mathcal{A}(F \land G), \ \mathcal{A}(F \lor G), \ \mathcal{A}(F \to G) \\ & \text{as for propositional logic} \end{array}$$
$$\mathcal{A}(P(t_1, \ldots, t_k)) &= \left\{ \begin{array}{ll} 1 & \text{if } (\mathcal{A}(t_1), \ldots, \mathcal{A}(t_k)) \in P^{\mathcal{A}} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathcal{A}(\forall x \ F) &= \left\{ \begin{array}{ll} 1 & \text{if for every } d \in U_{\mathcal{A}}, \ (\mathcal{A}[d/x])(F) = 1 \\ 0 & \text{otherwise} \end{array} \right. \\ \mathcal{A}(\exists x \ F) &= \left\{ \begin{array}{ll} 1 & \text{if for some } d \in U_{\mathcal{A}}, \ (\mathcal{A}[d/x])(F) = 1 \\ 0 & \text{otherwise} \end{array} \right. \end{array} \right. \end{array}$$

 $\mathcal{A}[d/x]$ coincides with \mathcal{A} everywhere except that $x^{\mathcal{A}[d/x]} = d$.

Example $\mathcal{A}(\forall x \ P(x, f(x)) \land Q(g(a, z))) =$

Notes

- During the evaluation of a formulas in a structure, the structure stays unchanged except for the interpretation of the variables.
- If the formula is closed, the initial interpretation of the variables is irrelevant.

Coincidence Lemma

Lemma

Let A and A' be two structures that coincide on all free variables, on all function symbols and all predicate symbols that occur in F. Then A(F) = A'(F).

Proof.

Exercise.

Relation to propositional logic

- Every propositional formula can be seen as a formula of predicate logic where the atom A_i is replaced by the atom P⁰_i.
- Conversely, every formula of predicate logic that does not contain quantifiers and variables can be seen as a formula of propositional logic by replacing atomic formulas by propositional atoms.

Example

$$F = (Q(a) \lor \neg P(f(b), b) \land P(b, f(b)))$$

can be viewed as the propositional formula
$$F' = (A_1 \lor \neg A_2 \land A_3).$$

Exercise

F is satifiable/valid iff F' is satisfiable/valid

Predicate logic with equality

Predicate logic + distinguished predicate symbol "=" of arity 2

Semantics: A structure A of predicate logic with equality always maps the predicate symbol = to the identity relation:

 $\mathcal{A}(\texttt{=}) = \{(d,d) \mid d \in U_{\mathcal{A}}\}$
Model, validity, satisfiability

Like in propositional logic

Definition

We write $\mathcal{A} \models F$ to denote that the structure \mathcal{A} is suitable for the formula F and that $\mathcal{A}(F) = 1$. Then we say that F is true in \mathcal{A} or that \mathcal{A} is a model of F.

If every structure suitable for F is a model of F, then we write $\models F$ and say that F is valid.

If F has at least one model then we say that F is satisfiable.

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

Consequence and equivalence

Like in propositional logic

Definition

A formula G is a consequence of a set of formulas M

if every structure that is a model of all $F \in M$ and suitable for G is also a model of G. Then we write $M \models G$.

Two formulas F and G are (semantically) equivalent if every structure A suitable for both F and G satisfies A(F) = A(G). Then we write $F \equiv G$.

Exercise

- 1. $\forall x \ P(x) \lor \forall x \ Q(x,x)$
- 2. $\forall x \ (P(x) \lor Q(x,x))$
- 3. $\forall x \ (\forall z \ P(z) \lor \forall y \ Q(x, y))$

∃y∀x P(x,y)
 ∀x∃y P(x,y)

	Y	Ν
$1 \models 2$		
$2 \models 1$		

Exercise

	Y	Ν
$\forall x \forall y \ F \equiv \ \forall y \forall x \ F$		
$\forall x \exists y \ F \equiv \exists x \forall y \ F$		
$\exists x \exists y \ F \ \equiv \ \exists y \exists x \ F$		
$\forall x \ F \lor \forall x \ G \equiv \forall x \ (F \lor G)$		
$\forall x \ F \land \forall x \ G \equiv \forall x \ (F \land G)$		
$\exists x \ F \lor \exists x \ G \equiv \exists x \ (F \lor G)$		
$\exists x \ F \land \exists x \ G \equiv \exists x \ (F \land G)$		

Equivalences

Theorem

- 1. $\neg \forall x F \equiv \exists x \neg F$ $\neg \exists x F \equiv \forall x \neg F$
- 2. If x does not occur free in G then: $(\forall xF \land G) \equiv \forall x(F \land G)$ $(\forall xF \lor G) \equiv \forall x(F \lor G)$ $(\exists xF \land G) \equiv \exists x(F \land G)$ $(\exists xF \lor G) \equiv \exists x(F \lor G)$
- 3. $(\forall x F \land \forall x G) \equiv \forall x (F \land G)$ $(\exists x F \lor \exists x G) \equiv \exists x (F \lor G)$

4.
$$\forall x \forall y F \equiv \forall y \forall x F$$

 $\exists x \exists y F \equiv \exists y \exists x F$

Just like for propositional logic it can be proved:

Theorem

Let $F \equiv G$. Let H be a formula with an occurrence of F as a subformula. Then $H \equiv H'$, where H' is the result of replacing an arbitrary occurrence of F in H by G.

First-Order Logic Normal Forms

We return to the abbreviations used in connection with resolution:

- $F_1 \rightarrow F_2$ abbreviates $\neg F_1 \lor F_2$
 - $\begin{array}{c} \top \quad \text{abbreviates} \quad P_1^0 \lor \neg P_1^0 \\ \bot \quad \text{abbreviates} \quad P_1^0 \land \neg P_1^0 \end{array}$

Substitution

- Substitutions replace *free* variables by terms. (They are mappings from variables to terms)
- By [t/x] we denote the substitution that replaces x by t.
- The notation F[t/x] ("F with t for x") denotes the result of replacing all free occurrences of x in F by t. Example

 $(\forall x \ P(x) \land Q(x))[f(y)/x] = \forall x \ P(x) \land Q(f(y))$

Similarly for subsitutions in terms: u[t/x] is the result of replacing x by t in term u. Example (f(x))[g(x)/x] = f(g(x))

Variable capture

Warning

If t contains a variable that is bound in F, substitution may lead to variable capture:

$$(\forall x \ P(x,y))[f(x)/y] = \forall x \ P(x,f(x))$$

Variable capture should be avoided

Substitution lemmas

Lemma (Substitution Lemma)

If t contains no variable bound in F then $\mathcal{A}(F[t/x]) = (\mathcal{A}[\mathcal{A}(t)/x])(F)$

Proof by structural induction on *F* with the help of the corresponding lemma on terms:

Lemma $\mathcal{A}(u[t/x]) = (\mathcal{A}[\mathcal{A}(t)/x])(u)$

Proof by structural induction on *u*

Warning

The notation .[./.] is heavily overloaded:

```
Substitution in syntactic objects

F[G/A] in propositional logic

F[t/x]

u[t/x] where u is a term
```

Function update

 $\mathcal{A}[v/A]$ where \mathcal{A} is a propositional assignment $\mathcal{A}[d/x]$ where \mathcal{A} is a structure and $d \in U_{\mathcal{A}}$

Aim:

Transform any formula into an equisatisfiable closed formula

 $\forall x_1 \ldots \forall x_n G$

where *G* is *quantifier-free*.

Rectified Formulas

Definition

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the formula bind different variables.

Lemma

Let F = QxG be a formula where $Q \in \{\forall, \exists\}$. Let y be a variable that does not occur in G. Then $F \equiv QyG[y/x]$.

Lemma

Every formula is equivalent to a rectified formula.

Example

 $\forall x \ P(x,y) \land \exists x \exists y \ Q(x,y) \ \equiv \ \forall x' \ P(x',y) \land \exists x \exists y' \ Q(x,y')$

Prenex form

Definition

A formula is in prenex form if it has the form

 $Q_1y_1\ldots Q_ny_n F$

where $Q_i \in \{\exists, \forall\}$, $n \ge 0$, and F is quantifier-free.

Prenex form

Theorem

Every formula is equivalent to a rectified formula in prenex form (a formula in **RPF**).

Proof First construct an equivalent rectified formula. Then pull the quantifiers to the front using the following equivalences from left to right as long as possible:

$$\neg \forall x \ F \equiv \exists x \neg F$$

$$\neg \exists x \ F \equiv \forall x \neg F$$

$$Qx \ F \land G \equiv Qx \ (F \land G)$$

$$F \land Qx \ G \equiv Qx \ (F \land G)$$

$$Qx \ F \lor G \equiv Qx \ (F \lor G)$$

$$F \lor Qx \ G \equiv Qx \ (F \lor G)$$

$$F \lor Qx \ G \equiv Qx \ (F \lor G)$$

$$F \lor Qx \ G \equiv Qx \ (F \lor G)$$

For the last four rules note that the formula is rectified!

Skolem form

The Skolem form of a formula F in RPF is the result of applying the following algorithm to F:

while F contains an existential quantifier do

Let $F = \forall y_1 \forall y_2 \dots \forall y_n \exists z G$

(the block of universal quantifiers may be empty)

Let f be a fresh function symbol of arity n that does not occur in F.

$$F := \forall y_1 \forall y_2 \dots \forall y_n \ G[f(y_1, y_2, \dots, y_n)/z]$$

i.e. remove the outermost existential quantifier in F and replace every occurrence of z in G by $f(y_1, y_2, \ldots, y_n)$

Example

 $\exists x \,\forall y \,\exists z \,\forall u \,\exists v \, P(x, y, z, u, v)$

Exercise

Which formulas are rectified, in prenex, or Skolem form?

	R	Р	S
$\forall x(T(x) \lor C(x) \lor D(x))$			
$\exists x \exists y (C(y) \lor B(x, y))$			
$\neg \exists x C(x) \leftrightarrow \forall x \neg C(x)$			
$\forall x (C(x) \to S(x)) \to \forall y (\neg C(y) \to \neg S(y))$			

Skolem form

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z \ G$ and $F' = \forall y \ G[f(y)/z]$. 1. $F' \models F$

Assume A is suitable for F' and A(F') = 1.

- \Rightarrow for all $u \in U_{\mathcal{A}}$, $\mathcal{A}[u/y](\mathcal{G}[f(y)/z]) = 1$
- \Rightarrow for all $u \in U_{\mathcal{A}}$, $\mathcal{A}[u/y][f^{\mathcal{A}}(u)/z](\mathcal{G}) = 1$
- $\Rightarrow \text{ for all } u \in U_{\mathcal{A}} \text{ there is a } v \in U_{\mathcal{A}} \text{ s.t. } \mathcal{A}[u/y][v/z](\mathcal{G}) = 1$ $\Rightarrow \mathcal{A}(\mathcal{F}) = 1$

Skolem form

Theorem

A formula in RPF and its Skolem form are equisatisfiable.

Proof Every iteration produces an equisatisfiable formula. Let (for simplicity) $F = \forall y \exists z \ G$ and $F' = \forall y \ G[f(y)/z]$. 2. If F has a model, so does F'Assume \mathcal{A} is suitable for F and $\mathcal{A}(F) = 1$. Wlog \mathcal{A} does not define f (because f is new) \Rightarrow for all $u \in U_A$ there is a $v \in U_A$ s.t. $\mathcal{A}[u/y][v/z](G) = 1$ (*)Let \mathcal{A}' be \mathcal{A} extended with a definition of f: $f^{\mathcal{A}'}(u) := v$ where v is chosen as in (*) $\Rightarrow \mathcal{A}'(F') = 1$ because for all $u \in U_A$: $\mathcal{A}'[u/y](G[f(y)/z])$ $= \mathcal{A}'[u/y][f^{\mathcal{A}'}(u)/z](G)$ $= \mathcal{A}'[u/y][v/z](G)$ = 1

Summary: conversion to Skolem form

Input: a formula F

Output: an equisatisfiable, rectified, closed formula in Skolem form $\forall y_1 \dots \forall y_k \ G$ where G is quantifier-free

- 1. Rectify F by systematic renaming of bound variables. The result is a formula F_1 equivalent to F.
- Let y₁, y₂,..., y_n be the variables occurring free in F₁. Produce the formula F₂ = ∃y₁∃y₂...∃y_n F₁. F₂ is equisatisfiable with F₁, rectified and closed.
- 3. Produce a formula F_3 in RPF equivalent to F_2 .
- 4. Eliminate the existential quantifiers in F_3 by transforming F_3 into its Skolem form F_4 . The formula F_4 is equisatisfiable with F_3 .

Convert into Skolem form:

$$F = \forall x P(y, f(x, y)) \lor \neg \forall y Q(g(x), y)$$

First-Order Logic Herbrand Theory Herbrand universe

The Herbrand universe T(F) of a closed formula F in Skolem form is the set of all terms that can be constructed using the function symbols in F.

In the special case that F contains no constants, we first pick an arbitrary constant, say a, and then construct the terms.

Formally, T(F) is inductively defined as follows:

- All constants occurring in F belong to T(F); if no constant occurs in F, then $a \in T(F)$ where a is some arbitrary constant.
- For every *n*-ary function symbol f occurring in F, if $t_1, t_2, \ldots, t_n \in T(F)$ then $f(t_1, t_2, \ldots, t_n) \in T(F)$.

Note: All terms in T(F) are variable-free by construction!

Example

$$F = \forall x \forall y \ P(f(x), g(c, y))$$

Herbrand structure

Let F be a closed formula in Skolem form. A structure A suitable for F is a Herbrand structure for F if it satisfies the following conditions:

•
$$U_{\mathcal{A}} = T(F)$$
, and

For every *n*-ary function symbol *f* occurring in *F* and every *t*₁,..., *t_n* ∈ *T*(*F*): *f*^A(*t*₁,..., *t_n*) = *f*(*t*₁,..., *t_n*).

Fact

If \mathcal{A} is a Herbrand structure, then $\mathcal{A}(t) = t$ for all $t \in U_{\mathcal{A}}$.

We call a Herbrand structure that is a model a Herbrand model.

Matrix of a formula

Definition The matrix of a formula F is the result of removing all quantifiers (all $\forall x$ and $\exists x$) from F. The matrix is denoted by F^* .

Fundamental theorem of predicate logic

Theorem

Let F be a closed formula in Skolem form. Then F is satisfiable iff it has a Herbrand model.

Proof If *F* has a Herbrand model then it is satisfiable.

For the other direction let A be an arbitrary model of F. We define a Herbrand structure T as follows:

Universe $U_{\mathcal{T}} = \mathcal{T}(F)$ Function symbols $f^{\mathcal{T}}(t_1, \dots, t_n) = f(t_1, \dots, t_n)$ If F contains no constant: $a^{\mathcal{A}} = u$ for some arbitrary $u \in U_{\mathcal{A}}$ Predicate symbols $(t_1, \dots, t_n) \in P^{\mathcal{T}}$ iff $(\mathcal{A}(t_1), \dots, \mathcal{A}(t_n)) \in P^{\mathcal{A}}$

Claim: \mathcal{T} is also a model of F.

Claim: \mathcal{T} is also a model of F.

We prove a stronger assertion:

For every closed formula G in Skolem form that contains the same fun. and pred. symbols as F: if $A \models G$ then $\mathcal{T} \models G$

Proof By induction on the number *n* of universal quantifiers of *G*. Basis n = 0. Then *G* has no quantifiers at all. Therefore $\mathcal{A}(G) = \mathcal{T}(G)$ (why?), and we are done. Induction step: $G = \forall x H$.

- \Rightarrow for every $t \in T(F)$: $\mathcal{T}[\mathcal{T}(t)/x](H) = 1$
- \Rightarrow for every $t \in T(F)$: $\mathcal{T}[t/x](H) = 1$
- $\Rightarrow \mathcal{T}(\forall x \ H) = 1$
- $\Rightarrow \mathcal{T} \models G$

(substitution lemma) (induction hypothesis) (substitution lemma) (T is Herbrand structure) ($U_T = T(F)$) Theorem Let F be a closed formula in Skolem form. Then F is satisfiable iff it has a Herbrand model.

What goes wrong if F is not closed or not in Skolem form?

Herbrand expansion

Let $F = \forall y_1 \dots \forall y_n F^*$ be a closed formula in Skolem form. The Herbrand expansion of F is the set of formulas

$$E(F) = \{F^*[t_1/y_1] \dots [t_n/y_n] \mid t_1, \dots, t_n \in T(F)\}$$

Informally: the formulas of E(F) are the result of substituting terms from T(F) for the variables of F^* in every possible way.

Example

$$E(\forall x \forall y \ P(f(x), g(c, y)) =$$

Note The Herbrand expansion can be viewed as a set of propositional formulas.

Gödel-Herbrand-Skolem Theorem

Theorem

Let F be a closed formula in Skolem form.

Then F is satisfiable iff its Herbrand expansion E(F) is satisfiable (in the sense of propositional logic).

Proof By the fundamental theorem, it suffices to show: F has a Herbrand model iff E(F) is satisfiable.

Let $F = \forall y_1 \dots \forall y_n F^*$.

 \mathcal{A} is a Herbrand model of F

iff for all $t_1, \ldots, t_n \in T(F)$, $\mathcal{A}[t_1/y_1] \ldots [t_n/y_n](F^*) = 1$ iff for all $t_1, \ldots, t_n \in T(F)$, $\mathcal{A}(F^*[t_1/y_1] \ldots [t_n/y_n]) = 1$ iff for all $G \in E(F)$, $\mathcal{A}(G) = 1$ iff \mathcal{A} is a model of E(F)

Herbrand's Theorem

Theorem Let F be a closed formula in Skolem form. F is unsatisfiable iff some finite subset of E(F) is unsatisfiable.

Proof Follows immediately from the Gödel-Herbrand-Skolem Theorem and the Compactness Theorem.

Gilmore's Algorithm

Let F be a closed formula in Skolem form and let F_1, F_2, F_3, \ldots be a computable enumeration of E(F).

> Input: F n := 0; repeat n := n + 1; until $(F_1 \land F_2 \land \ldots \land F_n)$ is unsatisfiable; return "unsatisfiable"

The algorithm terminates iff F is unsatisfiable.

Semi-decidability Theorems

Theorem

- (a) The unsatisfiability problem of predicate logic is (only) semi-decidable.
- (b) The validity problem of predicate logic is (only) semi-decidable.

Proof

(a) Gilmore's algorithm is a semi-decision procedure.
(The problem is undecidable. Proof later)
(b) F valid iff ¬F unsatisfiable.
Löwenheim-Skolem Theorem

Theorem Every satisfiable formula of first-order predicate logic has a model with a countable universe.

Proof Let F_0 be a formula with free variables x_1, \ldots, x_n . Define $F := \exists x_1 \ldots \exists x_n F_0$ and observe that F_0 has a model with universe U iff F has a model with universe U. Let G be an equisatisfiable, closed formula in Skolem form as produced by the Normal Form transformations starting with F.

Fact: Every model of G is a model of F. (Check this!)

 F_0 satisfiable \Rightarrow F satisfiable

- \Rightarrow *G* satisfiable
- \Rightarrow G has a Herbrand model \mathcal{T}
- \Rightarrow F also has that model \mathcal{T}
- $\Rightarrow F_0 \text{ has a countable model}$ (Herbrand universes are countable)

Löwenheim-Skolem Theorem

Formulas of first-order logic cannot enforce uncountable models

Formulas of first-order logic cannot axiomatize the real numbers because there will always be countable models

First-Order Logic Resolution

Resolution for first-order logic

Gilmore's algorithm is correct and complete, but useless in practice.

We upgrade resolution to make it work for predicate logic.

Recall: resolution in propositional logic

Resolution step:

Resolution graph:

A set of clauses is unsatisfiable iff the empty clause can be derived.

Adapting Gilmore's Algorithm

Gilmore's Algorithm:

Let F be a closed formula in Skolem form and let F_1, F_2, F_3, \ldots be an enumeration of E(F).

$$n := 0;$$

repeat $n := n + 1$
until $(F_1 \land F_2 \land \ldots \land F_n)$ is unsatisfiable;
 $-$ this can be checked with any calculus for propositional logic
return "unsatisfiable"

"any calculus" \rightsquigarrow use resolution for the unsatisfiability test

Terminology

Literal/clause/CNF is defined as for propositional logic but with the atomic formulas of predicate logic.

A ground term/formula/etc is a term/formula/etc that does not contain any variables.

An instance of a term/formula/etc is the result of applying a substitution to a term/formula/etc.

A ground instance

is an instance that does not contain any variables.

Clause Herbrand expansion

Let $F = \forall y_1 \dots \forall y_n F^*$ be a closed formula in Skolem form with F^* in CNF, and let C_1, \dots, C_m be the clauses of F^* .

The clause Herbrand expansion of F is the set of ground clauses

$$CE(F) = \bigcup_{i=1}^{m} \{C_i[t_1/y_1] \dots [t_n/y_n] \mid t_1, \dots, t_n \in T(F)\}$$

Lemma CE(F) is unsatisfiable iff E(F) is unsatisfiable. **Proof** Informally speaking, " $CE(F) \equiv E(F)$ ".

Ground resolution algorithm

Let *F* be a closed formula in Skolem form with F^* in CNF. Let C_1, C_2, C_3, \ldots be an enumeration of CE(F).

```
n := 0;

S := \emptyset;

repeat

n := n + 1;

S := S \cup \{C_n\};

until S \vdash_{Res} \Box
```

return "unsatisfiable"

Note: The search for \Box can be performed incrementally every time *S* is extended.

Example

 $F^* = \{\{\neg P(x), \neg P(f(a)), Q(y)\}, \{P(y)\}, \{\neg P(g(b, x)), \neg Q(b)\}\}$

Ground resolution theorem

The correctness of the ground resolution algorithm can be rephrased as follows:

Theorem

A formula $F = \forall y_1 \dots \forall y_n F^*$ with F^* in CNF is unsatisfiable iff there is a sequence of ground clauses $C_1, \dots, C_m = \Box$ such that for every $i = 1, \dots, m$

- either C_i is a ground instance of a clause $C \in F^*$, i.e. $C_i = C[t_1/y_1] \dots [t_n/y_n]$ where $t_1, \dots, t_n \in T(F)$,
- or C_i is a resolvent of two clauses C_a , C_b with a < i and b < i

Where do the ground substitutions come from?

Better:

- allow substitutions with variables
- only instantiate clauses enough to allow one (new kind of) resolution step

Example

Resolve $\{P(x), Q(x)\}$ and $\{\neg P(f(y)), R(y)\}$

Substitutions as functions

Substitutions are functions from variables to terms: [t/x] maps x to t (and all other variales to themselves)

Functions can be composed.

Composition of substitutions is denoted by juxtaposition: $[t_1/x][t_2/y]$ first substitutes t_1 for x and then substitutes t_2 for y. Example

(P(x,y))[f(y)/x][b/y] = (P(f(y),y))[b/y] = P(f(b),b)

Similarly we can compose arbitrary substitutions σ_1 and σ_2 : $\sigma_1\sigma_2$ is the substitution that applies σ_1 first and then σ_2 .

Substitutions are functions. Therefore

 $\sigma_1 = \sigma_2$ iff for all variables *x*, $x\sigma_1 = x\sigma_2$

Substitutions as functions

Definition

The domain of a substitution: $dom(\sigma) = \{x \mid x\sigma \neq x\}$

Example $dom([a/x][b/y]) = \{x, y\}$

Substitutions are defined to have finite domain. Therefore every substitution can be written as a simultaneous substitution $[t_1/x_1, \ldots, t_n/x_n]$.

Unifier and most general unifier

Let $L = \{L_1, \dots, L_k\}$ be a set of literals. A substitution σ is a unifier of L if

$$L_1\sigma = L_2\sigma = \cdots = L_k\sigma$$

i.e. if $|L\sigma| = 1$, where $L\sigma = \{L_1\sigma, \ldots, L_k\sigma\}$.

A unifier σ of L is a most general unifier (mgu) of L if for every unifier σ' of L there is a substitution δ such that $\sigma' = \sigma \delta$.

Unifiable?			Yes	No
	P(f(x))	P(g(y))		х
	P(x)	P(f(y))	х	
	P(x)	P(f(x))		х
	P(x, f(y))	P(f(u), f(z))	х	
	P(x, f(x))	P(f(y), y)		х
	$P(x,g(x),g^2(x))$	P(f(z), w, g(w))	х	
P(x, f(y))	P(g(y), f(a))	P(g(a),z)	х	

Unification algorithm

Input: a set $\mathsf{L} \neq \emptyset$ of literals

 $\sigma :=$ [] (the empty substitution)

while $|{\rm L}\sigma|>1~{\rm do}$

Find the first position at which two literals $L_1, L_2 \in L\sigma$ differ if none of the two characters at that position is a variable then return "non-unifiable" else let x be the variable and t the term starting at that position if x occurs in t then return "non-unifiable" else $\sigma := \sigma [t/x]$

return σ

Example { $\neg P(f(z, g(a, y)), h(z)), \\ \neg P(f(f(u, v), w), h(f(a, b)))$ } Correctness of the unification algorithm

Lemma

The unification algorithm terminates.

Proof Every iteration of the **while**-loop (possibly except the last) replaces a variable x by a term t not containing x, and so the number of variables occurring in L σ decreases by one.

Lemma

If L is non-unifiable then the algorithm returns "non-unifiable". **Proof** If L is non-unifiable then the algorithm can never exit the loop normally.

Correctness/completeness of the unification algorithm

Lemma

If L is unifiable then the algorithm returns the mgu of L (and so in particular every unifiable set L has an mgu).

Proof Assume L is unifiable and let n be the number of iterations of the loop on input L.

Let $\sigma_0 = []$, for $1 \le i \le n$ let σ_i be the value of σ after the *i*-th iteration of the loop.

We prove for every $0 \le i \le n$:

(a) If $1 \le i$, the *i*-th iteration does not return "non-unifiable".

(b) For every unifier σ' of L there is a substitution δ_i such that $\sigma' = \sigma_i \, \delta_i$.

By (a) the algorithm exits the loop normally after n iterations. By (b) it returns a most general unifier.

Correctness/completeness of the unification algorithm

Proof of (a) and (b) by induction on i:

Basis (
$$i = 0$$
): For (a) there is nothing to prove.
For (b) take $\delta_0 = \sigma'$.

Step $(i \Rightarrow i + 1)$

For (a), since $|L\sigma_i| > 1$ and $L\sigma_i$ unifiable, x and t exist and x does not occur in t, and so "non-unifiable" is not returned. For (b): Let σ' be a unifier of L. IH: $\sigma' = \sigma_i \delta_i$ for some δ_i . δ_i must be of the form $[t_1/x_1, \ldots, t_k/x_k, u/x]$ where x_1, \ldots, x_k, x are distinct. Define $\delta_{i+1} = [t_1/x_1, \ldots, t_k/x_k]$. Note $u = x\delta_i = t\delta_i = t\delta_{i+1}$ ($\sigma_i\delta_i$ is unifier (IH), x not in t)

$$\sigma_{i+1} \delta_{i+1}$$

$$= \sigma_i [t/x] \delta_{i+1} \qquad (algorithm extends \sigma_i with [t/x])$$

$$= \sigma_i [t_1/x_1, \dots, t_k/x_k, t\delta_{i+1}/x]$$

$$= \sigma_i [t_1/x_1, \dots, t_k/x_k, u/x] \qquad (Note \ u = t\delta_{i+1})$$

$$= \sigma_i \delta_i$$

$$= \sigma' \qquad (IH)$$

235

The standard view of unification

A unification problem is a pair of terms $s = t_1^{?}$ t (or a set of pairs $\{s_1 = t_1, \dots, s_n = t_n\}$)

A unifier is a substitution σ such that $s\sigma = t\sigma$ (or $s_1\sigma = t_1\sigma, \ldots, s_n\sigma = t_n\sigma$)

Renaming

Definition

A substitution ρ is a renaming if for every variable x, $x\rho$ is a variable and ρ is injective on $dom(\rho)$.

Resolvents for first-order logic

A clause *R* is a resolvent of two clauses C_1 and C_2 if the following holds:

- There is a renaming ρ such that no variable occurs in both C₁ and C₂ ρ and ρ is injective on the set of variables in C₂
- ► There are literals $L_1, \ldots, L_m \in C_1 \ (m \ge 1)$ and literals $L'_1, \ldots, L'_n \in C_2 \ \rho \ (n \ge 1)$ such that

$$\mathsf{L} = \{\overline{L_1}, \ldots, \overline{L_m}, L'_1, \ldots, L'_n\}$$

is unifiable. Let σ be an mgu of L.

• $R = ((C_1 - \{L_1, ..., L_m\}) \cup (C_2 \rho - \{L'_1, ..., L'_n\}))\sigma$

Example

 $C_1 = \{ P(x), Q(x), P(g(y)) \}$ and $C_2 = \{ \neg P(x), R(f(x), a) \}$

Exercise

How many resolvents are there?

C1	<i>C</i> ₂	Resolvents
$\{P(x),Q(x,y)\}$	$\{\neg P(f(x))\}$	
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	
$\{P(x), P(f(x))\}$	$\{\neg P(y), Q(y, z)\}$	

Why renaming?

Example $\forall x(P(x) \land \neg P(f(x)))$

Resolution for first-order logic

As for propositional logic, $F \vdash_{Res} C$ means that clause C can be derived from a set of clauses F by a sequence of resolution steps, i.e. that there is a sequence of clauses $C_1, \ldots, C_m = C$ such that for every C_i

- either $C_i \in F$
- or C_i is the resolvent of C_a and C_b where a, b < i.

Questions:

Correctness Does $F \vdash_{Res} \Box$ imply that F is unsatisfiable? Completeness Does unsatisfiability of F imply $F \vdash_{Res} \Box$?

Exercise

Derive \Box from the following clauses:

1.
$$\{\neg P(x), Q(x), R(x, f(x))\}$$

2. $\{\neg P(x), Q(x), S(f(x))\}$
3. $\{T(a)\}$
4. $\{P(a)\}$
5. $\{\neg R(a, z), T(z)\}$
6. $\{\neg T(x), \neg Q(x)\}$
7. $\{\neg T(y), \neg S(y)\}$

Correctness of Resolution for First-Order Logic

Definition The universal closure of a formula H with free variables x_1, \ldots, x_n : $\forall H = \forall x_1 \forall x_2 \ldots \forall x_n H$ Theorem Let E be a closed formula in Skolem form with matrix E^* in CNE

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable. Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If $F^* \vdash_{Res} \Box$ then F is unsatisfiable.

Proof Let C_1, \ldots, C_m be the sequence of clauses leading to \Box . By induction on *i*: if $\forall F^* \models \forall C_i$. Trivial if $C_i \in F^*$. Let C_i be a resolvent of C_a and C_b (a, b < i). We prove

$$\forall C_a, \forall C_b \models \forall C_i \tag{*}$$

Thus $\forall F^* \models \forall C_i$ because $\forall F^* \models \forall C_a$ and $\forall F^* \models \forall C_b$ by IH.

Proof of (*): Assume
$$\mathcal{A}(\forall C_a) = \mathcal{A}(\forall C_b) = 1$$
 (**)
 $C_i = ((C_a - \{L_1, ...\}) \cup (C_b\rho - \{L'_1, ...\}))\sigma$
 $= (C_a\sigma - \{L\}) \cup (C_b\rho\sigma - \{\overline{L}\})$
Indirect proof of $\mathcal{A}(\forall C_i) = 1$. Assume $\mathcal{A}(\forall C_i) = 0$.
 $\Rightarrow \mathcal{A}'(C_i) = 0$ where $\mathcal{A}' = \mathcal{A}[u_1/x_1, ...]$ for some $u_i \in U_{\mathcal{A}}$
 $\Rightarrow \mathcal{A}'(C_a\sigma - \{L\}) = \mathcal{A}'(C_b\rho\sigma - \{\overline{L}\}) = 0$
 $\Rightarrow \mathcal{A}'(L) = \mathcal{A}'(\overline{L}) = 1$ becs. $\mathcal{A}'(C_a\sigma) = \mathcal{A}'(C_b\rho\sigma) = 1$ becs. (**)
Contradiction

Simulate ground resolution because that is complete

Lift the resolution proof from the ground resolution proof

Lifting Lemma

Let C_1 , C_2 be two clauses and let C'_1 , C'_2 be two ground instances with (propositional) resolvent R'. Then there is a resolvent R of C_1 , C_2 such that R' is a ground instance of R.

 \rightarrow : Substitution —: Resolution

Lifting Lemma: example

Proof of Lifting Lemma.

(1) C'_1, C'_2 are ground instances of C_1, C_2

(2) R' is propositional resolvent of C'_1 and C'_2

We prove that R' is an instance of a resolvent of C_1 and C_2

(3) Let ρ be a renaming s.t. C_1 and $C_2\rho$ have no common variables (1) $\Rightarrow C'_2$ is a ground instance of $C_2\rho$. Thus there are σ_1, σ_2 s.t. $C'_1 = C_1 \sigma_1$ and $C'_2 = C_2 \rho \sigma_2$ and $dom(\sigma_1) \cap dom(\sigma_2) = \emptyset$ $\Rightarrow C_1' = C_1 \sigma$ and $C_2' = C_2 \rho \sigma$ where $\sigma = \sigma_1 \cup \sigma_2$ $(2) \Rightarrow R' = (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ where $L \in C'_1$ and $\overline{L} \in C'_2$ \Rightarrow there are $\{L_1, \ldots\} \subseteq C_1$ and $\{L'_1, \ldots\} \subseteq C_2 \rho$ s.t. σ is a unifier of $\{\overline{L_1}, \ldots, L'_1, \ldots\} =: M$. Let σ_0 be an mgu of M and let $\sigma = \sigma_0 \delta$ for some δ \Rightarrow A resolvent of C_1 and C_2 : $R := ((C_1 - \{L_1, \dots\}) \cup (C_2 \rho - \{L'_1, \dots\}))\sigma_0$ $R\delta = ((C_1 - \{L_1, \dots\}) \cup (C_2\rho - \{L'_1, \dots\}))\sigma$ $= (C_1 \sigma - \{L\}) \cup (C_2 \rho \sigma - \{\overline{L}\})$ $= (C'_1 - \{L\}) \cup (C'_2 - \{\overline{L}\})$ = R'

Completeness of Resolution for First-Order Logic

Theorem

Let F be a closed formula in Skolem form with matrix F^* in CNF. If F is unsatisfiable then $F^* \vdash_{Res} \Box$.

Proof If F is unsatisfiable, there is a ground resolution proof $C'_1, \ldots, C'_n = \square$. We transform this step by step into a resolution proof $C_1, \ldots, C_n = \Box$ such that C'_i is a ground instance of C_i . If C'_i is a ground instance of some clause $C \in F^*$: Set $C_i = C$ If C'_i is a resolvent of C'_a , C'_b (a, b < i): C'_a, C'_b have been transformed already into C_a, C_b s.t. C'_a, C'_b are ground instances of C_a , C_b . By the Lifting Lemma there is a resolvent R of C_a , C_b s.t. C'_i is a ground instance of R. Set $C_i = R$.

Resolution Theorem for First-Order Logic

Theorem Let F be a closed formula in Skolem form with matrix F^* in CNF. Then F is unsatisfiable iff $F^* \vdash_{Res} \Box$.

A resolution algorithm

Input: A closed formula F in Skolem form with matrix S in CNF, i.e. S is a finite set of clauses

while $\Box \notin S$ and there are clauses $C_a, C_b \in S$ and resolvent R of C_a and C_b such that $R \notin S$ (modulo renaming) do $S := S \cup \{R\}$

The selection of resolvents must be *fair:* every resolvent is added eventually

Three possible behaviours:

- The algorithm terminates and □ ∈ S ⇒ F is unsatisfiable
- The algorithm terminates and □ ∉ S ⇒ F is satisfiable
- ► The algorithm does not terminate (⇒ F is satisfiable)

Refinements of resolution

Problems of resolution:

- Branching degree of the search space too large
- Too many dead ends
- Combinatorial explosion of the search space

Solution:

Strategies and heuristics: forbid certain resolution steps, which narrows the search space.

But: Completeness must be preserved!
First-Order Logic Equality

Predicate logic with equality

Predicate logic + distinguished predicate symbol "=" of arity 2

Semantics: A structure A of predicate logic with equality always maps the predicate symbol = to the identity relation:

 $\mathcal{A}(\texttt{=}) = \{(d,d) \mid d \in U_{\mathcal{A}}\}$

Expressivity

Fact

A structure is model of $\exists x \forall y \ x=y$ iff its universe is a singleton.

Theorem

Every satisfiable formula of predicate logic has a countably infinite model.

Proof Let *F* be satisfiable. We assume w.l.o.g. that $F = \forall x_1 \dots \forall x_n F^*$ and the variables occurring in F^* are exactly x_1, \dots, x_n . (If necessary bring *F* into closed Skolem form). We consider two cases:

n = 0. Exercise.

n > 0. Let $G = \forall x_1 \dots \forall x_n F^*[f(x_1)/x_1]$, where f is a function symbol that does not occur in F^* . G is satisfiable (why?). If G has a model M with universe U, then F has a model with universe $\{f^M(u) \mid u \in (U)\}$. Because G has a Herbrand model with countably infinite universe T(G) (by the Fundamental Theorem), F also has a model with countably infinite universe $\{f(t) \mid t \in T(G)\}$.

Modelling equality

Let F be a formula of predicate logic with equality. Let Eq be a predicate symbol that does not occur in F. Let E_F be the conjunction of the following formulas:

 $\forall x \ Eq(x,x)$ $\forall x \forall y \ (Eq(x, y) \rightarrow Eq(y, x))$ $\forall x \forall y \forall z ((Eq(x, y) \land Eq(y, z)) \rightarrow Eq(x, z))$ For every function symbol f in F of arity n and every $1 \le i \le n$: $\forall x_1 \dots \forall x_n \forall y \ (Eq(x_i, y) \rightarrow y)$ $Eq(f(x_1, \ldots, x_i, \ldots, x_n), f(x_1, \ldots, y, \ldots, x_n)))$ For every predicate symbol P in F of arity n and every $1 \le i \le n$: $\forall x_1 \dots \forall x_n \forall y (Eq(x_i, y)) \rightarrow$ $(P(x_1,\ldots,x_i,\ldots,x_n)\leftrightarrow P(x_1,\ldots,y,\ldots,x_n)))$

 E_F expresses that Eq is a congruence relation on the symbols in F.

Quotient structure

Definition

Let \mathcal{A} be a structure and \sim an equivalence relation on $U_{\mathcal{A}}$ that is a congruence relation for all the predicate and function symbols defined by $I_{\mathcal{A}}$. The quotient structure $\mathcal{A}/_{\sim}$ is defined as follows:

►
$$U_{\mathcal{A}/\sim} = \{[u]_{\sim} \mid u \in U_{\mathcal{A}}\}$$
 where $[u]_{\sim} = \{v \in U_{\mathcal{A}} \mid u \sim v\}$

For every function symbol
$$f$$
 defined by $I_{\mathcal{A}}$:
 $f^{\mathcal{A}/\sim}([d_1]_{\sim},\ldots,[d_n]_{\sim}) = [f^{\mathcal{A}}(d_1,\ldots,d_n)]_{\sim}$

- For every predicate symbol P defined by I_A: P^{A/∼}([d₁]_∼,...,[d_n]_∼) = P^A(d₁,...,d_n)
- For every variable x defined by $I_{\mathcal{A}}$: $x^{\mathcal{A}/\sim} = [x^{\mathcal{A}}]_{\sim}$

Lemma

$$\mathcal{A}/_{\sim}(t) = [\mathcal{A}(t)]_{\sim}$$

Lemma $\mathcal{A}/_{\sim}(F) = \mathcal{A}(F)$

Theorem

The formulas F and $E_F \wedge F[Eq/=]$ are equisatisfiable.

Proof We show that if $E_F \wedge F[Eq/=]$ is sat., then F is satisfiable. Assume $\mathcal{A} \models E_F \wedge F[Eq/=]$.

 $\Rightarrow Eq^{\mathcal{A}}$ is an congruence relation.

Let $\mathcal{B} = \mathcal{A}/_{Eq^{\mathcal{A}}}$ (extended with = interpreted as identity). $\Rightarrow \mathcal{B} \models F[Eq/=]$ By construction $Eq^{\mathcal{B}}$ is identity: $Eq^{\mathcal{B}}([a], [a']) = Eq^{\mathcal{A}}(a, a') = ([a]_{Eq^{\mathcal{A}}} = [a']_{Eq^{\mathcal{A}}})$ $\Rightarrow \mathcal{B}(F[Eq/=]) = \mathcal{B}(F)$ $\Rightarrow \mathcal{B} \models F$

Conversely, it is easy to see that any model of F can be turned into a model of $E_F \wedge F[Eq/=]$ by interpreting Eq as equality.

First-Order Logic Undecidability

[Cutland, Computability, Section 6.5.]

Aim:

Show that validity of first-order formulas is undecidable

Method:

Reduce the halting problem to validity of formulas by expressing program behaviour as formulas

Logical formulas can talk about computations!

Register machine programs (RMPs)

A register machine program is a sequence of instructions I_1, \ldots, I_t . The instructions manipulate registers R_i ($i = 1, 2, \ldots$) that contain (unbounded!) natural numbers. There are 4 instructions:

$$R_n := 0$$

$$R_n := R_n + 1$$

$$R_n := R_m$$
IF $R_m = R_n$ GOTO p

Assumption: all jumps in a program go to $1, \ldots, t + 1$; execution terminates when the PC is t + 1.

Let r be the maximal index of any register used in a program P. Then the state of P during execution can be described by a tuple of natural numbers

$$(n_1,\ldots,n_r,k)$$

where n_i is the contents of R_i and k is the PC (the number of the next instruction to be executed).

Undecidability

Theorem (Undecidability of the halting problem for RMPs) It is undecidable if a given register machine program terminates when started in state (0, ..., 0, 1).

We reduce the halting problem for RMPs to the validity problem for first-order formulas.

Notation: $P(0) \downarrow =$ "RMP *P* started in state (0,...,0,1) terminates"

Theorem

Given an RMP P we can effectively construct a closed formula φ_P such that $P(0) \downarrow iff \models \varphi_P$.

Proof by construction of φ_P from $P = I_1, \ldots, I_t$. Funct. symb.: z, s. Abbr.: $\overline{0} = z$, $\overline{1} = s(z)$, $\overline{2} = s(s(z))$, ... Pred. symb.: R (arity: r + 1) "reachable" Aim: if $R(\overline{n_1}, \ldots, \overline{n_r}, \overline{k})$ then $(0, \ldots, 0, 1) \stackrel{P}{\rightsquigarrow} (n_1, \ldots, n_r, k)$ For every I_i construct closed formula Ψ_i : $I_i = (R_n := 0): \Psi_i := \forall x_1 \dots x_r \ (R(x_1, \dots, x_n, \dots, x_r, i)) \rightarrow i$ $R(x_1,\ldots,z,\ldots,x_r,s(i))$ $I_i = (R_n := R_n + 1)$: the same except $s(x_n)$ instead of z $I_i = (R_n := R_m)$: the same except x_m instead of z $I_i = (IF R_m = R_n GOTO p)$: $\Psi_i := \forall x_1 \dots x_r (R(x_1, \dots, x_r, \overline{i})) \to (x_m = x_n \to R(x_1, \dots, x_r, \overline{p})) \land$ $(x_m \neq x_n \rightarrow R(x_1, \ldots, x_r, s(\overline{i})))$

 $\Psi_P := \Psi \land R(z, \ldots, z, s(z)) \land \Psi_1 \land \cdots \land \Psi_t$

 Ψ enforces that every model is similar to \mathbb{N} : $\Psi := \forall x \forall y (s(x) = s(y) \rightarrow x = y) \land \forall x (z \neq s(x))$ (How can models of Ψ differ from \mathbb{N} ?)
$$\begin{split} \varphi_P &:= \Psi_P \to \tau \text{ where } \tau := \exists x_1 \dots x_r \ R(x_1, \dots, x_r, s(\overline{t})) \\ \text{Claim: } P(0) \downarrow \text{ iff } \models \varphi_P \\ ``\Rightarrow ``: \text{ Assume } P(0) \downarrow, \text{ show } \models \varphi_P. \text{ Assume } \mathcal{A} \models \Psi_P. \end{split}$$

Lemma

If $(0, ..., 0, 1) \stackrel{P}{\leadsto} (n_1, ..., n_r, k)$ then $\mathcal{A} \models R(\overline{n_1}, ..., \overline{n_r}, \overline{k})$ Proof by induction on the length of the execution using $\mathcal{A} \models \Psi_P$. Thus $\mathcal{A} \models \tau$ because $P(0) \downarrow$.

$$\begin{array}{l} ``{\Leftarrow}'': \models \varphi_P \Rightarrow \mathcal{N} \models \varphi_P \Rightarrow (\mathcal{N} \models \Psi_P \Rightarrow \mathcal{N} \models \tau) \Rightarrow P(0) \downarrow \\ \text{where } U_{\mathcal{N}} := \mathbb{N}, \ z^{\mathcal{N}} := 0 \ s^{\mathcal{N}}(n) := n+1, \\ R^{\mathcal{N}} := \{s \mid (0, \dots, 0, 1) \xrightarrow{P} s\} \end{array}$$

First-Order Logic Compactness

[Harrison, Section 3.16]

More Herbrand Theory

Recall Gödel-Herbrand-Skolem:

Theorem

Let F be a closed formula in Skolem form. Then F is satisfiable iff its Herbrand expansion E(F) is (propositionally) satisfiable.

Can easily be generalized:

Theorem (1)

Let S be a set of closed formulas in Skolem form. Then S is satisfiable iff E(S) is (propositionally) satisfiable.

Transforming sets of formulas

Recall the transformation of single formulas into equisatisfiable Skolem form: close, RPF, skolemize

Theorem (2)

Let S be a countable set of closed formulas. Then we can transform it into an equisatisfiable set T of closed formulas in Skolem form.

We call this transformation function skolem.

- ► Can all formulas in *S* be transformed in parallel?
- Why countable?

Transforming sets of formulas

1. Put all formulas in S into RPF.

Problem in Skolemization step: How do we generate new function symbols if all of them have been used already in *S*?

2. Rename all function symbols in S: $f_i^k \mapsto f_{2i}^k$

The result: equisatisfiable countable set $\{F_0, F_1, \dots\}$.

Unused symbols: all f_{2i+1}^k

3. Skolemize the F_i one by one using the f_{2i+1}^k not used in the Skolemization of F_0, \ldots, F_{i-1}

Result is equisatisfiable with initial S.

Compactness

Theorem

Let *S* be a countable set of closed formulas.

If every finite subset of S is satisfiable, then S is satisfiable.

Proof every fin. $F \subseteq S$ is sat. ⇒ every fin. $F \subseteq skolem(S)$ is sat. by Theorem (2) (fin. $F \subseteq skolem(S) \Rightarrow F \subseteq skolem(S_0)$ for some fin. $S_0 \subseteq S$) ⇒ for every fin. $F \subseteq skolem(S)$, E(F) is prop. sat. by Theorem(1) ⇒ every fin. $F' \subseteq E(skolem(S))$ is prop. sat. (there must exist a fin. $F \subseteq skolem(S)$ s.t. $F' \subseteq E(F)$) ⇒ E(skolem(S)) is prop. sat. by prop. compactness ⇒ skolem(S) is sat. by Theorem (1) ⇒ S is sat. by Theorem (2) First-Order Logic The Classical Decision Problem

Validity/satisfiability of arbitrary first-order formulas is undecidable.

What about subclasses of formulas?

Examples $\forall x \exists y \ (P(x) \rightarrow P(y))$ Satisfiable? Resolution? $\exists x \forall y \ (P(x) \rightarrow P(y))$ Satisfiable? Resolution?

The $\exists^* \forall^*$ class

Definition The $\exists^* \forall^*$ class is the class of closed formulas of the form

$$\exists x_1 \ldots \exists x_m \forall y_1 \ldots \forall y_n F$$

where F is quantifier-free and contains no function symbols of arity > 0.

This is also called the Bernays-Schönfinkel class.

Corollary

Unsatisfiability is decidable for formulas in the $\exists^*\forall^*$ class.

What if a formula is not in the $\exists^*\forall^*$ class? Try to transform it into the $\exists^*\forall^*$ class!

Example $\forall y \exists x (P(x) \land Q(y))$

Heuristic transformation procedure:

- 1. Put formula into NNF
- 2. Push all quantifiers into the formula as far as possible ("miniscoping")
- 3. Pull out \exists first and \forall afterwards

Miniscoping

Perform the following transformations bottom-up, as long as possible:

•
$$(\exists x F) \equiv F$$
 if x does not occur free in F

$$\blacktriangleright \exists x (F \lor G) \equiv (\exists x F) \lor (\exists x G)$$

▶
$$\exists x (F \land G) \equiv (\exists x F) \land G$$
 if x is not free in G

Together with the dual transformations for \forall

Example

$$\exists x \ (P(x) \land \exists y \ (Q(y) \lor R(x)))$$

Warning: Complexity!

Definition

A formula is monadic if it contains only unary (monadic) predicate symbols and no function symbol of arity > 0.

Examples

All men are mortal. Sokrates is a man. Sokrates is mortal.

The monadic class is decidable

Theorem

Satisfiability of monadic formulas is decidable.

Proof Put into NNF. Perform miniscoping. The result has no nested quantifiers (Exercise!). First pull out all \exists , then all \forall . Existentially quantify free variables. The result is in the $\exists^*\forall^*$ class.

Corollary

Validity of monadic formulas is decidable.

The finite model property

Definition

A formula F has the finite model property (for satisfiability) if F has a model iff F has a finite model.

Theorem

If a formula has the finite model property, satisfiability is decidable.

Theorem

Monadic formulas have the finite model property.

The finite model property

Theorem

Monadic formulas have the finite model property.

Proof A satisfiable monadic formula *F* with *k* different monadic predicate symbols P_1, \ldots, P_k has a model of size $\leq 2^k$. Given a model *A* of *F*, define ~ such that $|U_{A/\sim}| \leq 2^k$: $u \sim v$ iff for all *i*, $P_i^A(u) = P_i^A(v)$ Why $|U_{A/\sim}| \leq 2^k$? Every class $[u]_{\sim}$ can be viewed as a bit-vector of length *k*: $(P_1^A(u), \ldots, P_k^A(u))$ Obvious: ~ is an equivalence.

 \sim is a congruence: if $u \sim v$ then $P_i^{\mathcal{A}}(u) = P_i^{\mathcal{A}}(u)$ for all i

Classification by quantifier prefix of prenex form

There is a complete classification of decidable and undecidable classes of formulas based on

- the form of the quantifier prefix of the prenex form
- the arity of the predicate and function symbols allowed
- ▶ whether "=" is allowed or not.

A complete classification

Only formulas without function symbols of arity > 0, no restrictions on predicate symbols.

Satisfiability is decidable:

 $\exists^*\forall^*$ (Bernays, Schönfinkel 1928, Ramsey 1930)

 $\exists^* \forall \exists^*$ (Ackermann 1928)

 $\exists^* \forall^2 \exists^*$ (Gödel 1932)

Satsifiability is undecidable:

∀³∃ (Surányi 1959) ∀∃∀ (Kahr, Moore, Wang 1962)

Why complete?

Famous mistake by Gödel: $\exists^* \forall^2 \exists^*$ with "=" is undecidable (Goldfarb 1984)

First-Order Logic Basic Proof Theory

Gebundene Namen sind Schall und Rauch

We permit ourselves to identify formulas that differ only in the names of bound variables.

Example

 $\forall x \exists y P(x, y) = \forall u \exists v P(u, v)$

The renaming must not capture free variables: $\forall x P(x, y) \neq \forall y P(y, y)$

Substitution F[t/x] assumes that bound variables in F are automatically renamed to avoid capturing free variables in t.

Example

$$(\forall x P(x,y))[f(x)/y] = \forall x' P(x',f(x))$$

All proof systems below are extensions of the corresponding propositional systems

Sequent Calculus

Sequent Calculus rules

$$\frac{F[t/x], \forall x F, \Gamma \Rightarrow \Delta}{\forall x F, \Gamma \Rightarrow \Delta} \forall L \qquad \frac{\Gamma \Rightarrow F[y/x], \Delta}{\Gamma \Rightarrow \forall x F, \Delta} \forall R(*)$$
$$\frac{F[y/x], \Gamma \Rightarrow \Delta}{\exists x F, \Gamma \Rightarrow \Delta} \exists L(*) \qquad \frac{\Gamma \Rightarrow F[t/x], \exists x F, \Delta}{\Gamma \Rightarrow \exists x F, \Delta} \exists R$$

(*): y not free in the conclusion of the rule

Note: $\forall L$ and $\exists R$ do not delete the principal formula

Soundness

Lemma

For every quantifier rule $\frac{S'}{S}$, |S| and |S'| are equivalid.

Theorem (Soundness)

If $\vdash_G S$ then $\models |S|$.

Proof induction on the size of the proof of $\vdash_G S$ using the above lemma and the corresponding propositional lemma $(|S| \equiv |S_1| \land \ldots \land |S_n|).$

Construct counter model from (possibly infinite!) failed proof search

Let e_0, e_1, \ldots be an enumeration of all terms (over some given set of function symbols and variables)

Proof search

Construct proof tree incrementally:

- 1. Pick some uproved leaf $\Gamma \Rightarrow \Delta$ such that some rule is applicable.
- 2. Pick some principal formula in $\Gamma \Rightarrow \Delta$ fairly and apply rule. $\forall R, \exists L$: pick some arbitrary new y $\forall L, \exists R$: $\begin{cases} e_0 & \text{if the p.f. has never been instantiated} \end{cases}$
 - $t = \begin{cases} e_0 & \text{if the p.f. has never been instantiated} \\ (on the path to the root) \\ e_{i+1} & \text{if the previous instantiation of the p.f.} \\ (on the path to the root) used e_i \end{cases}$

Failed proof search: there is a branch A such that A ends in a sequent where no rule is applicable or A is infinite.
Construction of Herbrand countermodel \mathcal{A} from A

 $\begin{array}{l} U_{\mathcal{A}} &= \text{all terms over the function symbols and variables in } A \\ f^{\mathcal{A}}(t_1,\ldots,t_n) &= f(t_1,\ldots,t_n) \\ P^{\mathcal{A}} &= \{(t_1,\ldots,t_n) \mid P(t_1,\ldots,t_n) \in \Gamma \text{ for some } \Gamma \Rightarrow \Delta \in A\} \end{array}$

Theorem

For all
$$\Gamma \Rightarrow \Delta \in A$$
: $\mathcal{A}(F) = \left\{ egin{array}{cc} 1 & \textit{if } F \in \Gamma \\ 0 & \textit{if } F \in \Delta \end{array}
ight.$

Proof by induction on the structure of F $F = P(t_1,\ldots,t_n)$: $F \in \Gamma \Rightarrow \mathcal{A}(F) = 1$ by def $F \in \Delta \Rightarrow F \notin any \ \Gamma \in A$, (A would end in Ax) $\Rightarrow \mathcal{A}(F) = 0$ *F* not atomic \Rightarrow *F* must be p.f. in some $\Gamma \Rightarrow \Delta \in A$ (fairness!) Let $\Gamma' \Rightarrow \Delta'$ be the next sequent in A $F = \neg G$: $F \in \Gamma$ iff $G \in \Delta'$ iff $\mathcal{A}(G) = 0$ (IH) iff $\mathcal{A}(F) = 1$ $F = G_1 \wedge G_2$ $F \in \Gamma \Rightarrow G_1, G_2 \in \Gamma' \Rightarrow A(G_1) = A(G_2) = 1 (\mathsf{IH}) \Rightarrow A(F) = 1$ $F \in \Delta \Rightarrow G_1 \in \Delta'$ or $G_2 \in \Delta' \Rightarrow \mathcal{A}(G_1) = 0$ or $\mathcal{A}(G_2) = 0$ (IH) $\Rightarrow \mathcal{A}(F) = 0$ $F = \forall x \ G: \ F \in \Delta \Rightarrow G[y/x] \in \Delta' \Rightarrow \mathcal{A}(G[y/x]) = 0 \ (\mathsf{IH})$ $\Rightarrow \mathcal{A}[\mathcal{A}(y)/x](G) = 0 \Rightarrow \mathcal{A}(F) = 0$

Completeness

Corollary

```
If proof search with root \Gamma \Rightarrow \Delta fails,
then there is a structure \mathcal{A} such that \mathcal{A}(\bigwedge \Gamma \rightarrow \bigvee \Delta) = 0.
```

Example

 $\exists x P(x) \Rightarrow \forall x P(x)$

Corollary (Completeness)

If $\models |\Gamma \rightarrow \Delta|$ then $\vdash_G \Gamma \Rightarrow \Delta$

Proof by contradiction. If not $\vdash_G \Gamma \Rightarrow \Delta$ then proof search fails. Then there is an \mathcal{A} such that $\mathcal{A}(\bigwedge \Gamma \rightarrow \bigvee \Delta) = 0$. Therefore not $\models |\Gamma \rightarrow \Delta|$.

Natural Deduction

Natural Deduction rules

$$\frac{F[y/x]}{\forall x F} \forall I(*) \qquad \frac{\forall x F}{F[t/x]} \forall E$$

$$\begin{bmatrix} F[y/x]] \\ \vdots \\ \vdots \\ \exists x F \end{bmatrix} \exists I \qquad \frac{\exists x F H}{H} \exists E(**)$$

(*): (y = x or y ∉ fv(F)) and y not free in an open assumption in the proof of F[y/x]
(**): (y = x or y ∉ fv(F)) and y not free in H or in an open assumption in the proof of the second premise, except for F[y/x] Theorem (Soundness) If $\Gamma \vdash_N F$ then $\Gamma \models F$

 \Rightarrow \Rightarrow

Proof as before, with additional cases:

$$[F[y/x]]$$

$$\exists x F \qquad H \qquad \exists E(**) \qquad \text{IH: } \Gamma \models \exists xF \text{ and } F[y/x], \Gamma \models H$$
Show $\Gamma \models H$. Assume $\mathcal{A} \models \Gamma$.
 $\Rightarrow \mathcal{A} \models \exists x F \text{ (by IH)} \Rightarrow \text{there is a } u \in U_{\mathcal{A}} \text{ s.t. } \mathcal{A}[u/x] \models F$
 $\Rightarrow \mathcal{A}[u/y] \models F[y/x] \quad \text{because } y = x \text{ or } y \notin fv(F)$
 $\mathcal{A}[u/y] \models \Gamma \quad \text{because } y \text{ not free in } \Gamma$
 $\Rightarrow \mathcal{A}[u/y] \models H \quad \text{by IH}$

 $\Rightarrow \mathcal{A} \models H$ because y not free in H

Theorem (ND can simulate SC) If $\vdash_G \Gamma \Rightarrow \Delta$ then $\Gamma, \neg \Delta \vdash_N \bot$ (where $\neg \{F_1, ...\} = \{\neg F_1, ...\}$) **Proof** by induction on (the depth of) $\vdash_G \Gamma \Rightarrow \Delta$

Corollary (Completeness of ND)

If $\Gamma \models F$ then $\Gamma \vdash_N F$

Proof as before: compactness, completeness of \vdash_G , translation to \vdash_N

Translation from \vdash_N to \vdash_G also as before: $I \mapsto R, E \mapsto L + cut$

Equality

Hilbert System

Hilbert System

Additional rule $\forall I$: if *F* is provable then $\forall y F[y/x]$ is provable provided *x* not free in the assumptions and $(y = x \text{ or } y \notin fv(F))$

Additional axioms:

$$\forall x F \to F[t/x] F[t/x] \to \exists x F \forall x(G \to F) \to (G \to \forall y F[y/x]) \quad (*) \forall x(F \to G) \to (\exists y F[y/x] \to G) \quad (*) (*) if x \notin fv(G) and (y = x or y \notin fv(F))$$

Equivalence of Hilbert and ND

As before, with additional cases.

First-order Predicate Logic
Theories

Definitions

Definition

A signature Σ is a set of predicate and function symbols.

A $\Sigma\text{-formula}$ is a formula that contains only predicate and function symbols from $\Sigma.$

A Σ -structure is a structure that interprets all predicate and function symbols from Σ .

Definition

A sentence is a closed formula.

In the sequel, S is a set of sentences.

Theories

Definition

A theory is a set of sentences S such that S is closed under consequence: If $S \models F$ and F is closed, then $F \in S$.

Let \mathcal{A} be a Σ -structure: $Th(\mathcal{A})$ is the set of all sentences true in \mathcal{A} : $Th(\mathcal{A}) = \{F \mid F \Sigma$ -sentence and $\mathcal{A} \models F\}$

Lemma

Let \mathcal{A} be a Σ -structure and F a Σ -sentence. Then $\mathcal{A} \models F$ iff $Th(\mathcal{A}) \models F$.

Corollary Th(A) is a theory.

Lemma

Let \mathcal{A} be a Σ -structure and F a Σ -sentence. Then $\mathcal{A} \models F$ iff $Th(\mathcal{A}) \models F$.

Proof

$$"\Rightarrow": \mathcal{A} \models F \Rightarrow F \in Th(\mathcal{A}) \Rightarrow Th(\mathcal{A}) \models F$$

"⇐":

Assume $Th(\mathcal{A}) \models F$ \Rightarrow for all \mathcal{B} , if $\mathcal{B} \models Th(\mathcal{A})$ then $\mathcal{B} \models F$ $\Rightarrow \mathcal{A} \models F$ because $\mathcal{A} \models Th(\mathcal{A})$

Example

Notation: $(\mathbb{Z}, +, \leq)$ denotes the structure with universe \mathbb{Z} and the standard interpretations for the symbols + and \leq . The same notation is used for other standard structures where the interpretation of a symbol is clear from the symbol.

Example (Linear integer arithmetic)

 $Th(\mathbb{Z}, +, \leq)$ is the set of all sentences over the signature $\{+, \leq\}$ that are true in the structure $(\mathbb{Z}, +, \leq)$.

Famous numerical theories

 $Th(\mathbb{R}, +, \leq)$ is called linear real arithmetic. It is decidable.

 $Th(\mathbb{R}, +, *, \leq)$ is called real arithmetic. It is decidable.

 $Th(\mathbb{Z},+,\leq)$ is called linear integer arithmetic or Presburger arithmetic.

It is decidable.

 $Th(\mathbb{Z}, +, *, \leq)$ is called integer arithmetic. It is not even semidecidable (= r.e.).

Decidability via special algorithms.

Consequences

Definition Let S be a set of Σ -sentences.

Cn(S) is the set of consequences of S: $Cn(S) = \{F \mid F \Sigma \text{-sentence and } S \models F\}$

Examples

 $Cn(\emptyset)$ is the set of valid sentences. $Cn(\{\forall x \forall y \forall z \ (x * y) * z = x * (y * z)\})$ is the set of sentences that are true in all semigroups.

Lemma

If S is a set of Σ -sentences, Cn(S) is a theory.

Proof Assume *F* is closed and $Cn(S) \models F$. Show $F \in Cn(S)$, i.e. $S \models F$. Assume $A \models S$. Thus $A \models Cn(S)$ (*) and hence $A \models F$, i.e. $S \models F$. (*): Assume $G \in Cn(S)$, i.e. $S \models G$. With $A \models S$ the desired $A \models G$ follows.

Axioms

Definition

Let S be a set of Σ -sentences.

A theory T is axiomatized by S if T = Cn(S)

A theory T is axiomatizable if there is some decidable or recursively enumerable S that axiomatizes T.

A theory T is finitely axiomatizable

if there is some finite S that axiomatizes T.

Completeness and elementary equivalence

Definition

A theory T is complete if for every sentence F, $T \models F$ or $T \models \neg F$.

Fact Th(A) is complete.

Example

 $Cn(\{\forall x \forall y \forall z \ (x * y) * z = x * (y * z)\})$ is incomplete: neither $\forall x \forall y \ x * y = y * x$ nor its negation are present.

Definition

Two structures A and B are elementarily equivalent if Th(A) = Th(B).

Theorem

A theory T is complete iff all its models are elementarily equivalent.

Theorem

A theory T is complete iff all its models are elementarily equivalent. **Proof** If T is unsatisfiable, then T is complete (because $T \models F$ for all F) and all models are elementarily equivalent. Now assume T has a model \mathcal{M} . "⇒" Assume T is complete. Let $F \in Th(\mathcal{M})$. We cannot have $T \models \neg F$ because $\mathcal{M} \models T$ would imply $\mathcal{M} \models \neg F$ but $\mathcal{M} \models F$ because $F \in Th(\mathcal{M})$. Thus $T \models F$ by completeness. Therefore every formula that is true in some model of Tis true in all models of $T_{\rm c}$ "⇐"

Assume all models of *T* are elem.eq. Let *F* be closed. Either $\mathcal{M} \models F$ or $\mathcal{M} \models \neg F$. By elem.eq. $T \models F$ or $T \models \neg F$. Why? Assume $\mathcal{M} \models F$ (similar for $\mathcal{M} \models \neg F$). To show $T \models F$, assume $\mathcal{A} \models T$ and show $\mathcal{A} \models F$. $\Rightarrow Th(\mathcal{A}) = Th(\mathcal{M})$ by elem.eq. \Rightarrow for all closed *F*, $\mathcal{A} \models F$ iff $\mathcal{M} \models F$ $\Rightarrow \mathcal{A} \models F$ because $\mathcal{M} \models F$

Quantifier Elimination

Let S be a set of sentences.

Lemma $S \models F$ iff $S \models \forall F$

Lemma If $S \models F \leftrightarrow G$ then $S \models H[F] \leftrightarrow H[G]$, *i.e.* one can replace a subformula F of H by G.

Quantifier elimination

Definition If $T \models F \leftrightarrow F'$ we say that F and F' are T-equivalent.

Definition

A theory T admits quantifier elimination if for every formula F there is a quantifier-free T-equivalent formula G such that $fv(G) \subseteq fv(F)$. We call G a quantifier-free T-equivalent of F.

Examples

In linear real arithmetic:

$$\exists x \exists y (3 * x + 5 * y = 7) \leftrightarrow ? \forall y (x < y \land y < z) \leftrightarrow ? \exists y (x < y \land y < z) \leftrightarrow ?$$

Quantifier elimination

A quantifier-elimination procedure (QEP) for a theory T and a set of formulas \mathcal{F} is a function that computes for every $F \in \mathcal{F}$ a quantifier-free T-equivalent.

Lemma

Let T be a theory such that

- T has a QEP for all formulas and
- For all ground formulas G, T ⊨ G or T ⊨ ¬G, and it is decidable which is the case.

Then T is decidable and complete.

Simplifying quantifier elimination: one \exists

Fact

If T has a QEP for all $\exists x F$ where F is quantifier-free, then T has a QEP for all formulas.

Essence: It is sufficient to be able to eliminate a single \exists

Construction:

Given: a QEP qe1 for formulas of the form $\exists x F$ where F is quantifier-free

Define: a QEP for all formulas

Method: Eliminate quantifiers bottom-up by *qe*1, use $\forall \equiv \neg \exists \neg$

Simplifying quantifier elimination: $\exists x \land literals$

Lemma

If T has a QEP for all $\exists x F$ where F is a conjunction of literals, all of which contain x,

then T has a QEP for all $\exists x F$ where F is quantifier-free.

Construction:

Given: a QEP qe1c for formulas of the form $\exists x (L_1 \land \cdots \land L_n)$ where each L_i is a literal that contains xDefine: $qe1(\exists x F)$ where F is quantifier-free

Method: DNF; miniscoping; *qe1c*

This is the end of the generic part of quantifier elimination. The rest is theory specific.

Eliminating " \neg "

Motivation: $\neg x < y \leftrightarrow y < x \lor y = x$ for linear orderings

Assume that there is a computable function *aneg* that maps every negated atom to a quantifier-free and negation-free T-equivalent formula.

Lemma

If T has a QEP for all $\exists x F$ where F is a conjunction of atoms, all of which contain x,

then T has a QEP for all $\exists x F$ where F is quantifier-free.

Construction:

Given: a QEP qe1ca for formulas of the form $\exists x (A_1 \land \cdots \land A_n)$ where each atom A_i contains x

```
Define: qe1(\exists x F) where F quantifier-free
Method: NNF; aneg; DNF; miniscoping; qe1ca
```

Quantifier Elimination Dense Linear Orders Without Endpoints Dense Linear Orders Without Endpoints

$$\Sigma = \{<,=\}$$

Let DLO stand for "dense linear order without endpoints" and for the following set of axioms:

 $\forall x \forall y \forall z \ (x < y \land y < z \rightarrow x < z)$ $\forall x \neg (x < x)$ $\forall x \forall y \ (x < y \lor x = y \lor y < x)$ $\forall x \forall z \ (x < z \rightarrow \exists y \ (x < y \land y < z)$ $\forall x \exists y \ x < y$ $\forall x \exists y \ x < y$

Models of DLO?

Theorem *All countable DLOs are isomorphic.*

Quantifier elimination example

Example $DLO \models \exists y \ (x < y \land y < z) \iff$

Eliminiation of " \neg "

Elimination of negative literals (function *aneg*): $DLO \models \neg x = y \leftrightarrow x < y \lor y < x$ $DLO \models \neg x < y \leftrightarrow x = y \lor y < x$

Quantifier elimination for conjunctions of atoms

QEP $qe1ca(\exists x (A_1 \land \cdots \land A_n) \text{ where } x \text{ occurs in all } A_i:$

1. Eliminate "=": Drop all A_i of the form x = x.

If some A_i is of the form x = y (x and y different), eliminate $\exists x$:

 $\exists x (x = t \land F) \equiv F[t/x] \quad (x \text{ does not occur in } t)$

Otherwise:

- 2. Eliminate x < x: return \perp
- 3. Separate atoms into lower and upper bounds for x and use

 $DLO \models \exists x (\bigwedge_{i=1}^{m} l_i < x \land \bigwedge_{j=1}^{n} x < u_j) \leftrightarrow \bigwedge_{i=1}^{m} \bigwedge_{j=1}^{n} l_i < u_j$

Special case: $\bigwedge_{k=1}^{0} F_k = \top$

Examples

$$\exists x (x < z \land y < x \land x < y') \leftrightarrow ? \forall x (x < y) \leftrightarrow ? \exists x \exists y \exists z (x < y \land y < z \land z < x) \leftrightarrow ?$$

Complexity

Quadratic blow-up with each elimination step

 \Rightarrow Eliminating all \exists from

$$\exists x_1 \ldots \exists x_m F$$

where F has length n needs O(), assuming F is DNF.

Consequences

- Cn(DLO) has quantifier elimination
- Cn(DLO) is decidable and complete
- ► All models of DLO (for example (Q, <) and (R, <)) are elementarily equivalent:

you cannot distinguish models of DLO by first-order formulas.
Quantifier Elimination Linear real arithmetic

Linear real arithmetic

 $\mathcal{R}_{+} = (\mathbb{R}, 0, 1, +, <, =), \ R_{+} = Th(\mathcal{R}_{+})$

For convenience we allow the following additional function symbols: For every $c \in \mathbb{Q}$:

c is a constant symbol

 \triangleright c, multiplication with c, is a unary function symbol

A term in normal form: $c_1 \cdot x_1 + \ldots + c_n \cdot x_n + c$ where $c_i \neq 0$, $x_i \neq x_j$ if $i \neq j$.

Every atom A is R_+ -equivalent to an atom $0 \bowtie t$ in normal form (NF) where $\bowtie \in \{<,=\}$ and t is in normal form.

An atom is solved for x if it is of the form x < t, x = t or t < x where x does not occur in t.

Any atom A in normal form that contains x can be transformed into an R_+ -equivalent atom solved for x. Function $sol_x(A)$ solves A for x.

Eliminiation of " \neg "

Elimination of negative literals (function *aneg*): $R_+ \models \neg x = y \leftrightarrow x < y \lor y < x$ $R_+ \models \neg x < y \leftrightarrow x = y \lor y < x$

Fourier-Motzkin Elimination

QEP $qe1ca(\exists x (A_1 \land \dots \land A_n), all A_i \text{ in NF and contain } x:$ 1. Let $S = \{sol_x(A_1), \dots, sol_x(A_n)\}$ 2. Eliminate "=": If $(x = t) \in S$ for some t, eliminate $\exists x$:

 $\exists x \ (x = t \land F) \equiv F[t/x] \quad (x \text{ does not occur in } t)$

Otherwise return

 $\bigwedge_{(I < x) \in S} \bigwedge_{(x < u) \in S} I < u$

Special case: empty \bigwedge is \top

All returned formulas are implicitly put into NF.

Examples $\exists x \exists y (3x + 5y < 7 \land 2x - 3y < 2) \iff ?$ $\exists x \forall y (3y \le x \lor x \le 2y) \iff ?$

Can DNF be avoided?

Ferrante and Rackoff's theorem

Theorem

Let F be quantifier-free and negation-free and assume all atoms that contain x are solved for x. Let S_x be the set of atoms in F that contain x. Let $L = \{I \mid (I < x) \in S_x\},\$ $U = \{u \mid (x < u) \in S_x\},\$ $E = \{t \mid (x = t) \in S_x\}.$ Then

$$R_{+} \models \exists x \ F \ \leftrightarrow \ F[-\infty/x] \ \lor \ F[\infty/x] \ \lor \\ \bigvee_{t \in E} F[t/x] \ \lor \ \bigvee_{l \in L} \bigvee_{u \in U} F[0.5(l+u)/x]$$

(note: empty \bigvee is \bot) where $F[-\infty/x]$ ($F[\infty/x]$) is the following transformation of all solved atoms in $F: x < t \mapsto \top (\bot)$ $t < x \mapsto \bot (\top)$ $x = t \mapsto \bot (\bot)$

Examples

$$\exists x (y < x \land x < z) \iff ?$$

$$\exists x x < y \iff ?$$

Ferrante and Rackoff's procedure

Define $qe1(\exists x F)$:

- Put F into NNF, eliminate all negations, put all atoms into normal form, solve those atoms for x that contain x.
- 2. Apply Ferrante and Rackoff's theorem.

Theorem

Eliminating all quantifiers with Ferrante and Rackoff's procedure from a formula of size n takes space $O(2^{cn})$ and time $O(2^{2^{dn}})$.

Quantifier Elimination Presburger Arithmetic

See [Harrison] or [Enderton] under "Presburger"

Presburger Arithmetic

Linear integer arithmetic: $\mathcal{Z}_+ := (\mathbb{Z}, +, 0, 1, \leq)$ A problem with \mathcal{Z}_+ :

 $\mathcal{Z}_+ \models \exists x \ x + x = y \iff ?$

Fact Linear integer arithmetic does not have quantifier elimination

Presburger Arithmetic is linear integer arithmetic extended with the unary functions "2 | .", "3 | .", ... (Alternative: ". = . (mod 2)", ". = . (mod 3)", ...) Notation: $\mathcal{P} := \mathbb{Z}_+$ extended with "k | ." For convenience: add constants $c \in \mathbb{Z}$ and multiplication with constants $c \in \mathbb{Z}$

Normal form of atoms:

$$\begin{split} 0 &\leq c_1 \cdot x_1 + \ldots + c_n \cdot x_n + c \\ k \mid c_1 \cdot x_1 + \ldots + c_n \cdot x_n + c \\ \text{where } c_i \neq 0 \text{ and } k \geq 1 \end{split}$$

Where necessary, atoms are put into normal form

Presburger Arithmetic

Elimination of \neg : $\mathcal{Z}_{+} \models \neg s \leq t \leftrightarrow t + 1 \leq s$ $\mathcal{Z}_{+} \models \neg k \mid t \leftrightarrow k \mid t + 1 \lor k \mid t + 2 \lor \cdots \lor k \mid t + (k - 1)$ Elimination of $\neg \mid$ expensive and not really necessary. Can treat $\neg \mid$ like \mid

Quantifier Elimination for \mathcal{P} Step 1

 $qe1ca(\exists x F)$ where $F = A_1 \land \dots \land A_l$

where all A_i are atoms in normal form which contain x

Step 1: Set all coeffs of x in F to 1 or -1:

- 1. Set all coeffs of x in F to the lcm m of all coeffs of x
- 2. Set all coeffs of x to 1 or -1 and add $\wedge m \mid x$

Quantifier Elimination for ${\cal P}$

Step 1

 $qe1ca(\exists x A_1 \land \cdots \land A_l)$

Step 1: Set all coeffs of x in F to 1 or -1 The details, in one step:

Let *m* be the (positive) lcm of all coeffs of *x* (eg lcm $\{-6, 9\} = 18$) Let *R* be *coeff* $1(A_1) \land \cdots \land coeff$ $1(A_l) \land m \mid x$ (result) where

$$\begin{aligned} coeff \ &1(0 \le c_1 \cdot x_1 + \ldots + c_n \cdot x_n + c) = (0 \le c'_1 \cdot x_1 + \ldots + c'_n \cdot x_n + c') \\ coeff \ &1(d \mid c_1 \cdot x_1 + \ldots + c_n \cdot x_n + c) = (d' \mid c'_1 \cdot x_1 + \ldots + c'_n \cdot x_n + c') \\ &x_k = x \\ &m' = m/|c_k| \\ &c'_i = m' \cdot c_i \text{ if } i \ne k \\ &c'_k = if \ c_k > 0 \ then \ &1 \ else \ -1 \\ &c' = m' \cdot c \\ &d' = m' \cdot d \end{aligned}$$

Lemma $\mathcal{P} \models (\exists x \ F) \leftrightarrow (\exists x \ R)$

Quantifier Elimination for ${\cal P}$

Step 2

$$\begin{array}{ll} A_L := \text{ set of all } 0 \le x + t \text{ in } R & L := \{-t \mid (0 \le x + t) \in A_L\} \\ A_U := \text{ set of all } 0 \le -x + t \text{ in } R & U := \{t \mid (0 \le -x + t) \in A_U\} \end{array}$$

D :=the set of all $d \mid t$ in R

 $m := \text{the (pos.) lcm of } \{d \mid (d \mid t) \in D \text{ for some } t\}$

The quantifier-free result:

 $\begin{array}{rll} R':=& if \ L=\emptyset\\ & \ then \ \bigvee_{i=0}^{m-1} \ \bigwedge D[i/x]\\ & \ else \ \bigvee_{i=0}^{m-1} \ \bigvee_{l\in L} R[l+i/x] \end{array}$

Optimisation: use U instead of L

Lemma (Periodicity Lemma) If $A \in D$, i.e. $A = (d \mid x + t)$ and $x \notin fv(t)$, and $i \equiv j \pmod{d}$ then $\mathcal{P} \models A[i/x] \leftrightarrow A[j/x]$.

Incompleteness of (Integer) Arithmetic

[Schöning, Theoretische Informatik]

Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. 1931.

Kurt Gödel 1906 (Brünn) – 1978 (Princeton) Syntax of arithmetic:

Variablen:
$$V \rightarrow x | y | z | \dots$$

Zahlen: $N \rightarrow 0 | 1 | 2 | \dots$
Terme: $T \rightarrow V | N | (T + T) | (T * T)$
Formeln: $F \rightarrow (T = T) | \neg F | (F \land F) | (F \lor F) | \exists V. F$

We consider $\forall x. F$ as an abberviation for $\neg \exists x. \neg F$.

Definition

An occurrence of a variable x in a formula F is bound iff the occurrence is in a subformula of the form $\exists x. F'$ within F'. An occurrence is free iff it is not bound. Notation: $F(x_1, ..., x_k)$ denotes a formula in which at most the variables $x_1, ..., x_k$ occur free. If $n_1, ..., n_k \in \mathbb{N}$ then $F(n_1, ..., n_k)$ is the result of substituting $n_1, ..., n_k$ for the free occurrences of $x_1, ..., x_k$.

Example

$$F(x, y) = (x = y \land \exists x. x = y) F(5,7) = (5 = 7 \land \exists x. x = 7)$$

A sentence is a formula without free variables. Example

$$\exists x. \exists y. x = y$$

S is the set of arithmetic sentences.

Definition

W is the set of true sentences of arithmetic:

 $\begin{array}{ll} (t_1 = t_2) \in W & \text{iff} & t_1 \text{ and } t_2 \text{ have the same value.} \\ \neg F \in W & \text{iff} & F \notin W \\ (F \land G) \in W & \text{iff} & F \in W \text{ and } G \in W \\ (F \lor G) \in W & \text{iff} & F \in W \text{ or } G \in W \\ \exists x. F(x) \in W & \text{iff} & \text{there is some } n \in \mathbb{N} \text{ s.t. } F(n) \in W \end{array}$

Fact

For every sentence $F : F \in W$ iff $\neg F \notin W$,

NB If a formula with free variables is true or not can depend on the value of the free variables:

$$\exists x. x + x = y$$

Therefore absolute truth only makes sense for sentences.

Formulas can represent functions and relations.

Examples

$$F(x,y) = (\exists z. \ y = x + z + 1)$$

represents "x < y": $t_1 < t_2$ is an abbreviation of $F(t_1, t_2)$.

$$F(x, y, z) = (\exists k. \ x = k * y + z \land z < y)$$

represents " $z = x \mod y$ "

Definition

A partial function $f : \mathbb{N}^k \to \mathbb{N}$ is arithmetically representable iff there is a formula $F(x_1, \ldots, x_k, y)$ s.t. for all $n_1, \ldots, n_k, m \in \mathbb{N}$:

$$f(n_1,\ldots,n_k)=m$$
 iff $F(n_1,\ldots,n_k,m)\in W$

Theorem

Every WHILE-computable function is arithmetically representable.

Theorem W is not decidable.

Proof.

Let $U \subseteq \mathbb{N}$ be a semi-decidabe but not decidable set. $\Rightarrow \chi'_U$ is WHILE-computable $\Rightarrow \chi'_U$ is arithmetically representable by some F(x, y) $\Rightarrow n \in U$ iff $\chi'_U(n) = 1$ iff $F(n, 1) \in W$ $\Rightarrow W$ is not decidable.

Corollary

W is not semi-decidable.

What is a *proof system*? Minimal requirement: It must decidable if a given text is a poof of a given formula.

We code proofs as natural numbers.

Definition

A proof system for arithmetic is a decidable predicate

$$Prf: \mathbb{N} \times S \rightarrow \{0,1\}$$

where Prf(p, F) means "'p is a proof for the sentence F"'. A proof system Prf is correct iff

$$Prf(p, F) \Rightarrow F \in W.$$

A proof system Prf is complete iff

$$F \in W \Rightarrow$$
 there exists a p with $Prf(p, F)$.

Theorem (Gödel)

There is no correct and complete proof system for arithmetic.

Proof.

With every correct and complete proof system $\chi'_W(F)$ can be programmed:

```
p := 0
while Prf(p, F) = 0 do p := p + 1
output(1)
```

Hilbert's 10th Problem

Given a diophantine equation: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in integers.

Hilbert, ICM, Paris, 1900

Theorem (Yuri Matiyasevich, Julia Robinson, Martin Davis, Hilary Putnam, 1949-1970)

It is in general undecidable if a diophantine equation has a solution.

J. Bayer, M. David, B. Stock, A. Pal, D. Schleicher. **Diophantine Equations and the DPRM Theorem**. Archive of Formal Proofs. 2022.

DPRM = Davis, Putnam, Robinson, Matiyasevich

Higher-Order Logic (HOL)

Types and Terms

Simly typed λ -terms

Types:

$$\begin{aligned} \tau & ::= \quad bool \mid \dots \\ & \mid \quad (\tau \to \tau) \\ & \mid \quad \alpha \mid \beta \dots \end{aligned}$$

Terms

$$\begin{array}{rcl}t & ::= & c \mid d \mid \cdots \mid f \mid h \mid \dots \\ & \mid & (t \ t) \\ & \mid & (\lambda x. \ t)\end{array}$$

We assume that every variable and constant has an attached type. We consider only well-typed terms:

$$\frac{t_1:\tau \to \tau' \quad t_2:\tau}{t_1 \ t_2:\tau'} \qquad \frac{t:\tau'}{\lambda x:\tau. \ t:\tau \to \tau'}$$

Base logic

Formula = term of type *bool*

Theorems: $\Gamma \vdash F$

Base constants: = : $\alpha \rightarrow \alpha \rightarrow bool$ \rightarrow : bool $\rightarrow bool \rightarrow bool$ Inference rules

$$\overline{F \vdash F} \text{ assume}$$

$$\overline{F \vdash F} \text{ refl}$$

$$\overline{\vdash t = t} \text{ refl}$$

$$\overline{\vdash (\lambda x. t) u = u[t/x]} \beta$$

$$\overline{\vdash (\lambda x. t) = t} \eta \text{ if } x \notin fv(t)$$

$$\frac{\Gamma_1 \vdash s = t}{\Gamma_1 \cup \Gamma_2 \vdash F[s/x]} \text{ subst}$$

$$\frac{\Gamma \vdash s = t}{\Gamma \vdash (\lambda x. s) = (\lambda x. t)} \text{ abs if } x \notin fv(\Gamma)$$

Inference rules

$$rac{\Gamma \vdash F}{\Gamma \vdash F[au_1/lpha_1,\dots]}$$
 inst

if α_1, \ldots do not occur in Γ

Inference rules

$$\frac{\Gamma \vdash G}{\Gamma \setminus \{F\} \vdash F \to G} \to I$$

$$\frac{\Gamma_1 \vdash F \to G \quad \Gamma_2 \vdash F}{\Gamma_1 \cup \Gamma_2 \vdash G} \to E$$

$$\frac{\Gamma_1 \vdash F \to G \quad \Gamma_2 \vdash G \to F}{\Gamma_1 \cup \Gamma_2 \vdash F = G} = I$$

Definitions of standard logical symbols

$$\vdash \top = ((\lambda x. x) = (\lambda x. x))$$

all : $(\alpha \rightarrow bool) \rightarrow bool$ Notation: $\forall x. F$ abbreviates $all(\lambda x. F)$

$$\vdash all = (\lambda P. \ P = (\lambda x. \ \top))$$

$$\vdash \bot = (\forall F. F)$$

$$\vdash \neg = (\lambda F. F \rightarrow \bot)$$

$$\vdash (\land) = (\lambda F. \ \lambda G. \ \forall H. \ (F \rightarrow G \rightarrow H) \rightarrow H)$$

 $\vdash (\lor) = (\lambda F. \ \lambda G. \ \forall H. \ (F \to H) \to (G \to H) \to H)$

Definitions of standard logical symbols

 $ex : (\alpha \rightarrow bool) \rightarrow bool$ Notation: $\exists x. F$ abbreviates $ex(\lambda x. F)$

$$\vdash ex = (\lambda P. \ \forall G. \ (\forall x. \ (P \ x \to G) \to G))$$

The method of postulating what we want has many advantages; they are the same as the advantages of theft over honest toil.

Bertrand Russel

Classical logic

$\vdash F \lor \neg F$

Hilbert's ε

Informally: $\varepsilon x. F =$ an arbitrary but fixed x that satisfies F

Examples

$$(\varepsilon x. x = 5) = 5$$

 $(\varepsilon n. 0 \le n \le 2) \in \{0, 1, 2\}$
 $(\varepsilon x. \bot)$???

Formally:
$$eps : (\alpha \rightarrow bool) \rightarrow \alpha$$

 $\varepsilon x. F$ appreviates $eps(\lambda x. F)$
Axiom: $P x \rightarrow P(eps P)$