Lecture 7
The compactness theorem

Dr Christoph Haase
University of Oxford

(with small changes by Javier Esparza)
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Overview

@ So far: propositional logic
@ Starting with the next lecture: predicate logic aka first-order logic

@ Later: reduce reasoning about first-order formula
to reasoning about infinite set of propositional formulas

@ Today: reduce reasoning about infinite sets of formulas
to reasoning about finite sets of formulas
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Partial assignments

A partial assignment is a function A: D — {0, 1}, whose domain
D C {p1,p2,...} is set of variables dom(.A).

A partial assignment A’ extends another one A when
dom(A) C dom(A’) and A(p;) = A'(p;) for all p; € dom(.A).
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Satisfiability of sets

A set S of formulas is satisfiable when there is an assignment that
makes every F € S true. Otherwise S is unsatisfiable.

4/13



Satisfiability of sets

A set S of formulas is satisfiable when there is an assignment that
makes every F € S true. Otherwise S is unsatisfiable.

Satisfiable or unsatisfiable ?

Sy
So
S3
Sa

{p1, =p1V P2, P11V P2V p3, 2p1V P2V —P3V Ps, ...}
{p1V P2, =P2V —P3, P3V Pa, =PaV —Ps, PsV Pe, ...}
{P1V P2, P2V —=pa, P3V Ps,~PsV =P8, Ps5 \V Pio, -}
{-p1} U {pn — pn/2 | n>1andeven }

U {pn — P3n+1 [ n>1andodd } U {pozs_1}



Satisfiability of sets

A set S of formulas is satisfiable when there is an assignment that
makes every F € S true. Otherwise S is unsatisfiable.

Satisfiable or unsatisfiable ?
St = {p1, "p1V P2, p1V P2V P3, P11V P2V P3VPs, ...}
So = {p1Vp2, "P2V -p3, P3V Pa, ~PaV —Ps, PsV Pe, ...}

S3 = {p1V P2, P2V P4, P3V Ps,PsV —Ps,P5V Pro, -}
Sy {-p1} U {pn — pn/2 | n>1andeven }

U {pn — P3snt1 | n>1and odd } U {pozs_1}

Sy is satisfied by setting all variables to 1.
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Satisfiability of sets

A set S of formulas is satisfiable when there is an assignment that
makes every F € S true. Otherwise S is unsatisfiable.

Satisfiable or unsatisfiable ?
St = {p1, "p1V P2, p1V P2V P3, P11V P2V P3VPs, ...}
So = {p1Vp2, "P2V -p3, P3V Pa, ~PaV —Ps, PsV Pe, ...}

S3 = {p1V P2, P2V P4, P3V Ps,PsV —Ps,P5V Pro, -}
Sy {-p1} U {pn — pn/2 | n>1andeven }

U {pn — P3snt1 | n>1and odd } U {pozs_1}
Sy is satisfied by setting all variables to 1.
Sy is satisfied by

A(p) = { 1 ifiis odd

0 ifiiseven
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The compactness theorem

Theorem (Compactness theorem)

A set of formulas S is satisfiable if and only if each finite subset of S is
satisfiable.
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Compactness theorem: proof

Let S be set of formulas with every finite subset satisfiable.
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Compactness theorem: proof

Let S be set of formulas with every finite subset satisfiable.

@ Call partial assignment A good if it satisfies any F € S whose
only variables are in the domain.

@ There is good partial assignment on {px, ..., p,} for any n:
up to equivalence, {F € S | Fuses only p1,...,pn} is finite

@ Proof strategy: will construct good Ag, A, Ao, . ..
with A4 extending A, and dom(A.) = {p1,...,Pn}

@ While constructing, will maintain invariant:
there are infinitely many good extensions of A,

@ Base case: dom(Ap) = )



Compactness theorem: proof

Induction step: suppose Ay, . .

., Ap satisfy invariant
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Compactness theorem: proof

Induction step: suppose Ay, ..., A, satisfy invariant
@ Consider assignments extending Ap:

BO = (An)[pn+1'—>0] 81 = (An)[pn+1'—>1]

Any proper extension of A, extends By or B4
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Compactness theorem: proof

Induction step: suppose Ay, ..., A, satisfy invariant
@ Consider assignments extending Ap:
Bo = (An)ip,.1-0] By = (An)ipy.+1)
Any proper extension of A, extends By or B4

@ So one of By or By has infinitely many good extensions
Take that one to be A, 1
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Compactness theorem: proof

Induction step: suppose Ay, ..., A, satisfy invariant
@ Consider assignments extending Ap:
BO = (An)[pn+1'—>0] 81 = (An)[pn+1'—>1]
Any proper extension of A, extends By or B4

@ So one of By or By has infinitely many good extensions
Take that one to be A, 1

There is assignment extending all A,, namely A(pp) = An(pn)
It satisfies all formulas Fin S:

@ if F uses variables {p1,...,pn},then A, = F,so AE F



Compactness theorem: comments

Proof of compactness theorem is nonconstructive
Does not give algorithm to construct a satisfying assignment,
merely guarantees that one exists

Nonconstructve proofs are not really that exotic:
For every infinite sequence aj, a, as, . . . of natural numbers there
exists an index / such that g; < g; for every j.
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Compactness theorem: contrapositive

Compact Theorem, contrapositive: if a set of formulas is
unsatisfiable, then some finite subset is already unsatisfiable
Procedure to show that infinite set of formulas is unsatisfiable:
@ enumerate S = {Fy, F2, ...} by some algorithm
@ for each n, test whether {F;, ..., F,} is unsatisfiable

@ if S unsatisfiable, will detect this after finite amount of time
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Compactness: application

Exercise: Suppose {F, | n € N} is an infinite set of formulas such
that {—F, | n € N} is unsatisfiable and F, — Fp, is valid for all n € N.
Show that some F; is valid.

10/13



Compactness: application

Exercise: Suppose {F, | n € N} is an infinite set of formulas such
that {—F, | n € N} is unsatisfiable and F, — Fp, is valid for all n € N.
Show that some F; is valid.

@ Compactness: nwith =F; A ~F> A ... A =F, unsatisfiable
© De Morgan: F; vV F V...V Fpis valid
Q Resolve FiVFV...VF,and Fy — Foisee =RV ...V Fy

© Induction: F, is valid.
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Graph colouring

Might as well make life even more difficult:

@ Graph is k-colourable we can colour each vertex with {1,..., k}
such that neighbours get different colours.

W

11/13



Graph colouring

Might as well make life even more difficult:

@ Graph is k-colourable we can colour each vertex with {1,..., k}
such that neighbours get different colours.

W

@ Theorem:
If every finite subgraph of G is k-colourable, so is G itself.
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Graph colouring: proof

Suppose all finite subgraphs of G are k-colourable.
@ Variable p, ;: “vertex v has colour i’
@ Constraints S .= {F,, G, | ve VIU{H, | (u,v) € E}:
o Vertex v has > 1 colour: F, := \/%_, py.;
e Vertex v has < 1 colour: Gy := ALy Af_y =Pv.i V =Py,
o Neighbours u, v different colour: Hy,v := A%, —pu.i V —py.;
@ S is satisfiable iff G is k-colourable

@ Apply Compactness Theorem
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Summary: propositional logic

@ Syntax
e DNF, CNF, 2-CNF, 3-CNF
@ Horn formulas

@ Semantics

@ assignments
e truth tables

@ Satisfiability: constraint problems
@ Algebraic reasoning: substitution

@ Polynomial-time algorithms for Horn and 2-CNF formulas,
WalkSAT

@ Resolution

e Sound and complete
e DPLL algorithm

@ Compactness: nonconstructive
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