Lecture 9
 Normal forms for first-order logic

Equivalences, prenex form, Skolem form

Dr Christoph Haase
University of Oxford (with small changes by Javier Esparza)

Recap

Syntax of first-order formulas:

- Signature σ (constant, function and predicate symbols)
- σ-terms
- Formulas (as in propositional logic, predicate symbols atomic formulas, additional $\forall x$ and $\exists x$)

Recap

Syntax of first-order formulas:

- Signature σ (constant, function and predicate symbols)
- σ-terms
- Formulas (as in propositional logic, predicate symbols atomic formulas, additional $\forall x$ and $\exists x$)

Semantics of first-order formulas:

- σ-structure \mathcal{A} with universe $U_{\mathcal{A}}$ and interpretations of constants, functions, predicates, and variables
- $\mathcal{A} \models F$ defined by structural induction on F

Recap

Syntax of first-order formulas:

- Signature σ (constant, function and predicate symbols)
- σ-terms
- Formulas (as in propositional logic, predicate symbols atomic formulas, additional $\forall x$ and $\exists x$)

Semantics of first-order formulas:

- σ-structure \mathcal{A} with universe $U_{\mathcal{A}}$ and interpretations of constants, functions, predicates, and variables
- $\mathcal{A} \models F$ defined by structural induction on F

Relevance lemma: "If \mathcal{A} and \mathcal{A}^{\prime} only differ on variables other than free variables in F, then $\mathcal{A} \models F$ if and only if $\mathcal{A}^{\prime} \models F$."

Normal forms

$$
\begin{gathered}
\exists x(\neg(\exists x P(x, y) \vee \forall y \neg Q(y)) \wedge Q(x)) \\
\text { vs } \\
\forall x \exists z \exists w((\neg P(x, y) \wedge Q(z)) \wedge Q(w)) \\
\text { vs } \\
\text { (with convention on parenthesis) } \\
\forall x \exists z \exists w(\neg P(x, y) \wedge Q(z) \wedge Q(w))
\end{gathered}
$$

Normal forms

$$
\begin{gathered}
\exists x(\neg(\exists x P(x, y) \vee \forall y \neg Q(y)) \wedge Q(x)) \\
\text { vs } \\
\forall x \exists z \exists w((\neg P(x, y) \wedge Q(z)) \wedge Q(w)) \\
\text { vs } \\
(\text { with convention on parenthesis) } \\
\forall x \exists z \exists w(\neg P(x, y) \wedge Q(z) \wedge Q(w))
\end{gathered}
$$

This lecture:

- Establish elementary equivalences
- Rectified form: "different variables have different names"
- Prenex form: all quantifiers first
- Skolem form: prenex form with no existential quantifiers

Equivalences

Definition

Two first-order logic formulas F and G over the signature σ are logically equivalent (written $F \equiv G$) if $\mathcal{A} \models F$ iff $\mathcal{A} \models G$ for all σ-assignments \mathcal{A}.

Equivalences

Definition

Two first-order logic formulas F and G over the signature σ are logically equivalent (written $F \equiv G$) if $\mathcal{A} \models F$ iff $\mathcal{A} \models G$ for all σ-assignments \mathcal{A}.

Proposition

Let F and G be arbitrary formulas. Then
(A) $\neg \forall x F \equiv \exists x \neg F$ and $\neg \exists x F \equiv \forall x \neg F$
(B) If x does not occur free in G then:

$$
\begin{aligned}
(\forall x F \wedge G) \equiv \forall x(F \wedge G) & & (\forall x F \vee G) \equiv \forall x(F \vee G) \\
(\exists x F \wedge G) \equiv \exists x(F \wedge G) & & (\exists x F \vee G) \equiv \exists x(F \vee G)
\end{aligned}
$$

(C) $(\forall x F \wedge \forall x G) \equiv \forall x(F \wedge G)$ and $(\exists x F \vee \exists x G) \equiv \exists x(F \vee G)$
(D) $\forall x \forall y F \equiv \forall y \forall x F$ and $\exists x \exists y F \equiv \exists y \exists x F$

Equivalences

Proof.

We only sketch the proof of the first equivalence in (B).

$$
\mathcal{A} \models(\forall x F \wedge G)
$$

Equivalences

Proof.

We only sketch the proof of the first equivalence in (B).

$$
\begin{aligned}
& \mathcal{A} \models(\forall x F \wedge G) \\
\text { iff } & \mathcal{A} \models \forall x F \text { and } \mathcal{A} \models G
\end{aligned}
$$

Equivalences

Proof.

We only sketch the proof of the first equivalence in (B).

$$
\mathcal{A} \models(\forall x F \wedge G)
$$

iff $\mathcal{A} \models \forall x F$ and $\mathcal{A} \models G$
iff for all $a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F$ and $\mathcal{A} \models G$

Equivalences

Proof.

We only sketch the proof of the first equivalence in (B).

$$
\mathcal{A} \models(\forall x F \wedge G)
$$

iff $\mathcal{A} \models \forall x F$ and $\mathcal{A} \models G$
iff for all $a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F$ and $\mathcal{A} \models G$
iff for all $a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F$ and $\mathcal{A}_{[x \mapsto a]} \models G$

Equivalences

Proof.

We only sketch the proof of the first equivalence in (B).

$$
\begin{array}{ll}
& \mathcal{A} \models(\forall x F \wedge G) \\
\text { iff } & \mathcal{A} \models \forall x F \text { and } \mathcal{A} \models G \\
\text { iff } & \text { for all } a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F \text { and } \mathcal{A} \models G \\
\text { iff } & \text { for all } a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F \text { and } \mathcal{A}_{[x \mapsto a]} \models G \text { (Relevance Lem.) }
\end{array}
$$

Equivalences

Proof.

We only sketch the proof of the first equivalence in (B).

$$
\mathcal{A} \models(\forall x F \wedge G)
$$

iff $\mathcal{A} \models \forall x F$ and $\mathcal{A} \models G$
iff for all $a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F$ and $\mathcal{A} \models G$
iff for all $a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F$ and $\mathcal{A}_{[x \mapsto a]} \models G$ (Relevance Lem.)
iff for all $a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F \wedge G$

Equivalences

Proof.

We only sketch the proof of the first equivalence in (B).

$$
\mathcal{A} \models(\forall x F \wedge G)
$$

iff $\mathcal{A} \models \forall x F$ and $\mathcal{A} \models G$
iff for all $a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F$ and $\mathcal{A} \models G$
iff for all $a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F$ and $\mathcal{A}_{[x \mapsto a]} \models G$ (Relevance Lem.)
iff for all $a \in U_{\mathcal{A}}, \mathcal{A}_{[x \mapsto a]} \models F \wedge G$
iff $\mathcal{A} \models \forall x(F \wedge G)$

Translation lemma

Denote by $F[t / x]$ the formula obtained from replacing every free occurrence of x in F with t.

Translation lemma

Denote by $F[t / x]$ the formula obtained from replacing every free occurrence of x in F with t.

Example

$$
(\forall x P(x, y) \wedge Q(x))[t / x]=\forall x P(x, y) \wedge Q(t)
$$

Translation lemma

Denote by $F[t / x]$ the formula obtained from replacing every free occurrence of x in F with t.

$$
\begin{aligned}
& \text { Example } \\
& \qquad(\forall x P(x, y) \wedge Q(x))[t / x]=\forall x P(x, y) \wedge Q(t)
\end{aligned}
$$

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

Translation lemma

Denote by $F[t / x]$ the formula obtained from replacing every free occurrence of x in F with t.

$$
\begin{aligned}
& \text { Example } \\
& \qquad(\forall x P(x, y) \wedge Q(x))[t / x]=\forall x P(x, y) \wedge Q(t)
\end{aligned}
$$

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

Proof.

By structural induction on formulas.

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\mathcal{A} \models(\forall y G)[t / x]
$$

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\begin{aligned}
& \mathcal{A}
\end{aligned}=(\forall y G)[t / x] ~=~ i f f \quad \mathcal{A} \models \forall y(G[t / x])
$$

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\begin{array}{ll}
& \mathcal{A} \models(\forall y G)[t / x] \\
\text { iff } & \mathcal{A} \models \forall y(G[t / x]) \\
\text { iff } & \mathcal{A}_{[y \mapsto d]} \models G[t / x] \text { for all } d \in U_{\mathcal{A}}
\end{array}
$$

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\begin{array}{ll}
& \mathcal{A} \models(\forall y G)[t / x] \\
\text { iff } & \mathcal{A} \models \forall y(G[t / x]) \\
\text { iff } & \mathcal{A}_{[y \mapsto d]} \models G[t / x] \text { for all } d \in U_{\mathcal{A}} \\
\text { iff } & \mathcal{A}_{[y \mapsto d]\left[x \mapsto \mathcal{A}_{[y \mapsto d]}(t)\right]} \models G \text { for all } d \in U_{\mathcal{A}}
\end{array}
$$

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\begin{array}{ll}
& \mathcal{A} \models(\forall y G)[t / x] \\
\text { iff } & \mathcal{A} \models \forall y(G[t / x]) \\
\text { iff } & \mathcal{A}_{[y \mapsto d]} \models G[t / x] \text { for all } d \in U_{\mathcal{A}} \\
\text { iff } & \mathcal{A}_{[y \mapsto d]\left[x \mapsto \mathcal{A}_{[y \mapsto d]}(t)\right]} \models G \text { for all } d \in U_{\mathcal{A}} \quad \text { (induction hypothesis) }
\end{array}
$$

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\begin{array}{ll}
& \mathcal{A} \models(\forall y G)[t / x] \\
\text { iff } & \mathcal{A} \models \forall y(G[t / x]) \\
\text { iff } & \mathcal{A}_{[y \mapsto d]} \models G[t / x] \text { for all } d \in U_{\mathcal{A}} \\
\text { iff } & \mathcal{A}_{[y \mapsto d]\left[x \mapsto \mathcal{A}_{[y \mapsto 0]}(t)\right]} \models G \text { for all } d \in U_{\mathcal{A}} \quad \text { (induction hypothesis) } \\
\text { iff } & \mathcal{A}_{[y \mapsto d][x \mapsto \mathcal{A}(t)]} \models G \text { for all } d \in U_{\mathcal{A}}
\end{array}
$$

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\begin{array}{lll}
& \mathcal{A} \models(\forall y G)[t / x] & \\
\text { iff } & \mathcal{A} \models \forall y(G[t / x]) & \\
\text { iff } & \mathcal{A}_{[y \mapsto d]} \models G[t / x] \text { for all } d \in U_{\mathcal{A}} & \\
\text { iff } & \mathcal{A}_{[y \mapsto d]\left[x \mapsto \mathcal{A}_{[y \mapsto d]}(t)\right]} \models G \text { for all } d \in U_{\mathcal{A}} & \text { (induction hypothesis) } \\
\text { iff } & \mathcal{A}_{[y \mapsto d][x \mapsto \mathcal{A}(t)]} \models G \text { for all } d \in U_{\mathcal{A}} & \text { (} y \text { does not occur in } t \text {) }
\end{array}
$$

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\begin{array}{lll}
& \mathcal{A} \models(\forall y G)[t / x] & \\
\text { iff } & \mathcal{A} \models \forall y(G[t / x]) & \\
\text { iff } & \mathcal{A}_{[y \mapsto d]} \models G[t / x] \text { for all } d \in U_{\mathcal{A}} & \\
\text { iff } & \mathcal{A}_{[y \mapsto d]\left[x \mapsto \mathcal{A}_{[y \mapsto d]}(t)\right]} \models G \text { for all } d \in U_{\mathcal{A}} & \text { (induction hypothesis) } \\
\text { iff } & \mathcal{A}_{[y \mapsto d][x \mapsto \mathcal{A}(t)]} \models G \text { for all } d \in U_{\mathcal{A}} & \text { (} y \text { does not occur in } t \text {) } \\
\text { iff } & \mathcal{A}_{[x \mapsto \mathcal{A}(t)][y \mapsto d]} \models G \text { for all } d \in U_{\mathcal{A}} &
\end{array}
$$

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\begin{array}{lll}
& \mathcal{A} \models(\forall y G)[t / x] & \\
\text { iff } & \mathcal{A} \models \forall y(G[t / x]) & \\
\text { iff } & \mathcal{A}_{[y \mapsto d]} \models G[t / x] \text { for all } d \in U_{\mathcal{A}} & \\
\text { iff } & \mathcal{A}_{[y \mapsto d]\left[x \mapsto \mathcal{A}_{[y \mapsto d]}(t)\right]} \models G \text { for all } d \in U_{\mathcal{A}} & \\
\text { (induction hypothesis) } \\
\text { iff } & \mathcal{A}_{[y \mapsto d][x \mapsto \mathcal{A}(t)]} \models G \text { for all } d \in U_{\mathcal{A}} & \\
\text { iff } & \mathcal{A}_{[x \mapsto \mathcal{A}(t)][y \mapsto d]} \models G \text { for all } d \in U_{\mathcal{A}} & (y \neq x)
\end{array}
$$

Translation lemma: One case of the proof

Lemma (Translation Lemma)

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \models F[t / x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

We consider only one case of the proof, namely the one where the formula is of the form $F \equiv \forall y G$, where $y \neq x$.

$$
\begin{array}{lll}
& \mathcal{A} \models(\forall y G)[t / x] & \\
\text { iff } & \mathcal{A} \models \forall y(G[t / x]) & \\
\text { iff } & \mathcal{A}_{[y \mapsto d]} \models G[t / x] \text { for all } d \in U_{\mathcal{A}} & \\
\text { iff } & \mathcal{A}_{[y \mapsto d]\left[x \mapsto \mathcal{A}_{[y \mapsto d]}(t)\right]} \models G \text { for all } d \in U_{\mathcal{A}} & \\
\text { iff } & \mathcal{A}_{[y \mapsto d][x \mapsto \mathcal{A}(t)]} \models G \text { for all } d \in U_{\mathcal{A}} & \\
\text { iff } & \mathcal{A}_{[x \mapsto \mathcal{A}(t)][y \mapsto d]} \models G \text { for all } d \in U_{\mathcal{A}} & (y \neq x) \\
\text { iff } & \mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models \forall y G &
\end{array}
$$

Rectified formulas

Definition

A formula is rectified if no variable occurs both bound and free, and if all quantifiers in the formula refer to different variables.

Rectified formulas

Definition

A formula is rectified if no variable occurs both bound and free, and if all quantifiers in the formula refer to different variables.

Proposition

Let $Q x G$ be a formula where $Q \in\{\forall, \exists\}$, and let y be a variable that does not occur in G. Then $Q x G \equiv Q y(G[y / x])$.

Rectified formulas

Definition

A formula is rectified if no variable occurs both bound and free, and if all quantifiers in the formula refer to different variables.

Proposition

Let $Q x G$ be a formula where $Q \in\{\forall, \exists\}$, and let y be a variable that does not occur in G. Then $Q x G \equiv Q y(G[y / x])$.

Proof.

Proof for \forall :

$$
\begin{array}{ll}
& \mathcal{A} \models \forall y(G[y / x]) \\
\text { iff } & \mathcal{A}_{[y \mapsto a]} \models G[y / x] \text { for all } a \in U_{\mathcal{A}} \\
\text { iff } & \mathcal{A}_{[y \mapsto a]\left[x \mapsto \mathcal{A}_{[y \mapsto a]}(y)\right]}=G \text { for all } a \in U_{\mathcal{A}} \text { (Translation Lemma) } \\
\text { iff } & \mathcal{A}_{[y \mapsto a][x \mapsto a]} \models G \text { for all } a \in U_{\mathcal{A}} \\
\text { iff } & \mathcal{A}_{[x \mapsto a][y \mapsto a]}=G \text { for all } a \in U_{\mathcal{A}} \\
\text { iff } & \mathcal{A}_{[x \mapsto a]}=G \text { for all } a \in U_{\mathcal{A}} \text { (Relevance Lemma) } \\
\text { iff } & \mathcal{A} \models \forall x G .
\end{array}
$$

Rectified formulas

Proposition

Every formula is equivalent to a rectified formula.

Rectified formulas

Proposition

Every formula is equivalent to a rectified formula.

Proof.

Repeatedly apply the previous proposition to replace bound occurrences of variables by fresh variables not occurring in the original formula.

Prenex form

Definition

A formula is in prenex form if it is of the form

$$
Q_{1} y_{1} Q_{2} y_{2} \ldots Q_{n} y_{n} F
$$

where $Q_{i} \in\{\exists, \forall\}, n \geq 0$, and F contains no quantifiers. In this case F is called the matrix of the formula.

Prenex form

Definition

A formula is in prenex form if it is of the form

$$
Q_{1} y_{1} Q_{2} y_{2} \ldots Q_{n} y_{n} F
$$

where $Q_{i} \in\{\exists, \forall\}, n \geq 0$, and F contains no quantifiers. In this case F is called the matrix of the formula.

Theorem

Every formula is equivalent to a formula in rectified prenex form.

Proof (sketch).

- Rectify formula
- Move all quantifiers up the syntax tree using the equivalences (A) and (B), plus equivalences of propositional logic.

Prenex form

Example

$$
\begin{aligned}
& \exists x(\neg(\exists x P(x, y) \vee \forall y \neg Q(y)) \wedge Q(x)) \\
\equiv & \exists x(\neg(\exists x P(x, y) \vee \forall z \neg Q(z)) \wedge Q(x)) \\
\equiv & \exists w(\neg(\exists x P(x, y) \vee \forall z \neg Q(z)) \wedge Q(w)) \\
\equiv & \exists w((\neg \exists x P(x, y) \wedge \neg \forall z \neg Q(z)) \wedge Q(w)) \\
\equiv & \exists w((\forall x \neg P(x, y) \wedge \exists z Q(z)) \wedge Q(w)) \\
\equiv & \exists w(\exists z(\forall x \neg P(x, y) \wedge Q(z)) \wedge Q(w)) \\
\equiv & \exists w \exists z((\forall x \neg P(x, y) \wedge Q(z)) \wedge Q(w)) \\
\equiv & \exists z \exists w((\forall x \neg P(x, y) \wedge Q(z)) \wedge Q(w)) \\
\equiv & \forall x \exists z \exists w(\neg P(x, y) \wedge Q(z) \wedge Q(w))
\end{aligned}
$$

Skolem form

Definition

A formula is in Skolem form if it is in rectified prenex form and no existential quantifier occurs in it.

Skolem form

Definition

A formula is in Skolem form if it is in rectified prenex form and no existential quantifier occurs in it.

Proposition

Let $F=\forall y_{1} \forall y_{2} \ldots \forall y_{n} \exists z G$ be a rectified formula. Given a function symbol f of arity n that does not occur in F, write

$$
F^{\prime}=\forall y_{1} \forall y_{2} \ldots \forall y_{n} G\left[f\left(y_{1}, \ldots, y_{n}\right) / z\right] .
$$

Then F and F^{\prime} are equisatisfiable.

Skolem form

Definition

A formula is in Skolem form if it is in rectified prenex form and no existential quantifier occurs in it.

Proposition

Let $F=\forall y_{1} \forall y_{2} \ldots \forall y_{n} \exists z G$ be a rectified formula. Given a function symbol f of arity n that does not occur in F, write

$$
F^{\prime}=\forall y_{1} \forall y_{2} \ldots \forall y_{n} G\left[f\left(y_{1}, \ldots, y_{n}\right) / z\right] .
$$

Then F and F^{\prime} are equisatisfiable.

"Proof".

Choose assignment \mathcal{A}^{\prime} for F^{\prime} such that \mathcal{A}^{\prime} "emulates" via f the choice made by existential quantifier.

Skolem form

Theorem

Every formula of first-order logic has an equisatisfiable formula in Skolem form.

Proof.

Put the formula in rectified prenex form. Repeatedly apply the previous proposition to the outermost existential quantifier in the block of quantifiers.

Skolem form

Theorem

Every formula of first-order logic has an equisatisfiable formula in Skolem form.

Proof.

Put the formula in rectified prenex form. Repeatedly apply the previous proposition to the outermost existential quantifier in the block of quantifiers.

Example

$$
\begin{array}{ll}
& \forall x \exists y \forall z \exists w(\neg P(a, w) \vee Q(f(x), y)) \text { is satisfiable } \\
\text { iff } & \forall x \forall z \exists w(\neg P(a, w) \vee Q(f(x), g(x))) \text { is satisfiable } \\
\text { iff } & \forall x \forall z(\neg P(a, h(x, z)) \vee Q(f(x), g(x))) \text { is satisfiable }
\end{array}
$$

Clause form

Definition

A closed formula is in clause form if it is of the form

$$
\forall y_{1} \forall y_{2} \ldots \forall y_{n} F
$$

where F contains no quantifiers and is in CNF.

A closed formula in clause form can be represented as a set of clauses.

Example: the clause form of $\forall x \forall y((P(x, y) \wedge Q(x)) \wedge P(f(y), a)$ is

$$
\{\{P(x, y), Q(x)\},\{P(f(y), a)\}\}
$$

Converting into clause form up to equisatisfiability

Given: a formula F of predicate logic (with possible occurrences of free variables).

1. Rectify F by systematic renaming of bound variables.

The result is a formula F_{1} equivalent to F.
2. Let $y_{1}, y_{2}, \ldots, y_{n}$ be the variables occurring free in F_{1}. Produce the formula $F_{2}=\exists y_{1} \exists y_{2} \ldots \exists y_{n} F_{1}$. F_{2} is equisatisfiable to F_{1} and closed.
3. Produce a formula F_{3} in prenex form equivalent to F_{2}.
4. Eliminate the existential quantifiers in F_{3} by transforming F_{3} into a Skolem formula F_{4}.
The formula F_{4} is equisatisfiable to F_{3}.
5. Convert the matrix of F_{4} into CNF (and write the resulting formula F_{5} as set of clauses).

Exercise

Which formulas are rectified, in prenex, Skolem, or clause form?

	R	P	S		c
$\forall x(\operatorname{Tet}(x) \vee \operatorname{Cube}(x) \vee \operatorname{Dodec}(x))$					
$\exists x \exists y($ Cube $(y) \vee \operatorname{BackOf}(x, y))$					
$\forall x(\neg$ FrontOf $(x, x) \wedge \neg \operatorname{BackOf}(x, x))$					
$\neg \exists x \operatorname{Cube}(x) \leftrightarrow \forall x \neg \operatorname{Cube}(x)$					
$\forall x($ Cube $(x) \rightarrow$ Small $(x)) \rightarrow \forall y(\neg$ Cube $(y) \rightarrow \neg$ Small $(y))$					
$($ Cube $(a) \wedge \forall x$ Small $(x)) \rightarrow$ Small (a)					
$\exists x(\operatorname{Larger}(\mathrm{a}, \mathrm{x}) \wedge \operatorname{Larger}(x, b)) \rightarrow \operatorname{Larger}(a, b)$					

