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First-order logic

8.2

Limitations of propositional logic

Can only reason about true or false

Atomic formulas have no internal structure

Impossible to express “real” mathematical statements

Example

Every natural number x is either odd or even.
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First-order logic

8.3

Frege’s Begriffsschrift
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First-order logic

8.4

Signatures

Definition

A signature σ is a tuple consisting of
a set of constant symbols (denoted c,d)
a set of function symbols (denoted f ,g), and
a set of predicate symbols (denoted P,Q,R).

Each function and predicate symbol has an arity k ≥ 1.

Example

The signature of number theory is σ = 〈0,1,+, ·,=〉, where 0 and 1
are constant symbols, + and · are function symbols of arity two, and
= is a predicate symbol of arity two.
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First-order logic

8.5

Terms

Definition

Let X be a countably infinite set of variables (denoted x , y , z. The
terms over a signature σ are defined by structural induction:

Each variable x ∈ X is a term.
Each constant symbol c is a term.
If t1, . . . , tk are terms and f is a k -ary function symbol then
f (t1, . . . , tk ) is a term.

Example

Given the signature of number theory σ, we have that ·(+(1,1), x) is
a term. We often use infix notation and write (1 + 1) · x instead.
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First-order logic

8.6

Formulas

Definition

The set of formulas over a signature σ is defined inductively:
Given terms t1, . . . , tk and a k -ary predicate symbol P then
P(t1, . . . , tk ) is a formula (atomic formulas).
For each formula F , ¬F is a formula.
For each pair of formulas F ,G, (F ∨G) and (F ∧G) are both
formulas.
If F is a formula and x is a variable then ∃x F and ∀x F are both
formulas.

∃ and ∀ are the existential and universal (first-order) quantifiers.

Example

A formula over the signature of number theory::

∀x ∃y(= (x , ((1 + 1) · y))) ∨ (= (x , (1 + (((1 + 1) · y))))).

Again, use infix notation also for predicate symbols:

∀x ∃y((x = (1 + 1) · y) ∨ (x = 1 + (1 + 1) · y)).

6 / 29



First-order logic

8.6

Formulas

Definition

The set of formulas over a signature σ is defined inductively:
Given terms t1, . . . , tk and a k -ary predicate symbol P then
P(t1, . . . , tk ) is a formula (atomic formulas).
For each formula F , ¬F is a formula.
For each pair of formulas F ,G, (F ∨G) and (F ∧G) are both
formulas.
If F is a formula and x is a variable then ∃x F and ∀x F are both
formulas.

∃ and ∀ are the existential and universal (first-order) quantifiers.

Example

A formula over the signature of number theory::

∀x ∃y(= (x , ((1 + 1) · y))) ∨ (= (x , (1 + (((1 + 1) · y))))).

Again, use infix notation also for predicate symbols:

∀x ∃y((x = (1 + 1) · y) ∨ (x = 1 + (1 + 1) · y)).
6 / 29



First-order logic

8.7

Quantifier depth and bounded variables

Inductive structure of formulas enables structural induction:

Definition

quantifier depth is defined as follows:

qd(P(t1, . . . , tk )) := 0
qd(¬F ) := qd(F )

qd(F ∧G) = qd(F ∨G) := max(qd(F ), qd(G))

qd(∃x F ) = qd(∀x F ) := qd(F ) + 1.

Definition

In formula ∃x G, we say G is in the scope of the quantifier ∃x ,
likewise for ∀x G. A variable x is bound in F if x occurs in scope of
∃x or ∀x . If x is not bound then x is free. Formula with no free
variables is called closed or sentence.

7 / 29



First-order logic

8.7

Quantifier depth and bounded variables

Inductive structure of formulas enables structural induction:

Definition

quantifier depth is defined as follows:

qd(P(t1, . . . , tk )) := 0
qd(¬F ) := qd(F )

qd(F ∧G) = qd(F ∨G) := max(qd(F ), qd(G))

qd(∃x F ) = qd(∀x F ) := qd(F ) + 1.

Definition

In formula ∃x G, we say G is in the scope of the quantifier ∃x ,
likewise for ∀x G. A variable x is bound in F if x occurs in scope of
∃x or ∀x . If x is not bound then x is free. Formula with no free
variables is called closed or sentence.

7 / 29



First-order logic

8.8

Exercise

NF: non-formula F: formula, but not closed C: closed

NF F C

∀x P(c)

∀x∃y (Q(x , y) ∨ R(x , y))

∀x Q(x , x)→ ∃x Q(x , y)

∀x P(x) ∨ ∀x Q(x , x)

∀x (P(y) ∧ ∀y P(x))

P(x)→ ∃x Q(x ,P(x))

∀f ∃x P(f (x))
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First-order logic

8.9

Exercise

NF: non-formula F: formula, but not closed C: closed

NF F C

∀x (¬∀y Q(x , y) ∧ R(x , y))

∃z (Q(z, x) ∨ R(y , z))→ ∃y (R(x , y) ∧Q(x , z))

∃x (¬P(x) ∨ P(f (c)))

P(x)→ ∃x P(x)

∃x∀y ((P(y)→ Q(x , y)) ∨ ¬P(x))

∃x∀x Q(x , x)
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First-order logic

8.10

Semantics of first-order logic

Definition

Given a signature σ, a σ-structure (or assignment) A consists of:
a non-empty set UA called the universe of the structure;
for each k -ary predicate symbol P in σ, a k -ary relation

PA ⊆ UA × · · · × UA︸ ︷︷ ︸
k

;

for each k -ary function symbol f in σ, a k -ary function,

fA : UA × · · · × UA︸ ︷︷ ︸
k

→ UA;

for each constant symbol c, an element cA of UA;
for each variable x an element xA of UA.
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First-order logic

8.11

Example

Let σ be the signature of number theory. The natural σ-structure A is:
UA := N = {0,1, . . .}
0A := 0, 1A := 1
+A := (m,n) 7→ m + n
·A := (m,n) 7→ m · n
=A:= {(n,n) : n ∈ N}

BUT the following B is also a σ-structure:
UB := {A,B,5}
0B := A, 1A := 5
+B := (m,n) 7→ 5
·B := (m,n) 7→ A
=B:= {(A,B), (B,B)}
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First-order logic

8.12

Semantics of first-order logic

Definition

Value A(t) ∈ UA of term t inductively defined as follows:
For a constant symbol c, A(c) := cA.
For a variable x , A(x) := xA.
For a term f (t1, . . . , tk ), where f is k -ary function symbol and
t1, . . . , tk are terms,

A(f (t1, . . . , tk )) := fA(A(t1), . . . ,A(tk )).

Definition

Define the satisfaction relation A |= F (A satisfies F , or A is a
model of F ) by structural induction:

A |= P(t1, . . . , tk ) if and only if (A(t1), . . . ,A(tk )) ∈ PA.
A |= (F ∧G) if and only if A |= F and A |= G.
A |= (F ∨G) if and only if A |= F or A |= G.
A |= ¬F if and only if A 6|= F .
A |= ∃x F if and only if there exists a ∈ UA such that A[x 7→a] |= F .
A |= ∀x F if and only if A[x 7→a] |= F for all a ∈ UA.
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First-order logic

8.13

Semantics of first-order logic

Example

Let A be the natural σ-structure of number theory, then

A |= ∀x ∃y((x = (1 + 1) · y) ∨ (x = 1 + (1 + 1) · y)).

Every natural number is odd or even
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First-order logic

8.14

Semantics of first-order logic

Example

1 2

3 4

Undirected graph as σ-structure with one binary relation symbol
E interpreted as the edge relation.
Above graph represented by structure A with universe
UA = {1,2,3,4} and irreflexive symmetric binary relation

EA = {(1,2), (2,3), (3,4), (4,1), (2,1), (3,2), (4,3), (1,4)} .

Edge relation is irreflexive and symmetric:

∀x ¬E(x , x) ∧ ∀x ∀y (E(x , y)→ E(y , x)) .

Every pair of nodes are connected by a path of length 3:

∀x ∀y ∃z1 ∃z2 (E(x , z1) ∧ E(z1, z2) ∧ E(z2, y)).
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First-order logic

8.15

The relevance lemma

Lemma

Suppose that A and A′ are σ-assignments with the same universe
and identical interpretations of the predicate, function, and constant
symbols in σ. If A and A′ give the same interpretation to each
variable occurring free in some σ-formula F then A |= F if and only if
A′ |= F.

Proof.

By structural induction on terms and formulas.
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First-order logic

8.16

Validity, satisfiability, consequence, equivalence

Let F be a formula over a signature σ.
1 F ist valid if every σ-structure is a model of F , denoted |= F .
2 F is satisfiable if it has at least one model.

Let F1, . . . ,Fk ,G be formulas over the same signature.

G is a consequence of or entailed by F1, . . . ,Fk , denoted
F1, . . . ,Fk |= G, if every model of {F1, . . . ,Fk} is also model of G.

Two formulas F and G over the same signature are equivalent,
denoted F ≡ G, if they have the same models.
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First-order logic

8.17

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x P(a)

∃x (¬P(x) ∨ P(a))

P(a)→ ∃x P(x)

P(x)→ ∃x P(x)

∀x P(x)→ ∃x P(x)

∀x P(x) ∧ ¬∀y P(y)
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First-order logic

8.18

Exercise

V: valid S: satisfiable, but not valid U: unsatisfiable

V S U

∀x (P(x , x)→ ∃x∀y P(x , y))

∀x∀y (x = y → f (x) = f (y))

∀x∀y (f (x) = f (y)→ x = y)

∃x∃y∃z (f (x) = y ∧ f (x) = z ∧ y 6= z)
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First-order logic

8.19

Exercise

1 ∀x P(x) ∨ ∀x Q(x , x)
2 ∀x (P(x) ∨Q(x , x))
3 ∀x (∀zP(z) ∨ ∀y Q(x , y))

Y N

1 |= 2

2 |= 3

3 |= 1
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First-order logic

8.20

Exercise

1 ∃y∀x P(x , y)
2 ∀x∃y P(x , y)

Y N

1 |= 2

2 |= 1
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First-order logic

8.21

Exercise

Y N

∀x∀y F ≡ ∀y∀x F

∀x∃y F ≡ ∃x∀y F

∃x∃y F ≡ ∃y∃x F

∀x F ∨ ∀x G ≡ ∀x (F ∨G)

∀x F ∧ ∀x G ≡ ∀x (F ∧G)

∃x F ∨ ∃x G ≡ ∃x (F ∨G)

∃x F ∧ ∃x G ≡ ∃x (F ∧G)
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First-order logic

8.22

Predicate logic with equality

Predicate logic
+

distinguished predicate symbol “=” of arity 2.

Semantics: a structure A of predicate logic with equality always maps
the predicate symbol = to the identity relation:

A(=) = {(d ,d) | d ∈ UA} .
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First-order logic

8.23

Formalizing statements

What does it mean to “formalize” a statement in predicate logic?

It means to give
a formula F over a signature σ, and
a partial structure A assigning meaning to some symbols of σ,

such that the statement holds iff every σ structure that extends A is
a model of F .

Intuitively, the symbols interpreted in A are those that the formalizer
assumes are known by whoever is going to read the formula. F may
contain other symbols, but then F must define what they mean (see
next slides).

Typically, the formalizer chooses names for the symbols that suggest
their meaning. The structure is often omitted, because it is assumed
to be known (danger!).

We give different formalizations of the statement

There are infinitely many prime numbers
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First-order logic

8.24

Formalization I

If the meanings of “prime” and “‘greater-than” are known, then we can
take a signature with a unary predicate symbol Pr and a binary
predicate symbol >:

Formula F1: ∀x∃y (Pr(y) ∧ y > x)

Structure A1: UA1 = N

PrA1 = {n ∈ N | n is prime}

>A1 = {(n,m) ∈ N | n > m}

What if the meaning of “prime” is not known?
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First-order logic

8.25

Formalization II

If the meaning of “divides” is known, then we can take a signature
with a constant one and two binary predicate symbols >,Dv (we use
predicate logic with equality), and define “prime”:

Formula F2: ∀x Pr(x)↔ (∀y Dv(y , x)→ (y = x ∨ y = one))

→ ∀x∃y Pr(y) ∧ y > x

Structure A2: UA2 = N

DvA2 = {(n,n) ∈ N | n divides m}

>A2 = {(n,m) ∈ N | n > m}

We are now stating “ if we define prime numbers as . . . then there are
infinitely many prime numbers”.

The statement “there are infinitely many prime numbers” holds iff
every structure that extends A2 satisfies the formula.

What if the meaning of “divides” is not known?
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First-order logic

8.26

Formalization III

If the meaning of “product” is known , then we can take

Formula F3: ∀x ∀y Dv(x , y)↔ ∃z prod(x , z) = y

∧ ∀x Pr(x)↔ (∀y Dv(y , x)→ (y = x ∨ y = one))

→ ∀x∃y Pr(y) ∧ y > x

(the conjunction of the first two formulas implies the third)

Structure A3: UA3 = N

>A3 = {(n,m) ∈ N | n > m}

oneA3 = 1

prodA3
(n,m) = n ·m

What if the meaning of “product” is not known ?
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First-order logic

8.27

Formalization IV

If the meaning of “sum”, “successor”, “one” and “zero” is known, then
we can take

Formula F4: ∀x prod(x , zero) = zero

∧ ∀x∀y prod(x , succ(y)) = sum(prod(x , y), y)

∧ ∀x ∀y Dv(x , y)↔ ∃z prod(x , z) = y

∧ ∀x Pr(x)↔ (∀y Dv(y , x)→ (y = x ∨ y = one))

→ ∀x∃y (Pr(y) ∧ y > x)

Structure A4 only defines >, sum, succ,one, zero.

Observe however: prod is defined inductively. The definition is no
longer a macro, in the sense that we cannot produce an “equivalent”
formula without the symbol prod .

What if the meaning of “sum” is not known?
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8.27

Formalization IV

If the meaning of “sum”, “successor”, “one” and “zero” is known, then
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First-order logic

8.28

Formalization V

Formula F5: ∀x sum(x , zero) = x

∧ ∀x∀y sum(x , succ(y)) = succ(sum(x , y))

∧ ∀x prod(x , zero) = zero

∧ ∀x∀y prod(x , succ(y)) = sum(prod(x , y), y)

∧ ∀x ∀y (Div(x , y)↔ ∃z prod(x , z) = y)

∧ ∀x Pri(x)↔ (∀y Div(y , x)→ (y = x ∨ y = one))

→ ∀x∃y (Pri(y) ∧ y > x)

Structure A5 only defines >, succ,one, zero.

What if the meaning of ‘greater than” and “one” is not known?
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First-order logic

8.29

Formalization VI

Formula F6: one = succ(zero)

∧ ∀x∀y x > y ↔ ∃z ¬(z = zero) ∧ sum(y , z) = x

∧ ∀x sum(x , zero) = x

∧ ∀x∀y sum(x , succ(y)) = succ(sum(x , y))

∧ ∀x prod(x , zero) = zero

∧ ∀x∀y prod(x , succ(y)) = sum(prod(x , y), y)

∧ ∀x ∀y (Div(x , y)↔ ∃z prod(x , z) = y)

∧ ∀x Pri(x)↔ (∀y Div(y , x)→ (y = x ∨ y = one))

→ ∀x∃y (Pri(y) ∧ y > x)

Structure A6 only defines succ, zero.
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