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Normal forms for
first-order logic

9.2

Recap

Syntax of first-order formulas:

Signature σ (constant, function and predicate symbols)

σ-terms

Formulas (as in propositional logic, predicate symbols atomic
formulas, additional ∀x and ∃x)

Semantics of first-order formulas:

σ-structure A with universe UA and interpretations of constants,
functions, predicates, and variables

A |= F defined by structural induction on F

Relevance lemma: “If A and A′ only differ on variables other than free
variables in F , then A |= F if and only if A′ |= F .”
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9.3

Normal forms

∃x
(
¬(∃x P(x , y) ∨ ∀y ¬Q(y)) ∧Q(x)

)
vs

∀x ∃z ∃w ((¬P(x , y) ∧Q(z)) ∧Q(w))

vs
(with convention on parenthesis)

∀x ∃z ∃w (¬P(x , y) ∧Q(z) ∧Q(w))

This lecture:

Establish elementary equivalences

Rectified form: “different variables have different names”

Prenex form: all quantifiers first

Skolem form: prenex form with no existential quantifiers
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9.4

Equivalences

Definition

Two first-order logic formulas F and G over the signature σ are
logically equivalent (written F ≡ G) if A |= F iff A |= G for all
σ-assignments A.

Proposition

Let F and G be arbitrary formulas. Then
(A) ¬∀xF ≡ ∃x¬F and ¬∃xF ≡ ∀x¬F
(B) If x does not occur free in G then:

(∀xF ∧G) ≡ ∀x(F ∧G) (∀xF ∨G) ≡ ∀x(F ∨G)

(∃xF ∧G) ≡ ∃x(F ∧G) (∃xF ∨G) ≡ ∃x(F ∨G)

(C) (∀xF ∧ ∀xG) ≡ ∀x(F ∧G) and (∃xF ∨ ∃xG) ≡ ∃x(F ∨G)

(D) ∀x∀yF ≡ ∀y∀xF and ∃x∃yF ≡ ∃y∃xF
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9.5

Equivalences

Proof.

We only sketch the proof of the first equivalence in (B).

A |= (∀xF ∧G)

iff A |= ∀xF and A |= G

iff for all a ∈ UA, A[x 7→a] |= F and A |= G

iff for all a ∈ UA, A[x 7→a] |= F and A[x 7→a] |= G (Relevance Lem.)

iff for all a ∈ UA, A[x 7→a] |= F ∧G

iff A |= ∀x(F ∧G)
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9.6

Translation lemma

Denote by F [t/x ] the formula obtained from replacing every free
occurrence of x in F with t .

Example

(∀x P(x , y) ∧Q(x))[t/x ] = ∀x P(x , y) ∧Q(t) .

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs
bound in F , then A |= F [t/x ] iff A[x 7→A(t)] |= F.

Proof.

By structural induction on formulas.
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9.7

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs
bound in F , then A |= F [t/x ] iff A[x 7→A(t)] |= F.

We consider only one case of the proof, namely the one where the
formula is of the form F ≡ ∀y G, where y 6= x .

A |= (∀yG)[t/x ]

iff A |= ∀y(G[t/x ])

iff A[y 7→d ] |= G[t/x ] for all d ∈ UA

iff A[y 7→d ][x 7→A[y 7→d ](t)] |= G for all d ∈ UA (induction hypothesis)

iff A[y 7→d ][x 7→A(t)] |= G for all d ∈ UA (y does not occur in t)

iff A[x 7→A(t)][y 7→d ] |= G for all d ∈ UA (y 6= x)

iff A[x 7→A(t)] |= ∀yG

7 / 16
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9.8

Rectified formulas

Definition

A formula is rectified if no variable occurs both bound and free, and if
all quantifiers in the formula refer to different variables.

Proposition

Let Qx G be a formula where Q ∈ {∀,∃}, and let y be a variable that
does not occur in G. Then Qx G ≡ Qy (G[y/x ]).

Proof.

Proof for ∀:
A |= ∀y (G[y/x ])

iff A[y 7→a] |= G[y/x ] for all a ∈ UA

iff A[y 7→a][x 7→A[y 7→a](y)] |= G for all a ∈ UA (Translation Lemma)
iff A[y 7→a][x 7→a] |= G for all a ∈ UA

iff A[x 7→a][y 7→a] |= G for all a ∈ UA

iff A[x 7→a] |= G for all a ∈ UA (Relevance Lemma)
iff A |= ∀x G .
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9.9

Rectified formulas

Proposition

Every formula is equivalent to a rectified formula.

Proof.

Repeatedly apply the previous proposition to replace bound
occurrences of variables by fresh variables not occurring in the
original formula.
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9.10

Prenex form

Definition

A formula is in prenex form if it is of the form

Q1y1 Q2y2 . . .Qnyn F ,

where Qi ∈ {∃,∀}, n ≥ 0, and F contains no quantifiers. In this case
F is called the matrix of the formula.

Theorem

Every formula is equivalent to a formula in rectified prenex form.

Proof (sketch).

Rectify formula
Move all quantifiers up the syntax tree using the equivalences (A)
and (B), plus equivalences of propositional logic.
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9.11

Prenex form

Example

∃x
(
¬(∃x P(x , y) ∨ ∀y ¬Q(y)) ∧Q(x)

)
≡ ∃x

(
¬(∃x P(x , y) ∨ ∀z ¬Q(z)) ∧Q(x)

)
≡ ∃w

(
¬(∃x P(x , y) ∨ ∀z ¬Q(z)) ∧Q(w)

)
≡ ∃w

(
(¬∃x P(x , y) ∧ ¬∀z ¬Q(z)) ∧Q(w)

)
≡ ∃w

(
(∀x ¬P(x , y) ∧ ∃z Q(z)) ∧Q(w)

)
≡ ∃w

(
∃z (∀x ¬P(x , y) ∧Q(z)) ∧Q(w)

)
≡ ∃w ∃z

(
(∀x ¬P(x , y) ∧Q(z)) ∧Q(w)

)
≡ ∃z ∃w

(
(∀x ¬P(x , y) ∧Q(z)) ∧Q(w)

)
≡ ∀x ∃z ∃w

(
¬P(x , y) ∧Q(z) ∧Q(w)

)
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9.12

Skolem form

Definition

A formula is in Skolem form if it is in rectified prenex form and no
existential quantifier occurs in it.

Proposition

Let F = ∀y1∀y2 . . . ∀yn∃z G be a rectified formula. Given a function
symbol f of arity n that does not occur in F , write

F ′ = ∀y1∀y2 . . . ∀yn G[f (y1, . . . , yn)/z] .

Then F and F ′ are equisatisfiable.

“Proof”.

Choose assignment A′ for F ′ such that A′ “emulates” via f the choice
made by existential quantifier.
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Normal forms for
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9.13

Skolem form

Theorem

Every formula of first-order logic has an equisatisfiable formula in
Skolem form.

Proof.

Put the formula in rectified prenex form. Repeatedly apply the
previous proposition to the outermost existential quantifier in the
block of quantifiers.

Example

∀x ∃y ∀z ∃w (¬P(a,w) ∨Q(f (x), y)) is satisfiable
iff ∀x ∀z ∃w (¬P(a,w) ∨Q(f (x),g(x))) is satisfiable
iff ∀x ∀z (¬P(a,h(x , z)) ∨Q(f (x),g(x))) is satisfiable
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9.14

Clause form

Definition

A closed formula is in clause form if it is of the form

∀y1∀y2 . . . ∀yn F

where F contains no quantifiers and is in CNF.

A closed formula in clause form can be represented as a set of
clauses.

Example: the clause form of ∀x∀y ((P(x , y) ∧Q(x)) ∧ P(f (y),a) is

{ {P(x , y),Q(x)} , {P(f (y),a)} }
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Converting into clause form up to equisatisfiability

Given: a formula F of predicate logic (with possible occurrences of
free variables).

1. Rectify F by systematic renaming of bound variables.
The result is a formula F1 equivalent to F .

2. Let y1, y2, . . . , yn be the variables occurring free in F1.
Produce the formula F2 = ∃y1∃y2 . . . ∃ynF1.
F2 is equisatisfiable to F1 and closed.

3. Produce a formula F3 in prenex form equivalent to F2.
4. Eliminate the existential quantifiers in F3 by transforming F3 into

a Skolem formula F4.
The formula F4 is equisatisfiable to F3.

5. Convert the matrix of F4 into CNF (and write the resulting formula
F5 as set of clauses).
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9.16

Exercise

Which formulas are rectified, in prenex, Skolem, or clause form?

R P S C

∀x(Tet(x) ∨ Cube(x) ∨ Dodec(x))

∃x∃y(Cube(y) ∨ BackOf(x , y))

∀x(¬FrontOf(x , x) ∧ ¬BackOf(x , x))

¬∃xCube(x) ↔ ∀x¬Cube(x)

∀x(Cube(x) → Small(x)) → ∀y(¬Cube(y) → ¬Small(y))

(Cube(a) ∧ ∀xSmall(x)) → Small(a)

∃x(Larger(a, x) ∧ Larger(x , b)) → Larger(a, b)
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