Lecture 7 The compactness theorem

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

Overview

- So far: propositional logic
- Starting with the next lecture: predicate logic aka first-order logic
- Later: reduce reasoning about first-order formula to reasoning about infinite set of propositional formulas
- Today: reduce reasoning about infinite sets of formulas to reasoning about finite sets of formulas

Partial assignments

A partial assignment is a function $\mathcal{A}: D \to \{0, 1\}$, whose domain $D \subseteq \{p_1, p_2, \ldots\}$ is set of variables dom(\mathcal{A}).

A partial assignment \mathcal{A}' extends another one \mathcal{A} when $\operatorname{dom}(\mathcal{A}) \subseteq \operatorname{dom}(\mathcal{A}')$ and $\mathcal{A}(p_i) = \mathcal{A}'(p_i)$ for all $p_i \in \operatorname{dom}(\mathcal{A})$.

A set S of formulas is **satisfiable** when there is an assignment that makes every $F \in S$ true. Otherwise S is **unsatisfiable**.

A set S of formulas is **satisfiable** when there is an assignment that makes every $F \in S$ true. Otherwise S is **unsatisfiable**.

Satisfiable or unsatisfiable ?

$$\begin{split} \mathcal{S}_{1} &= \{p_{1}, \neg p_{1} \lor p_{2}, p_{1} \lor \neg p_{2} \lor p_{3}, \neg p_{1} \lor p_{2} \lor \neg p_{3} \lor p_{4}, \ldots\} \\ \mathcal{S}_{2} &= \{p_{1} \lor p_{2}, \neg p_{2} \lor \neg p_{3}, p_{3} \lor p_{4}, \neg p_{4} \lor \neg p_{5}, p_{5} \lor p_{6}, \ldots\} \\ \mathcal{S}_{3} &= \{p_{1} \lor p_{2}, \neg p_{2} \lor \neg p_{4}, p_{3} \lor p_{6}, \neg p_{4} \lor \neg p_{8}, p_{5} \lor p_{10}, \ldots\} \\ \mathcal{S}_{4} &= \{\neg p_{1}\} \cup \{p_{n} \to p_{n/2} \mid n \ge 1 \text{ and even } \} \\ & \cup \{p_{n} \to p_{3n+1} \mid n \ge 1 \text{ and odd } \} \cup \{p_{2^{235}-1}\} \end{split}$$

A set S of formulas is **satisfiable** when there is an assignment that makes every $F \in S$ true. Otherwise S is **unsatisfiable**.

Satisfiable or unsatisfiable ?

$$\begin{split} \mathcal{S}_{1} &= \{p_{1}, \neg p_{1} \lor p_{2}, p_{1} \lor \neg p_{2} \lor p_{3}, \neg p_{1} \lor p_{2} \lor \neg p_{3} \lor p_{4}, \ldots\} \\ \mathcal{S}_{2} &= \{p_{1} \lor p_{2}, \neg p_{2} \lor \neg p_{3}, p_{3} \lor p_{4}, \neg p_{4} \lor \neg p_{5}, p_{5} \lor p_{6}, \ldots\} \\ \mathcal{S}_{3} &= \{p_{1} \lor p_{2}, \neg p_{2} \lor \neg p_{4}, p_{3} \lor p_{6}, \neg p_{4} \lor \neg p_{8}, p_{5} \lor p_{10}, \ldots\} \\ \mathcal{S}_{4} &= \{\neg p_{1}\} \cup \{p_{n} \to p_{n/2} \mid n \ge 1 \text{ and even } \} \\ & \cup \{p_{n} \to p_{3n+1} \mid n \ge 1 \text{ and odd } \} \cup \{p_{2^{235}-1}\} \end{split}$$

 \mathcal{S}_1 is satisfied by setting all variables to 1.

A set S of formulas is **satisfiable** when there is an assignment that makes every $F \in S$ true. Otherwise S is **unsatisfiable**.

Satisfiable or unsatisfiable ?

$$\begin{split} \mathcal{S}_{1} &= \{p_{1}, \neg p_{1} \lor p_{2}, p_{1} \lor \neg p_{2} \lor p_{3}, \neg p_{1} \lor p_{2} \lor \neg p_{3} \lor p_{4}, \ldots\} \\ \mathcal{S}_{2} &= \{p_{1} \lor p_{2}, \neg p_{2} \lor \neg p_{3}, p_{3} \lor p_{4}, \neg p_{4} \lor \neg p_{5}, p_{5} \lor p_{6}, \ldots\} \\ \mathcal{S}_{3} &= \{p_{1} \lor p_{2}, \neg p_{2} \lor \neg p_{4}, p_{3} \lor p_{6}, \neg p_{4} \lor \neg p_{8}, p_{5} \lor p_{10}, \ldots\} \\ \mathcal{S}_{4} &= \{\neg p_{1}\} \cup \{p_{n} \to p_{n/2} \mid n \ge 1 \text{ and even }\} \\ & \cup \{p_{n} \to p_{3n+1} \mid n \ge 1 \text{ and odd }\} \cup \{p_{2^{235}-1}\} \end{split}$$

 \mathcal{S}_1 is satisfied by setting all variables to 1. \mathcal{S}_2 is satisfied by

$$\mathcal{A}(p_i) = \left\{egin{array}{cc} 1 & ext{if } i ext{ is odd} \ 0 & ext{if } i ext{ is even} \end{array}
ight.$$

A set S of formulas is **satisfiable** when there is an assignment that makes every $F \in S$ true. Otherwise S is **unsatisfiable**.

Satisfiable or unsatisfiable ?

$$\begin{split} \mathcal{S}_{1} &= \{p_{1}, \neg p_{1} \lor p_{2}, p_{1} \lor \neg p_{2} \lor p_{3}, \neg p_{1} \lor p_{2} \lor \neg p_{3} \lor p_{4}, \ldots\} \\ \mathcal{S}_{2} &= \{p_{1} \lor p_{2}, \neg p_{2} \lor \neg p_{3}, p_{3} \lor p_{4}, \neg p_{4} \lor \neg p_{5}, p_{5} \lor p_{6}, \ldots\} \\ \mathcal{S}_{3} &= \{p_{1} \lor p_{2}, \neg p_{2} \lor \neg p_{4}, p_{3} \lor p_{6}, \neg p_{4} \lor \neg p_{8}, p_{5} \lor p_{10}, \ldots\} \\ \mathcal{S}_{4} &= \{\neg p_{1}\} \cup \{p_{n} \to p_{n/2} \mid n \ge 1 \text{ and even } \} \\ & \cup \{p_{n} \to p_{3n+1} \mid n \ge 1 \text{ and odd } \} \cup \{p_{2^{235}-1}\} \end{split}$$

 \mathcal{S}_1 is satisfied by setting all variables to 1. \mathcal{S}_2 is satisfied by

$$\mathcal{A}(p_i) = \left\{ egin{array}{cc} 1 & ext{if } i ext{ is odd} \\ 0 & ext{if } i ext{ is even} \end{array}
ight.$$

 $S_3 ? S_4 ?$

Theorem (Compactness theorem)

A set of formulas S is satisfiable if and only if each finite subset of S is satisfiable.

Let ${\mathcal S}$ be set of formulas with every finite subset satisfiable.

Let \mathcal{S} be set of formulas with every finite subset satisfiable.

 Call partial assignment A good if it satisfies any F ∈ S whose only variables are in the domain.

Let \mathcal{S} be set of formulas with every finite subset satisfiable.

- Call partial assignment A good if it satisfies any F ∈ S whose only variables are in the domain.
- There is good partial assignment on {p₁,..., p_n} for any n: up to equivalence, {F ∈ S | F uses only p₁,..., p_n} is finite

Let S be set of formulas with every finite subset satisfiable.

- Call partial assignment A good if it satisfies any F ∈ S whose only variables are in the domain.
- There is good partial assignment on {p₁,..., p_n} for any n: up to equivalence, {F ∈ S | F uses only p₁,..., p_n} is finite
- Proof strategy: will construct good A₀, A₁, A₂,...
 with A_{n+1} extending A_n and dom(A_n) = {p₁,..., p_n}

Let S be set of formulas with every finite subset satisfiable.

- Call partial assignment A good if it satisfies any F ∈ S whose only variables are in the domain.
- There is good partial assignment on {p₁,..., p_n} for any n: up to equivalence, {F ∈ S | F uses only p₁,..., p_n} is finite
- Proof strategy: will construct good A₀, A₁, A₂,...
 with A_{n+1} extending A_n and dom(A_n) = {p₁,..., p_n}
- While constructing, will maintain invariant:

there are infinitely many good extensions of A_n

Let S be set of formulas with every finite subset satisfiable.

- Call partial assignment A good if it satisfies any F ∈ S whose only variables are in the domain.
- There is good partial assignment on {p₁,..., p_n} for any n: up to equivalence, {F ∈ S | F uses only p₁,..., p_n} is finite
- Proof strategy: will construct good A₀, A₁, A₂,...
 with A_{n+1} extending A_n and dom(A_n) = {p₁,..., p_n}
- While constructing, will maintain invariant:

there are infinitely many good extensions of A_n

• Base case: $dom(\mathcal{A}_0) = \emptyset$

Induction step: suppose A_0, \ldots, A_n satisfy invariant

Induction step: suppose A_0, \ldots, A_n satisfy invariant

• Consider assignments extending A_n :

$$\mathcal{B}_0 = (\mathcal{A}_n)_{[p_{n+1}\mapsto 0]} \qquad \qquad \mathcal{B}_1 = (\mathcal{A}_n)_{[p_{n+1}\mapsto 1]}$$

Any proper extension of A_n extends B_0 or B_1

Induction step: suppose A_0, \ldots, A_n satisfy invariant

• Consider assignments extending A_n :

$$\mathcal{B}_0 = (\mathcal{A}_n)_{[p_{n+1}\mapsto 0]} \qquad \qquad \mathcal{B}_1 = (\mathcal{A}_n)_{[p_{n+1}\mapsto 1]}$$

Any proper extension of A_n extends B_0 or B_1

 So one of B₀ or B₁ has infinitely many good extensions Take that one to be A_{n+1}

Induction step: suppose A_0, \ldots, A_n satisfy invariant

• Consider assignments extending A_n :

$$\mathcal{B}_0 = (\mathcal{A}_n)_{[p_{n+1}\mapsto 0]} \qquad \qquad \mathcal{B}_1 = (\mathcal{A}_n)_{[p_{n+1}\mapsto 1]}$$

Any proper extension of A_n extends B_0 or B_1

 So one of B₀ or B₁ has infinitely many good extensions Take that one to be A_{n+1}

There is assignment extending all A_n , namely $A(p_n) = A_n(p_n)$

Induction step: suppose A_0, \ldots, A_n satisfy invariant

• Consider assignments extending A_n :

$$\mathcal{B}_0 = (\mathcal{A}_n)_{[p_{n+1}\mapsto 0]} \qquad \qquad \mathcal{B}_1 = (\mathcal{A}_n)_{[p_{n+1}\mapsto 1]}$$

Any proper extension of A_n extends B_0 or B_1

 So one of B₀ or B₁ has infinitely many good extensions Take that one to be A_{n+1}

There is assignment extending all A_n , namely $A(p_n) = A_n(p_n)$ It satisfies all formulas F in S:

• if *F* uses variables $\{p_1, \ldots, p_n\}$, then $A_n \models F$, so $A \models F$

Proof of compactness theorem is **nonconstructive** Does not give algorithm to construct a satisfying assignment, merely guarantees that one exists

Nonconstructve proofs are not really that exotic: For every infinite sequence a_1, a_2, a_3, \ldots of natural numbers there exists an index *i* such that $a_i \leq a_i$ for every *j*. **Compact Theorem, contrapositive**: if a set of formulas is unsatisfiable, then some finite subset is already unsatisfiable

Procedure to show that infinite set of formulas is unsatisfiable:

- enumerate $S = \{F_1, F_2, \ldots\}$ by some algorithm
- 2 for each *n*, test whether $\{F_1, \ldots, F_n\}$ is unsatisfiable
- If S unsatisfiable, will detect this after finite amount of time

Compactness: application

Exercise: Suppose $\{F_n \mid n \in \mathbb{N}\}$ is an infinite set of formulas such that $\{\neg F_n \mid n \in \mathbb{N}\}$ is unsatisfiable and $F_n \rightarrow F_{n+1}$ is valid for all $n \in \mathbb{N}$. Show that some F_n is valid.

Compactness: application

Exercise: Suppose $\{F_n \mid n \in \mathbb{N}\}$ is an infinite set of formulas such that $\{\neg F_n \mid n \in \mathbb{N}\}$ is unsatisfiable and $F_n \rightarrow F_{n+1}$ is valid for all $n \in \mathbb{N}$. Show that some F_n is valid.

- **Ompactness**: *n* with $\neg F_1 \land \neg F_2 \land \ldots \land \neg F_n$ unsatisfiable
- **2** De Morgan: $F_1 \vee F_2 \vee \ldots \vee F_n$ is valid
- **3 Resolve** $F_1 \lor F_2 \lor \ldots \lor F_n$ and $F_1 \to F_2$: see $\models F_2 \lor \ldots \lor F_n$
- **O Induction**: F_n is valid.

Graph colouring

Might as well make life even more difficult:

• Graph is *k*-colourable we can colour each vertex with {1,...,*k*} such that neighbours get different colours.

Graph colouring

Might as well make life even more difficult:

• Graph is *k*-colourable we can colour each vertex with {1,...,*k*} such that neighbours get different colours.

• Theorem:

If every finite subgraph of G is *k*-colourable, so is G itself.

Graph colouring: proof

Suppose all finite subgraphs of G are *k*-colourable.

- Variable $p_{v,i}$: "vertex v has colour i"
- Constraints $S := \{F_v, G_v \mid v \in V\} \cup \{H_{u,v} \mid (u,v) \in E\}$:
 - Vertex v has \geq 1 colour: $F_v := \bigvee_{i=1}^k p_{v,i}$
 - Vertex v has ≤ 1 colour: $G_v := \bigwedge_{i=1}^k \bigwedge_{j=1}^k \neg p_{v,i} \lor \neg p_{v,j}$
 - Neighbours u, v different colour: $H_{u,v} := \bigwedge_{i=1}^{k} \neg p_{u,i} \lor \neg p_{v,i}$
- S is satisfiable iff G is *k*-colourable
- Apply Compactness Theorem

Summary: propositional logic

- Syntax
 - DNF, CNF, 2-CNF, 3-CNF
 - Horn formulas
- Semantics
 - assignments
 - truth tables
- Satisfiability: constraint problems
- Algebraic reasoning: substitution
- Polynomial-time algorithms for Horn and 2-CNF formulas, WalkSAT
- Resolution
 - Sound and complete
 - DPLL algorithm
- Compactness: nonconstructive