Lecture 7
 The compactness theorem

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

Overview

- So far: propositional logic
- Starting with the next lecture: predicate logic aka first-order logic
- Later: reduce reasoning about first-order formula to reasoning about infinite set of propositional formulas
- Today: reduce reasoning about infinite sets of formulas to reasoning about finite sets of formulas

Partial assignments

A partial assignment is a function $\mathcal{A}: D \rightarrow\{0,1\}$, whose domain $D \subseteq\left\{p_{1}, p_{2}, \ldots\right\}$ is set of variables $\operatorname{dom}(\mathcal{A})$.

A partial assignment \mathcal{A}^{\prime} extends another one \mathcal{A} when $\operatorname{dom}(\mathcal{A}) \subseteq \operatorname{dom}\left(\mathcal{A}^{\prime}\right)$ and $\mathcal{A}\left(p_{i}\right)=\mathcal{A}^{\prime}\left(p_{i}\right)$ for all $p_{i} \in \operatorname{dom}(\mathcal{A})$.

Satisfiability of sets

A set \mathcal{S} of formulas is satisfiable when there is an assignment that makes every $F \in \mathcal{S}$ true. Otherwise \mathcal{S} is unsatisfiable.

Satisfiability of sets

A set \mathcal{S} of formulas is satisfiable when there is an assignment that makes every $F \in \mathcal{S}$ true. Otherwise \mathcal{S} is unsatisfiable.

Satisfiable or unsatisfiable?

$$
\begin{aligned}
\mathcal{S}_{1}= & \left\{p_{1}, \neg p_{1} \vee p_{2}, p_{1} \vee \neg p_{2} \vee p_{3}, \neg p_{1} \vee p_{2} \vee \neg p_{3} \vee p_{4}, \ldots\right\} \\
\mathcal{S}_{2}= & \left\{p_{1} \vee p_{2}, \neg p_{2} \vee \neg p_{3}, p_{3} \vee p_{4}, \neg p_{4} \vee \neg p_{5}, p_{5} \vee p_{6}, \ldots\right\} \\
\mathcal{S}_{3}= & \left\{p_{1} \vee p_{2}, \neg p_{2} \vee \neg p_{4}, p_{3} \vee p_{6}, \neg p_{4} \vee \neg p_{8}, p_{5} \vee p_{10}, \ldots\right\} \\
\mathcal{S}_{4}= & \left\{\neg p_{1}\right\} \cup\left\{p_{n} \rightarrow p_{n / 2} \mid n \geq 1 \text { and even }\right\} \\
& \cup\left\{p_{n} \rightarrow p_{3 n+1} \mid n \geq 1 \text { and odd }\right\} \cup\left\{p_{2^{235}-1}\right\}
\end{aligned}
$$

Satisfiability of sets

A set \mathcal{S} of formulas is satisfiable when there is an assignment that makes every $F \in \mathcal{S}$ true. Otherwise \mathcal{S} is unsatisfiable.

Satisfiable or unsatisfiable?

$$
\begin{aligned}
\mathcal{S}_{1}= & \left\{p_{1}, \neg p_{1} \vee p_{2}, p_{1} \vee \neg p_{2} \vee p_{3}, \neg p_{1} \vee p_{2} \vee \neg p_{3} \vee p_{4}, \ldots\right\} \\
\mathcal{S}_{2}= & \left\{p_{1} \vee p_{2}, \neg p_{2} \vee \neg p_{3}, p_{3} \vee p_{4}, \neg p_{4} \vee \neg p_{5}, p_{5} \vee p_{6}, \ldots\right\} \\
\mathcal{S}_{3}= & \left\{p_{1} \vee p_{2}, \neg p_{2} \vee \neg p_{4}, p_{3} \vee p_{6}, \neg p_{4} \vee \neg p_{8}, p_{5} \vee p_{10}, \ldots\right\} \\
\mathcal{S}_{4}= & \left\{\neg p_{1}\right\} \cup\left\{p_{n} \rightarrow p_{n / 2} \mid n \geq 1 \text { and even }\right\} \\
& \cup\left\{p_{n} \rightarrow p_{3 n+1} \mid n \geq 1 \text { and odd }\right\} \cup\left\{p_{2^{235}-1}\right\}
\end{aligned}
$$

\mathcal{S}_{1} is satisfied by setting all variables to 1.

Satisfiability of sets

A set \mathcal{S} of formulas is satisfiable when there is an assignment that makes every $F \in \mathcal{S}$ true. Otherwise \mathcal{S} is unsatisfiable.

Satisfiable or unsatisfiable?

$$
\begin{aligned}
\mathcal{S}_{1}= & \left\{p_{1}, \neg p_{1} \vee p_{2}, p_{1} \vee \neg p_{2} \vee p_{3}, \neg p_{1} \vee p_{2} \vee \neg p_{3} \vee p_{4}, \ldots\right\} \\
\mathcal{S}_{2}= & \left\{p_{1} \vee p_{2}, \neg p_{2} \vee \neg p_{3}, p_{3} \vee p_{4}, \neg p_{4} \vee \neg p_{5}, p_{5} \vee p_{6}, \ldots\right\} \\
\mathcal{S}_{3}= & \left\{p_{1} \vee p_{2}, \neg p_{2} \vee \neg p_{4}, p_{3} \vee p_{6}, \neg p_{4} \vee \neg p_{8}, p_{5} \vee p_{10}, \ldots\right\} \\
\mathcal{S}_{4}= & \left\{\neg p_{1}\right\} \cup\left\{p_{n} \rightarrow p_{n / 2} \mid n \geq 1 \text { and even }\right\} \\
& \cup\left\{p_{n} \rightarrow p_{3 n+1} \mid n \geq 1 \text { and odd }\right\} \cup\left\{p_{2^{235}-1}\right\}
\end{aligned}
$$

\mathcal{S}_{1} is satisfied by setting all variables to 1 .
\mathcal{S}_{2} is satisfied by

$$
\mathcal{A}\left(p_{i}\right)= \begin{cases}1 & \text { if } i \text { is odd } \\ 0 & \text { if } i \text { is even }\end{cases}
$$

Satisfiability of sets

A set \mathcal{S} of formulas is satisfiable when there is an assignment that makes every $F \in \mathcal{S}$ true. Otherwise \mathcal{S} is unsatisfiable.

Satisfiable or unsatisfiable?

$$
\begin{aligned}
\mathcal{S}_{1}= & \left\{p_{1}, \neg p_{1} \vee p_{2}, p_{1} \vee \neg p_{2} \vee p_{3}, \neg p_{1} \vee p_{2} \vee \neg p_{3} \vee p_{4}, \ldots\right\} \\
\mathcal{S}_{2}= & \left\{p_{1} \vee p_{2}, \neg p_{2} \vee \neg p_{3}, p_{3} \vee p_{4}, \neg p_{4} \vee \neg p_{5}, p_{5} \vee p_{6}, \ldots\right\} \\
\mathcal{S}_{3}= & \left\{p_{1} \vee p_{2}, \neg p_{2} \vee \neg p_{4}, p_{3} \vee p_{6}, \neg p_{4} \vee \neg p_{8}, p_{5} \vee p_{10}, \ldots\right\} \\
\mathcal{S}_{4}= & \left\{\neg p_{1}\right\} \cup\left\{p_{n} \rightarrow p_{n / 2} \mid n \geq 1 \text { and even }\right\} \\
& \cup\left\{p_{n} \rightarrow p_{3 n+1} \mid n \geq 1 \text { and odd }\right\} \cup\left\{p_{2^{235}-1}\right\}
\end{aligned}
$$

\mathcal{S}_{1} is satisfied by setting all variables to 1 .
\mathcal{S}_{2} is satisfied by

$$
\mathcal{A}\left(p_{i}\right)= \begin{cases}1 & \text { if } i \text { is odd } \\ 0 & \text { if } i \text { is even }\end{cases}
$$

$\mathcal{S}_{3} ? \mathcal{S}_{4} ?$

The compactness theorem

Theorem (Compactness theorem)
A set of formulas \mathcal{S} is satisfiable if and only if each finite subset of \mathcal{S} is satisfiable.

Compactness theorem: proof

Let \mathcal{S} be set of formulas with every finite subset satisfiable.

Compactness theorem: proof

Let \mathcal{S} be set of formulas with every finite subset satisfiable.

- Call partial assignment \mathcal{A} good if it satisfies any $F \in \mathcal{S}$ whose only variables are in the domain.

Compactness theorem: proof

Let \mathcal{S} be set of formulas with every finite subset satisfiable.

- Call partial assignment \mathcal{A} good if it satisfies any $F \in \mathcal{S}$ whose only variables are in the domain.
- There is good partial assignment on $\left\{p_{1}, \ldots, p_{n}\right\}$ for any n : up to equivalence, $\left\{F \in \mathcal{S} \mid F\right.$ uses only $\left.p_{1}, \ldots, p_{n}\right\}$ is finite

Compactness theorem: proof

Let \mathcal{S} be set of formulas with every finite subset satisfiable.

- Call partial assignment \mathcal{A} good if it satisfies any $F \in \mathcal{S}$ whose only variables are in the domain.
- There is good partial assignment on $\left\{p_{1}, \ldots, p_{n}\right\}$ for any n : up to equivalence, $\left\{F \in \mathcal{S} \mid F\right.$ uses only $\left.p_{1}, \ldots, p_{n}\right\}$ is finite
- Proof strategy: will construct good $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ with \mathcal{A}_{n+1} extending \mathcal{A}_{n} and $\operatorname{dom}\left(\mathcal{A}_{n}\right)=\left\{p_{1}, \ldots, p_{n}\right\}$

Compactness theorem: proof

Let \mathcal{S} be set of formulas with every finite subset satisfiable.

- Call partial assignment \mathcal{A} good if it satisfies any $F \in \mathcal{S}$ whose only variables are in the domain.
- There is good partial assignment on $\left\{p_{1}, \ldots, p_{n}\right\}$ for any n : up to equivalence, $\left\{F \in \mathcal{S} \mid F\right.$ uses only $\left.p_{1}, \ldots, p_{n}\right\}$ is finite
- Proof strategy: will construct good $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ with \mathcal{A}_{n+1} extending \mathcal{A}_{n} and $\operatorname{dom}\left(\mathcal{A}_{n}\right)=\left\{p_{1}, \ldots, p_{n}\right\}$
- While constructing, will maintain invariant:
there are infinitely many good extensions of \mathcal{A}_{n}

Compactness theorem: proof

Let \mathcal{S} be set of formulas with every finite subset satisfiable.

- Call partial assignment \mathcal{A} good if it satisfies any $F \in \mathcal{S}$ whose only variables are in the domain.
- There is good partial assignment on $\left\{p_{1}, \ldots, p_{n}\right\}$ for any n : up to equivalence, $\left\{F \in \mathcal{S} \mid F\right.$ uses only $\left.p_{1}, \ldots, p_{n}\right\}$ is finite
- Proof strategy: will construct good $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ with \mathcal{A}_{n+1} extending \mathcal{A}_{n} and $\operatorname{dom}\left(\mathcal{A}_{n}\right)=\left\{p_{1}, \ldots, p_{n}\right\}$
- While constructing, will maintain invariant:
there are infinitely many good extensions of \mathcal{A}_{n}
- Base case: $\operatorname{dom}\left(\mathcal{A}_{0}\right)=\emptyset$

Compactness theorem: proof

Induction step: suppose $\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}$ satisfy invariant

Compactness theorem: proof

Induction step: suppose $\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}$ satisfy invariant

- Consider assignments extending \mathcal{A}_{n} :

$$
\mathcal{B}_{0}=\left(\mathcal{A}_{n}\right)_{\left[p_{n+1} \mapsto 0\right]} \quad \mathcal{B}_{1}=\left(\mathcal{A}_{n}\right)_{\left[p_{n+1} \mapsto 1\right]}
$$

Any proper extension of \mathcal{A}_{n} extends \mathcal{B}_{0} or \mathcal{B}_{1}

Compactness theorem: proof

Induction step: suppose $\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}$ satisfy invariant

- Consider assignments extending \mathcal{A}_{n} :

$$
\mathcal{B}_{0}=\left(\mathcal{A}_{n}\right)_{\left[p_{n+1} \mapsto 0\right]} \quad \mathcal{B}_{1}=\left(\mathcal{A}_{n}\right)_{\left[p_{n+1} \mapsto 1\right]}
$$

Any proper extension of \mathcal{A}_{n} extends \mathcal{B}_{0} or \mathcal{B}_{1}

- So one of \mathcal{B}_{0} or \mathcal{B}_{1} has infinitely many good extensions Take that one to be \mathcal{A}_{n+1}

Compactness theorem: proof

Induction step: suppose $\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}$ satisfy invariant

- Consider assignments extending \mathcal{A}_{n} :

$$
\mathcal{B}_{0}=\left(\mathcal{A}_{n}\right)_{\left[p_{n+1} \mapsto 0\right]} \quad \mathcal{B}_{1}=\left(\mathcal{A}_{n}\right)_{\left[p_{n+1} \mapsto 1\right]}
$$

Any proper extension of \mathcal{A}_{n} extends \mathcal{B}_{0} or \mathcal{B}_{1}

- So one of \mathcal{B}_{0} or \mathcal{B}_{1} has infinitely many good extensions Take that one to be \mathcal{A}_{n+1}

There is assignment extending all \mathcal{A}_{n}, namely $\mathcal{A}\left(p_{n}\right)=\mathcal{A}_{n}\left(p_{n}\right)$

Compactness theorem: proof

Induction step: suppose $\mathcal{A}_{0}, \ldots, \mathcal{A}_{n}$ satisfy invariant

- Consider assignments extending \mathcal{A}_{n} :

$$
\mathcal{B}_{0}=\left(\mathcal{A}_{n}\right)_{\left[p_{n+1} \mapsto 0\right]} \quad \mathcal{B}_{1}=\left(\mathcal{A}_{n}\right)_{\left[p_{n+1} \mapsto 1\right]}
$$

Any proper extension of \mathcal{A}_{n} extends \mathcal{B}_{0} or \mathcal{B}_{1}

- So one of \mathcal{B}_{0} or \mathcal{B}_{1} has infinitely many good extensions Take that one to be \mathcal{A}_{n+1}

There is assignment extending all \mathcal{A}_{n}, namely $\mathcal{A}\left(p_{n}\right)=\mathcal{A}_{n}\left(p_{n}\right)$ It satisfies all formulas F in S :

- if F uses variables $\left\{p_{1}, \ldots, p_{n}\right\}$, then $\mathcal{A}_{n} \models F$, so $\mathcal{A} \models F$

Compactness theorem: comments

Proof of compactness theorem is nonconstructive Does not give algorithm to construct a satisfying assignment, merely guarantees that one exists

Nonconstructve proofs are not really that exotic:
For every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ of natural numbers there exists an index i such that $a_{i} \leq a_{j}$ for every j.

Compactness theorem: contrapositive

Compact Theorem, contrapositive: if a set of formulas is unsatisfiable, then some finite subset is already unsatisfiable

Procedure to show that infinite set of formulas is unsatisfiable:
(1) enumerate $\mathcal{S}=\left\{F_{1}, F_{2}, \ldots\right\}$ by some algorithm
(2) for each n, test whether $\left\{F_{1}, \ldots, F_{n}\right\}$ is unsatisfiable
(3) if \mathcal{S} unsatisfiable, will detect this after finite amount of time

Compactness: application

Exercise: Suppose $\left\{F_{n} \mid n \in \mathbb{N}\right\}$ is an infinite set of formulas such that $\left\{\neg F_{n} \mid n \in \mathbb{N}\right\}$ is unsatisfiable and $F_{n} \rightarrow F_{n+1}$ is valid for all $n \in \mathbb{N}$. Show that some F_{n} is valid.

Compactness: application

Exercise: Suppose $\left\{F_{n} \mid n \in \mathbb{N}\right\}$ is an infinite set of formulas such that $\left\{\neg F_{n} \mid n \in \mathbb{N}\right\}$ is unsatisfiable and $F_{n} \rightarrow F_{n+1}$ is valid for all $n \in \mathbb{N}$. Show that some F_{n} is valid.
(1) Compactness: n with $\neg F_{1} \wedge \neg F_{2} \wedge \ldots \wedge \neg F_{n}$ unsatisfiable
(2) De Morgan: $F_{1} \vee F_{2} \vee \ldots \vee F_{n}$ is valid
(3) Resolve $F_{1} \vee F_{2} \vee \ldots \vee F_{n}$ and $F_{1} \rightarrow F_{2}$: see $\models F_{2} \vee \ldots \vee F_{n}$
(4) Induction: F_{n} is valid.

Graph colouring

Might as well make life even more difficult:

- Graph is k-colourable we can colour each vertex with $\{1, \ldots, k\}$ such that neighbours get different colours.

Graph colouring

Might as well make life even more difficult:

- Graph is k-colourable we can colour each vertex with $\{1, \ldots, k\}$ such that neighbours get different colours.

- Theorem:

If every finite subgraph of \mathcal{G} is k-colourable, so is \mathcal{G} itself.

Graph colouring: proof

Suppose all finite subgraphs of \mathcal{G} are k-colourable.

- Variable $p_{v, i}$: "vertex v has colour i "
- Constraints $\mathcal{S}:=\left\{F_{v}, G_{v} \mid v \in V\right\} \cup\left\{H_{u, v} \mid(u, v) \in E\right\}$:
- Vertex v has ≥ 1 colour: $F_{v}:=\bigvee_{i=1}^{k} p_{v, i}$
- Vertex v has ≤ 1 colour: $G_{v}:=\bigwedge_{i=1}^{k} \Lambda_{j=1}^{k} \neg p_{v, i} \vee \neg p_{v, j}$
- Neighbours u, v different colour: $H_{u, v}:=\bigwedge_{i=1}^{k} \neg p_{u, i} \vee \neg p_{v, i}$
- \mathcal{S} is satisfiable iff \mathcal{G} is k-colourable
- Apply Compactness Theorem

Summary: propositional logic

- Syntax
- DNF, CNF, 2-CNF, 3-CNF
- Horn formulas
- Semantics
- assignments
- truth tables
- Satisfiability: constraint problems
- Algebraic reasoning: substitution
- Polynomial-time algorithms for Horn and 2-CNF formulas, WalkSAT
- Resolution
- Sound and complete
- DPLL algorithm
- Compactness: nonconstructive

