Lecture 6
The DPLL Algorithm

Dr Christoph Haase
University of Oxford

(with small changes by Javier Esparza)

14

Davis—Putham-Logemann-Loveland

DPLL algorithm:
@ combines search and deduction to decide satisfiability
@ underlies most modern SAT solvers
@ is over 50 years old

14

Davis—Putham-Logemann-Loveland

DPLL algorithm:
@ combines search and deduction to decide satisfiability
@ underlies most modern SAT solvers
@ is over 50 years old

DPLL-based SAT solvers > 1990:
@ clause learning
@ non-chronological backtracking
@ branching heuristics
@ lazy evaluation

Performance increase of SAT solvers

SAT/SMT solving improvements
1000000
100000

10000

#constraints solved
in standard benchmark

14

DPLL: idea

Depth-first search.
At every unsuccessful leaf of search tree (called conflict),

use resolution to compute a conflict clause.
Add clause to formula we're deciding about.

M

R
>:(3

Think of conflict clauses as “caching” previous search results,
so we “learn from previous mistakes”.
Conflict clauses also determine backtracking.

The DPLL algorithm

Input: CNF formula F.
@ Initialise A to the empty assignment
@ While there is unit clause {L} in F| 4, update A — Ay .1
@ If F|4 contains no clauses, stop and output A.

Q If F|4 >0, add new clause C to F by learning procedure.
If C is the empty clause, stop and output UNSAT.
Otherwise backtrack to highest level where C is unit clause.
Go to Line 2.

© Apply decision strategy to update A — A,).
Go to line 2.

F| 4 is set of clauses obtained from deleting any clause containing
true literal, and deleting from each remaining clause all false literals.

14

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A = F. Conflict state when A |~ F.

14

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A = F. Conflict state when A |~ F.

@ Each assignment p; — b; classifies as
decision assignment or implied assignment.

14

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A = F. Conflict state when A |~ F.

@ Each assignment p; — b; classifies as
decision assignment or implied assignment.

@ p; in a decision assignment p; — b; is decision variable.

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A = F. Conflict state when A |~ F.

@ Each assignment p; — b; classifies as
decision assignment or implied assignment.

@ p; in a decision assignment p; — b; is decision variable.

@ Denote by p; S b; an implied assignment arising through unit
propagation on clause C.

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A = F. Conflict state when A |~ F.

@ Each assignment p; — b; classifies as
decision assignment or implied assignment.

@ p; in a decision assignment p; — b; is decision variable.

@ Denote by p; S b; an implied assignment arising through unit
propagation on clause C.

@ Decision level of assignment p; — b; in a given state A is
number of decision assignments in A that precede p; — b;.

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A = F. Conflict state when A |~ F.

@ Each assignment p; — b; classifies as
decision assignment or implied assignment.

@ p; in a decision assignment p; — b; is decision variable.

@ Denote by p; S b; an implied assignment arising through unit
propagation on clause C.

@ Decision level of assignment p; — b; in a given state A is
number of decision assignments in A that precede p; — b;.

(Note: conflict state if F| 4 > O, successful state if F| 4 = 0)

14

Unit propagation

Unit propagation: the while loop in line 2 updates assignment L — 1
whenever there is unit clause {L} € F| .

14

Unit propagation

Unit propagation: the while loop in line 2 updates assignment L — 1
whenever there is unit clause {L} € F| .

Example: start with set of clauses F = {Cq, ..., Cs}, where

Ci ={—p1, s, ps5}

Co ={—p1,Ps, 7Ps}

Cz ={-p1,—ps, P7}

Cy ={—p1,—p7,~ps}

Cs ={p1, P4, Pe}
Say current assignment is (py — 1,p2 +— 0,p3 — 0,p4 — 1).
Notice F|4 contains unit clause {ps}.

Unit propagation further generates (ps & 1, Pe & 1,p7 & 1). This
leads to a conflict, with C4 being made false.

Conflict analysis

After unit propagation:
@ If not in conflict nor successful, make decision (line 5)
@ If in conflict, learned clause is added (line 4)

14

Conflict analysis

After unit propagation:
@ If not in conflict nor successful, make decision (line 5)
@ If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F, .A)
leads to conflict, clause C is learned such that:

14

Conflict analysis

After unit propagation:
@ If not in conflict nor successful, make decision (line 5)
@ If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F, .A)
leads to conflict, clause C is learned such that:

Q@ F=FU{C}

14

Conflict analysis

After unit propagation:
@ If not in conflict nor successful, make decision (line 5)
@ If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F, .A)
leads to conflict, clause C is learned such that:

Q@ F=FU{C}

@ C is conflict clause: each literal is made false by A

14

Conflict analysis

After unit propagation:
@ If not in conflict nor successful, make decision (line 5)
@ If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F, .A)
leads to conflict, clause C is learned such that:

Q@ F=FU{C}

@ C is conflict clause: each literal is made false by A

@ C mentions only decision variables in A

Clause learning

Suppose A = (py — by,...,px — bx) leads to conflict.

Find associated clauses Aq, ..

., Ax1 by backward induction:

14

Clause learning

Suppose A = (py — by,...,px — bx) leads to conflict.
Find associated clauses Ay, ..., Ac.1 by backward induction:

@ Take any conflict clause under A as A 1

14

Clause learning

Suppose A = (py — by,...,px — bx) leads to conflict.
Find associated clauses Ay, ..., Ac.1 by backward induction:

@ Take any conflict clause under A as A 1

Q If p; — b; is decision assignment or p; not mentioned in A1,
set A,' = A,'+1

Clause learning

Suppose A = (py — by,...,px — bx) leads to conflict.
Find associated clauses Ay, ..., Ac.1 by backward induction:

@ Take any conflict clause under A as A 1

Q If p; — b; is decision assignment or p; not mentioned in A1,
set A,' = A,'+1

Q Ifp & b; is implied assignment and p; mentioned in A; 1,
define A, to be resolvent of A;, 1 and C; with respect to p;

14

Clause learning

Suppose A = (py — by,...,px — bx) leads to conflict.
Find associated clauses Ay, ..., Ac.1 by backward induction:

@ Take any conflict clause under A as A 1

Q If p; — b; is decision assignment or p; not mentioned in A1,
set A,' = A,'+1

Q Ifp & b; is implied assignment and p; mentioned in A; 1,
define A, to be resolvent of A;, 1 and C; with respect to p;

The final clause A; is the learned clause

14

Clause learning: example

In conflict of above example, learning generates clauses

Ag = {—p1,—P7,—Ps} (clause C;)
A7 :={=p1,~Ps, "Ps} (resolve A, Cs)
As = {-p1,—ps} (resolve Az, Cy)
As = {—p1, P4} (resolve As, C1)

Ay = {—p1,ps}

10/14

Clause learning: example

In conflict of above example, learning generates clauses

Ag := {—p1,p7,—Ps} (clause Cq)
A7 := {=p1,~Ps, "Pe} (resolve As, Cs)
Ae .= {—p1,ps} (resolve A7, Cs)
As .= {-p1,—ps} (resolve Ag, Cy)
A1 = {_'p1) _‘p4}

Learned clause A; is conflict clause with only decision variables,

including top-level one p4. Intuitively:

@ record that conflict arose from decision to make py, p4 true
@ adding A makes assignments validating py, p4 unreachable
@ backtrack to highest level where Ay is unit clause (p; — 1), unit

propagation leads to ps — 0.

10

14

Clause learning
Proposition: this policy fulfills the desiderata

Proof sketch: Observation: If p; S b;, then the only literal of C; true
under A is the literal for p; (that is, C; contains either p; or —p;, and b;
is chosen to make the literal true).

11/14

Clause learning
Proposition: this policy fulfills the desiderata

Proof sketch: Observation: If p; S b;, then the only literal of C; true
under A is the literal for p; (that is, C; contains either p; or —p;, and b;
is chosen to make the literal true).
Q@ F=FuU{C}
Because C is obtained from clauses of F through resolution
steps.

11/14

Clause learning
Proposition: this policy fulfills the desiderata

Proof sketch: Observation: If p; S b;, then the only literal of C; true
under A is the literal for p; (that is, C; contains either p; or —p;, and b;
is chosen to make the literal true).
Q@ F=FuU{C}
Because C is obtained from clauses of F through resolution
steps.

@ Cis conflict clause: each literal is made false by .A.
We show by induction that it holds for Ak, 1, Ak, Ak—1--- A1 = C.
It holds for Ak by definition.
If it holds for Aj,1 and A; = Aj.1, then obviously it holds for A;.
If it holds for A; 1 and A; # Ai.1, then A; is the result of resolving
Air1 and C;. By the observation, all literals of A; are made false
by A.

11/14

Clause learning
Proposition: this policy fulfills the desiderata

Proof sketch: Observation: If p; S b;, then the only literal of C; true
under A is the literal for p; (that is, C; contains either p; or —p;, and b;
is chosen to make the literal true).

F=Fu{C}
Because C is obtained from clauses of F through resolution
steps.

C is conflict clause: each literal is made false by A.

We show by induction that it holds for Ak, 1, Ak, Ak—1--- A1 = C.
It holds for Ak by definition.

If it holds for A;y and A; = A;.1, then obviously it holds for A;.
If it holds for A; 1 and A; # Ai.1, then A; is the result of resolving
Air1 and C;. By the observation, all literals of A; are made false
by A.

C mentions only decision variables in A.

Because every other variable, say p;, dissapears after resolving
with A1 w.r.t. p;. Indeed, since A makes A, ¢ false, by the
observation p; has opposite signs in A;.; and C;.

11/14

Example: 4 queens

Problem: place 4 non-attacking queens on a 4x4 chess board

12/14

Example: 4 queens

Problem: place 4 non-attacking queens on a 4x4 chess board
Variable p; models: there is a queen in square (i,)

e >1ineachrow: Af; Vi, pj
; TN
@ < 1in each column: /\;":1 /\;;,,:1 —pjj V —Pirj

. a4
@ < 1oneachdiagonal: \;;_; \/ =Pi—k,itk V ~Pitk.j+k

Total number of clauses: 4 + 24 + 24 + 28 = 80

12/14

DPLL: 4 queens

Running the DPLL algorithm:

@ Start with py — 1
delete {p11, pi2, P13, P14}, delete —p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

13/14

DPLL: 4 queens

Running the DPLL algorithm:

@ Start with py — 1
delete {p11, pi2, P13, P14}, delete —p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

@ Set P23 — 1

4 new unit clauses: {—pa4}, {—Paz}, {—P32}, {—P34}
unit propagation of {—ps4}: UNSAT

13/14

DPLL: 4 queens

Running the DPLL algorithm:

@ Start with py — 1
delete {p11, pi2, P13, P14}, delete —p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

@ Set P23 — 1
4 new unit clauses: {—pasa}, {—pas}, {—P32}, {—P34}
unit propagation of {—ps4}: UNSAT
fixing only two literals collapsed from 80 clauses to 1
ruled out 2'* of 216 possible assignments!

@ Backtrack: p11 — 0, p12 — 1
delete {—pi2}: 9 new unit clauses
unit propagation: leaves only 1 clause {p43}!

13/14

DPLL: 4 queens

Running the DPLL algorithm:

@ Start with py — 1
delete {p11, pi2, P13, P14}, delete —p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

@ Set P23 — 1

4 new unit clauses: {—pa4}, {—Paz}, {—P32}, {—P34}
unit propagation of {—ps4}: UNSAT

fixing only two literals collapsed from 80 clauses to 1
ruled out 2'* of 216 possible assignments!

@ Backtrack: p11 — 0, p12 — 1
delete {—pi2}: 9 new unit clauses
unit propagation: leaves only 1 clause {p43}!

@ Answer: pi2, Pos, P31, P4z > 1

13/14

Summary

@ Resolution:

@ very simple sound and complete proof calculus
@ basis for type unification

@ DPLL algorithm

e improves resolution with clause learning and backtracking
e very efficient basis for modern SAT solvers

14/14

