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7.2

Overview

So far: propositional logic

Starting with the next lecture: predicate logic aka first-order logic

Later: reduce reasoning about first-order formula
to reasoning about infinite set of propositional formulas

Today: reduce reasoning about infinite sets of formulas
to reasoning about finite sets of formulas
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7.3

Partial assignments

A partial assignment is a function A : D → {0,1}, whose domain
D ⊆ {p1,p2, . . .} is set of variables dom(A).

A partial assignment A′ extends another one A when
dom(A) ⊆ dom(A′) and A(pi) = A′(pi) for all pi ∈ dom(A).

p

q q

r r r r

0 0 0 1 1 1 1 1
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Satisfiability of sets

A set S of formulas is satisfiable when there is an assignment that
makes every F ∈ S true. Otherwise S is unsatisfiable.

Satisfiable or unsatisfiable ?

S1 = {p1, ¬p1 ∨ p2, p1 ∨ ¬p2 ∨ p3, ¬p1 ∨ p2 ∨ ¬p3 ∨ p4, . . .}

S2 = {p1 ∨ p2, ¬p2 ∨ ¬p3, p3 ∨ p4, ¬p4 ∨ ¬p5, p5 ∨ p6, . . .}

S3 = {p1 ∨ p2, ¬p2 ∨ ¬p4, p3 ∨ p6,¬p4 ∨ ¬p8,p5 ∨ p10, . . .}

S4 = {¬p1} ∪ {pn → pn/2 | n ≥ 1 and even }

∪ {pn → p3n+1 | n ≥ 1 and odd } ∪ {p2235−1}

S1 is satisfied by setting all variables to 1.
S2 is satisfied by

A(pi) =

{
1 if i is odd
0 if i is even

S3 ? S4 ?
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The compactness theorem

Theorem (Compactness theorem)

A set of formulas S is satisfiable if and only if each finite subset of S is
satisfiable.
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Compactness theorem: proof

Let S be set of formulas with every finite subset satisfiable.

Call partial assignment A good if it satisfies any F ∈ S whose
only variables are in the domain.

There is good partial assignment on {p1, . . . ,pn} for any n:
up to equivalence, {F ∈ S | F uses only p1, . . . ,pn} is finite

Proof strategy: will construct good A0,A1,A2, . . .
with An+1 extending An and dom(An) = {p1, . . . ,pn}

While constructing, will maintain invariant:

there are infinitely many good extensions of An

Base case: dom(A0) = ∅
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Compactness theorem: proof

Induction step: suppose A0, . . . ,An satisfy invariant

Consider assignments extending An:

B0 = (An)[pn+1 7→0] B1 = (An)[pn+1 7→1]

Any proper extension of An extends B0 or B1

So one of B0 or B1 has infinitely many good extensions
Take that one to be An+1

There is assignment extending all An, namely A(pn) = An(pn)
It satisfies all formulas F in S:

if F uses variables {p1, . . . ,pn}, then An |= F , so A |= F
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Compactness theorem: comments

Proof of compactness theorem is nonconstructive
Does not give algorithm to construct a satisfying assignment,
merely guarantees that one exists

Nonconstructve proofs are not really that exotic:
For every infinite sequence a1,a2,a3, . . . of natural numbers there
exists an index i such that ai ≤ aj for every j .
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Compactness theorem: contrapositive

Compact Theorem, contrapositive: if a set of formulas is
unsatisfiable, then some finite subset is already unsatisfiable

Procedure to show that infinite set of formulas is unsatisfiable:

1 enumerate S = {F1,F2, . . .} by some algorithm

2 for each n, test whether {F1, . . . ,Fn} is unsatisfiable

3 if S unsatisfiable, will detect this after finite amount of time
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Compactness: application

Exercise: Suppose {Fn | n ∈ N} is an infinite set of formulas such
that {¬Fn | n ∈ N} is unsatisfiable and Fn → Fn+1 is valid for all n ∈ N.
Show that some Fn is valid.

1 Compactness: n with ¬F1 ∧ ¬F2 ∧ . . . ∧ ¬Fn unsatisfiable

2 De Morgan: F1 ∨ F2 ∨ . . . ∨ Fn is valid

3 Resolve F1 ∨ F2 ∨ . . . ∨ Fn and F1 → F2: see |= F2 ∨ . . . ∨ Fn

4 Induction: Fn is valid.
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Graph colouring

Might as well make life even more difficult:

Graph is k -colourable we can colour each vertex with {1, . . . , k}
such that neighbours get different colours.

•
•

• •

•
•

•

• •

•

Theorem:
If every finite subgraph of G is k -colourable, so is G itself.
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Graph colouring: proof

Suppose all finite subgraphs of G are k -colourable.

Variable pv ,i : “vertex v has colour i”

Constraints S := {Fv ,Gv | v ∈ V} ∪ {Hu,v | (u, v) ∈ E}:

Vertex v has ≥ 1 colour: Fv :=
∨k

i=1 pv,i

Vertex v has ≤ 1 colour: Gv :=
∧k

i=1

∧k
j=1 ¬pv,i ∨ ¬pv,j

Neighbours u, v different colour: Hu,v :=
∧k

i=1 ¬pu,i ∨ ¬pv,i

S is satisfiable iff G is k -colourable

Apply Compactness Theorem
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Summary: propositional logic

Syntax
DNF, CNF, 2-CNF, 3-CNF
Horn formulas

Semantics
assignments
truth tables

Satisfiability: constraint problems

Algebraic reasoning: substitution

Polynomial-time algorithms for Horn and 2-CNF formulas,
WalkSAT
Resolution

Sound and complete
DPLL algorithm

Compactness: nonconstructive
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