Lecture 6
 The DPLL Algorithm

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

Davis-Putnam-Logemann-Loveland

DPLL algorithm:

- combines search and deduction to decide satisfiability
- underlies most modern SAT solvers
- is over 50 years old

Davis-Putnam-Logemann-Loveland

DPLL algorithm:

- combines search and deduction to decide satisfiability
- underlies most modern SAT solvers
- is over 50 years old

DPLL-based SAT solvers ≥ 1990 :

- clause learning
- non-chronological backtracking
- branching heuristics
- lazy evaluation

Performance increase of SAT solvers

SAT/SMT solving improvements

DPLL: idea

Depth-first search.
At every unsuccessful leaf of search tree (called conflict), use resolution to compute a conflict clause.
Add clause to formula we're deciding about.

Think of conflict clauses as "caching" previous search results, so we "learn from previous mistakes".
Conflict clauses also determine backtracking.

The DPLL algorithm

Input: CNF formula F.
(1) Initialise \mathcal{A} to the empty assignment
(2) While there is unit clause $\{L\}$ in $\left.F\right|_{\mathcal{A}}$, update $\mathcal{A} \mapsto \mathcal{A}_{[L \mapsto 1]}$
(3) If $\left.F\right|_{\mathcal{A}}$ contains no clauses, stop and output \mathcal{A}.
(9) If $\left.F\right|_{\mathcal{A}} \ni \square$, add new clause C to F by learning procedure.

If C is the empty clause, stop and output UNSAT.
Otherwise backtrack to highest level where C is unit clause. Go to Line 2.
(5) Apply decision strategy to update $\mathcal{A} \mapsto \mathcal{A}_{[p \mapsto b]}$.

Go to line 2.
$\left.F\right|_{\mathcal{A}}$ is set of clauses obtained from deleting any clause containing true literal, and deleting from each remaining clause all false literals.

Terminology

State of algorithm is pair of CNF formula F and assignment \mathcal{A}. Successful state when $\mathcal{A} \vDash F$. Conflict state when $\mathcal{A} \not \vDash F$.

Terminology

State of algorithm is pair of CNF formula F and assignment \mathcal{A}. Successful state when $\mathcal{A} \vDash F$. Conflict state when $\mathcal{A} \not \vDash F$.

- Each assignment $p_{i} \mapsto b_{i}$ classifies as decision assignment or implied assignment.

Terminology

State of algorithm is pair of CNF formula F and assignment \mathcal{A}. Successful state when $\mathcal{A} \vDash F$. Conflict state when $\mathcal{A} \not \vDash F$.

- Each assignment $p_{i} \mapsto b_{i}$ classifies as decision assignment or implied assignment.
- p_{i} in a decision assignment $p_{i} \mapsto b_{i}$ is decision variable.

Terminology

State of algorithm is pair of CNF formula F and assignment \mathcal{A}. Successful state when $\mathcal{A} \models F$. Conflict state when $\mathcal{A} \not \vDash F$.

- Each assignment $p_{i} \mapsto b_{i}$ classifies as decision assignment or implied assignment.
- p_{i} in a decision assignment $p_{i} \mapsto b_{i}$ is decision variable.
- Denote by $p_{i} \stackrel{C}{\mapsto} b_{i}$ an implied assignment arising through unit propagation on clause C.

Terminology

State of algorithm is pair of CNF formula F and assignment \mathcal{A}. Successful state when $\mathcal{A} \models F$. Conflict state when $\mathcal{A} \not \vDash F$.

- Each assignment $p_{i} \mapsto b_{i}$ classifies as decision assignment or implied assignment.
- p_{i} in a decision assignment $p_{i} \mapsto b_{i}$ is decision variable.
- Denote by $p_{i} \stackrel{C}{\mapsto} b_{i}$ an implied assignment arising through unit propagation on clause C.
- Decision level of assignment $p_{i} \mapsto b_{i}$ in a given state \mathcal{A} is number of decision assignments in \mathcal{A} that precede $p_{i} \mapsto b_{i}$.

Terminology

State of algorithm is pair of CNF formula F and assignment \mathcal{A}. Successful state when $\mathcal{A} \models F$. Conflict state when $\mathcal{A} \not \vDash F$.

- Each assignment $p_{i} \mapsto b_{i}$ classifies as decision assignment or implied assignment.
- p_{i} in a decision assignment $p_{i} \mapsto b_{i}$ is decision variable.
- Denote by $p_{i} \stackrel{C}{\hookrightarrow} b_{i}$ an implied assignment arising through unit propagation on clause C.
- Decision level of assignment $p_{i} \mapsto b_{i}$ in a given state \mathcal{A} is number of decision assignments in \mathcal{A} that precede $p_{i} \mapsto b_{i}$.
(Note: conflict state if $\left.F\right|_{\mathcal{A}} \ni \square$, successful state if $\left.F\right|_{\mathcal{A}}=\emptyset$)

Unit propagation

Unit propagation: the while loop in line 2 updates assignment $L \mapsto 1$ whenever there is unit clause $\left.\{L\} \in F\right|_{\mathcal{A}}$.

Unit propagation

Unit propagation: the while loop in line 2 updates assignment $L \mapsto 1$ whenever there is unit clause $\left.\{L\} \in F\right|_{\mathcal{A}}$.

Example: start with set of clauses $F=\left\{C_{1}, \ldots, C_{5}\right\}$, where

$$
\begin{aligned}
& C_{1}=\left\{\neg p_{1}, \neg p_{4}, p_{5}\right\} \\
& C_{2}=\left\{\neg p_{1}, p_{6}, \neg p_{5}\right\} \\
& C_{3}=\left\{\neg p_{1}, \neg p_{6}, p_{7}\right\} \\
& C_{4}=\left\{\neg p_{1}, \neg p_{7}, \neg p_{5}\right\} \\
& C_{5}=\left\{p_{1}, p_{4}, p_{6}\right\}
\end{aligned}
$$

Say current assignment is $\left(p_{1} \mapsto 1, p_{2} \mapsto 0, p_{3} \mapsto 0, p_{4} \mapsto 1\right)$. Notice $\left.F\right|_{\mathcal{A}}$ contains unit clause $\left\{p_{5}\right\}$.
Unit propagation further generates $\left(p_{5} \stackrel{C_{1}}{\hookrightarrow} 1, p_{6} \stackrel{C_{2}}{\hookrightarrow} 1, p_{7} \stackrel{C_{3}}{\mapsto} 1\right)$. This leads to a conflict, with C_{4} being made false.

Conflict analysis

After unit propagation:

- If not in conflict nor successful, make decision (line 5)
- If in conflict, learned clause is added (line 4)

Conflict analysis

After unit propagation:

- If not in conflict nor successful, make decision (line 5)
- If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F, \mathcal{A}) leads to conflict, clause C is learned such that:

Conflict analysis

After unit propagation:

- If not in conflict nor successful, make decision (line 5)
- If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F, \mathcal{A}) leads to conflict, clause C is learned such that:
(1) $F \equiv F \cup\{C\}$

Conflict analysis

After unit propagation:

- If not in conflict nor successful, make decision (line 5)
- If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F, \mathcal{A}) leads to conflict, clause C is learned such that:
(1) $F \equiv F \cup\{C\}$
(2) C is conflict clause: each literal is made false by \mathcal{A}

Conflict analysis

After unit propagation:

- If not in conflict nor successful, make decision (line 5)
- If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F, \mathcal{A}) leads to conflict, clause C is learned such that:
(1) $F \equiv F \cup\{C\}$
(2) C is conflict clause: each literal is made false by \mathcal{A}
(3) C mentions only decision variables in \mathcal{A}

Clause learning

Suppose $\mathcal{A}=\left(p_{1} \mapsto b_{1}, \ldots, p_{k} \mapsto b_{k}\right)$ leads to conflict. Find associated clauses A_{1}, \ldots, A_{k+1} by backward induction:

Clause learning

Suppose $\mathcal{A}=\left(p_{1} \mapsto b_{1}, \ldots, p_{k} \mapsto b_{k}\right)$ leads to conflict. Find associated clauses A_{1}, \ldots, A_{k+1} by backward induction:
(1) Take any conflict clause under \mathcal{A} as A_{k+1}

Clause learning

Suppose $\mathcal{A}=\left(p_{1} \mapsto b_{1}, \ldots, p_{k} \mapsto b_{k}\right)$ leads to conflict. Find associated clauses A_{1}, \ldots, A_{k+1} by backward induction:
(1) Take any conflict clause under \mathcal{A} as A_{k+1}
(2) If $p_{i} \mapsto b_{i}$ is decision assignment or p_{i} not mentioned in A_{i+1}, set $A_{i}=A_{i+1}$

Clause learning

Suppose $\mathcal{A}=\left(p_{1} \mapsto b_{1}, \ldots, p_{k} \mapsto b_{k}\right)$ leads to conflict.
Find associated clauses A_{1}, \ldots, A_{k+1} by backward induction:
(1) Take any conflict clause under \mathcal{A} as A_{k+1}
(2) If $p_{i} \mapsto b_{i}$ is decision assignment or p_{i} not mentioned in A_{i+1}, set $A_{i}=A_{i+1}$
(3) If $p_{i} \stackrel{C_{j}}{\hookrightarrow} b_{i}$ is implied assignment and p_{i} mentioned in A_{i+1}, define A_{i} to be resolvent of A_{i+1} and C_{i} with respect to p_{i}

Clause learning

Suppose $\mathcal{A}=\left(p_{1} \mapsto b_{1}, \ldots, p_{k} \mapsto b_{k}\right)$ leads to conflict.
Find associated clauses A_{1}, \ldots, A_{k+1} by backward induction:
(1) Take any conflict clause under \mathcal{A} as A_{k+1}
(2) If $p_{i} \mapsto b_{i}$ is decision assignment or p_{i} not mentioned in A_{i+1}, set $A_{i}=A_{i+1}$
(3) If $p_{i} \stackrel{C_{j}}{\hookrightarrow} b_{i}$ is implied assignment and p_{i} mentioned in A_{i+1}, define A_{i} to be resolvent of A_{i+1} and C_{i} with respect to p_{i}

The final clause A_{1} is the learned clause

Clause learning: example

In conflict of above example, learning generates clauses

$$
\begin{aligned}
& A_{8}:=\left\{\neg p_{1}, \neg p_{7}, \neg p_{5}\right\} \\
& A_{7}:=\left\{\neg p_{1}, \neg p_{5}, \neg p_{6}\right\} \\
& A_{6}:=\left\{\neg p_{1}, \neg p_{5}\right\} \\
& A_{5}:=\left\{\neg p_{1}, \neg p_{4}\right\}
\end{aligned}
$$

(clause C_{4})
(resolve A_{8}, C_{3})
(resolve A_{7}, C_{2})
(resolve A_{6}, C_{1})

$$
A_{1}:=\left\{\neg p_{1}, \neg p_{4}\right\}
$$

Clause learning: example

In conflict of above example, learning generates clauses

$$
\begin{aligned}
A_{8} & :=\left\{\neg p_{1}, \neg p_{7}, \neg p_{5}\right\} \\
A_{7} & :=\left\{\neg p_{1}, \neg p_{5}, \neg p_{6}\right\} \\
A_{6} & :=\left\{\neg p_{1}, \neg p_{5}\right\} \\
A_{5} & :=\left\{\neg p_{1}, \neg p_{4}\right\} \\
& \vdots \\
A_{1} & :=\left\{\neg p_{1}, \neg p_{4}\right\}
\end{aligned}
$$

Learned clause A_{1} is conflict clause with only decision variables, including top-level one p_{4}. Intuitively:

- record that conflict arose from decision to make p_{1}, p_{4} true
- adding A_{1} makes assignments validating p_{1}, p_{4} unreachable
- backtrack to highest level where A_{1} is unit clause ($p_{1} \mapsto 1$), unit propagation leads to $p_{4} \mapsto 0$.

Clause learning

Proposition: this policy fulfills the desiderata
Proof sketch: Observation: If $p_{i} \stackrel{C_{C}}{\hookrightarrow} b_{i}$, then the only literal of C_{i} true under \mathcal{A} is the literal for p_{i} (that is, C_{i} contains either p_{i} or $\neg p_{i}$, and b_{i} is chosen to make the literal true).

Clause learning

Proposition: this policy fulfills the desiderata
Proof sketch: Observation: If $p_{i} \stackrel{C_{i}}{\hookrightarrow} b_{i}$, then the only literal of C_{i} true under \mathcal{A} is the literal for p_{i} (that is, C_{i} contains either p_{i} or $\neg p_{i}$, and b_{i} is chosen to make the literal true).
(1) $F \equiv F \cup\{C\}$

Because C is obtained from clauses of F through resolution steps.

Clause learning

Proposition: this policy fulfills the desiderata
Proof sketch: Observation: If $p_{i} \stackrel{C_{C}}{\hookrightarrow} b_{i}$, then the only literal of C_{i} true under \mathcal{A} is the literal for p_{i} (that is, C_{i} contains either p_{i} or $\neg p_{i}$, and b_{i} is chosen to make the literal true).
(1) $F \equiv F \cup\{C\}$

Because C is obtained from clauses of F through resolution steps.
(2) C is conflict clause: each literal is made false by \mathcal{A}.

We show by induction that it holds for $A_{k+1}, A_{k}, A_{k-1} \cdots A_{1}=C$.
It holds for A_{k+1} by definition.
If it holds for A_{i+1} and $A_{i}=A_{i+1}$, then obviously it holds for A_{i}.
If it holds for A_{i+1} and $A_{i} \neq A_{i+1}$, then A_{i} is the result of resolving A_{i+1} and C_{i}. By the observation, all literals of A_{i} are made false by \mathcal{A}.

Clause learning

Proposition: this policy fulfills the desiderata
Proof sketch: Observation: If $p_{i} \stackrel{C_{C}}{\leftrightarrows} b_{i}$, then the only literal of C_{i} true under \mathcal{A} is the literal for p_{i} (that is, C_{i} contains either p_{i} or $\neg p_{i}$, and b_{i} is chosen to make the literal true).
(1) $F \equiv F \cup\{C\}$

Because C is obtained from clauses of F through resolution steps.
(2) C is conflict clause: each literal is made false by \mathcal{A}.

We show by induction that it holds for $A_{k+1}, A_{k}, A_{k-1} \cdots A_{1}=C$.
It holds for A_{k+1} by definition.
If it holds for A_{i+1} and $A_{i}=A_{i+1}$, then obviously it holds for A_{i}.
If it holds for A_{i+1} and $A_{i} \neq A_{i+1}$, then A_{i} is the result of resolving A_{i+1} and C_{i}. By the observation, all literals of A_{i} are made false by \mathcal{A}.
(3) C mentions only decision variables in \mathcal{A}.

Because every other variable, say p_{i}, dissapears after resolving with A_{i+1} w.r.t. p_{i}. Indeed, since \mathcal{A} makes A_{i+1} false, by the observation p_{i} has opposite signs in A_{i+1} and C_{i}.

Example: 4 queens

Problem: place 4 non-attacking queens on a 4×4 chess board

Example: 4 queens

Problem: place 4 non-attacking queens on a 4×4 chess board Variable $p_{i j}$ models: there is a queen in square (i, j)

- ≥ 1 in each row: $\bigwedge_{i=1}^{4} \bigvee_{j=1}^{4} p_{i j}$
- ≤ 1 in each row: $\bigwedge_{i=1}^{4} \bigwedge_{j \neq j^{\prime}=1}^{4} \neg p_{i j} \vee \neg p_{i j^{\prime}}$
- ≤ 1 in each column: $\bigwedge_{j=1}^{4} \bigwedge_{i \neq i^{\prime}=1}^{4} \neg p_{i j} \vee \neg p_{i^{\prime} j}$
- ≤ 1 on each diagonal: $\bigwedge_{i, j=1}^{4} \bigvee_{k} \neg p_{i-k, i+k} \vee \neg p_{i+k, j+k}$

Total number of clauses: $4+24+24+28=80$

DPLL: 4 queens

Running the DPLL algorithm:

- Start with $p_{11} \mapsto 1$ delete $\left\{p_{11}, p_{12}, p_{13}, p_{14}\right\}$, delete $\neg p_{11}: 9$ new unit clauses unit propagation: deletes 65 clauses!

DPLL: 4 queens

Running the DPLL algorithm:

- Start with $p_{11} \mapsto 1$
delete $\left\{p_{11}, p_{12}, p_{13}, p_{14}\right\}$, delete $\neg p_{11}: 9$ new unit clauses unit propagation: deletes 65 clauses!
- Set $p_{23} \mapsto 1$

4 new unit clauses: $\left\{\neg p_{24}\right\},\left\{\neg p_{43}\right\},\left\{\neg p_{32}\right\},\left\{\neg p_{34}\right\}$ unit propagation of $\left\{\neg p_{34}\right\}$: UNSAT

DPLL: 4 queens

Running the DPLL algorithm:

- Start with $p_{11} \mapsto 1$
delete $\left\{p_{11}, p_{12}, p_{13}, p_{14}\right\}$, delete $\neg p_{11}: 9$ new unit clauses unit propagation: deletes 65 clauses!
- Set $p_{23} \mapsto 1$

4 new unit clauses: $\left\{\neg p_{24}\right\},\left\{\neg p_{43}\right\},\left\{\neg p_{32}\right\},\left\{\neg p_{34}\right\}$ unit propagation of $\left\{\neg p_{34}\right\}$: UNSAT
fixing only two literals collapsed from 80 clauses to 1 ruled out 2^{14} of 2^{16} possible assignments!

- Backtrack: $p_{11} \mapsto 0, p_{12} \mapsto 1$ delete $\left\{\neg p_{12}\right\}$: 9 new unit clauses unit propagation: leaves only 1 clause $\left\{p_{43}\right\}$!

DPLL: 4 queens

Running the DPLL algorithm:

- Start with $p_{11} \mapsto 1$
delete $\left\{p_{11}, p_{12}, p_{13}, p_{14}\right\}$, delete $\neg p_{11}: 9$ new unit clauses unit propagation: deletes 65 clauses!
- Set $p_{23} \mapsto 1$

4 new unit clauses: $\left\{\neg p_{24}\right\},\left\{\neg p_{43}\right\},\left\{\neg p_{32}\right\},\left\{\neg p_{34}\right\}$ unit propagation of $\left\{\neg p_{34}\right\}$: UNSAT
fixing only two literals collapsed from 80 clauses to 1 ruled out 2^{14} of 2^{16} possible assignments!

- Backtrack: $p_{11} \mapsto 0, p_{12} \mapsto 1$ delete $\left\{\neg p_{12}\right\}$: 9 new unit clauses unit propagation: leaves only 1 clause $\left\{p_{43}\right\}$!
- Answer: $p_{12}, p_{24}, p_{31}, p_{43} \mapsto 1$

Summary

- Resolution:
- very simple sound and complete proof calculus
- basis for type unification
- DPLL algorithm
- improves resolution with clause learning and backtracking
- very efficient basis for modern SAT solvers

