
The DPLL Algorithm

6.1

Lecture 6
The DPLL Algorithm

Dr Christoph Haase
University of Oxford

(with small changes by Javier Esparza)

1 / 14

The DPLL Algorithm

6.2

Davis–Putnam–Logemann–Loveland

DPLL algorithm:
combines search and deduction to decide satisfiability
underlies most modern SAT solvers
is over 50 years old

DPLL-based SAT solvers ≥ 1990:
clause learning
non-chronological backtracking
branching heuristics
lazy evaluation

2 / 14

The DPLL Algorithm

6.2

Davis–Putnam–Logemann–Loveland

DPLL algorithm:
combines search and deduction to decide satisfiability
underlies most modern SAT solvers
is over 50 years old

DPLL-based SAT solvers ≥ 1990:
clause learning
non-chronological backtracking
branching heuristics
lazy evaluation

2 / 14

The DPLL Algorithm

6.3

Performance increase of SAT solvers

3 / 14

The DPLL Algorithm

6.4

DPLL: idea

Depth-first search.
At every unsuccessful leaf of search tree (called conflict),
use resolution to compute a conflict clause.
Add clause to formula we’re deciding about.

Think of conflict clauses as “caching” previous search results,
so we “learn from previous mistakes”.
Conflict clauses also determine backtracking.

4 / 14

The DPLL Algorithm

6.5

The DPLL algorithm

Input: CNF formula F .
1 Initialise A to the empty assignment
2 While there is unit clause {L} in F |A, update A 7→ A[L 7→1]

3 If F |A contains no clauses, stop and output A.
4 If F |A 3 �, add new clause C to F by learning procedure.

If C is the empty clause, stop and output UNSAT.
Otherwise backtrack to highest level where C is unit clause.
Go to Line 2.

5 Apply decision strategy to update A 7→ A[p 7→b].
Go to line 2.

F |A is set of clauses obtained from deleting any clause containing
true literal, and deleting from each remaining clause all false literals.

5 / 14

The DPLL Algorithm

6.6

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A |= F . Conflict state when A 6|= F .

Each assignment pi 7→ bi classifies as
decision assignment or implied assignment.

pi in a decision assignment pi 7→ bi is decision variable.

Denote by pi
C7→ bi an implied assignment arising through unit

propagation on clause C.

Decision level of assignment pi 7→ bi in a given state A is
number of decision assignments in A that precede pi 7→ bi .

(Note: conflict state if F |A 3 �, successful state if F |A = ∅)

6 / 14

The DPLL Algorithm

6.6

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A |= F . Conflict state when A 6|= F .

Each assignment pi 7→ bi classifies as
decision assignment or implied assignment.

pi in a decision assignment pi 7→ bi is decision variable.

Denote by pi
C7→ bi an implied assignment arising through unit

propagation on clause C.

Decision level of assignment pi 7→ bi in a given state A is
number of decision assignments in A that precede pi 7→ bi .

(Note: conflict state if F |A 3 �, successful state if F |A = ∅)

6 / 14

The DPLL Algorithm

6.6

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A |= F . Conflict state when A 6|= F .

Each assignment pi 7→ bi classifies as
decision assignment or implied assignment.

pi in a decision assignment pi 7→ bi is decision variable.

Denote by pi
C7→ bi an implied assignment arising through unit

propagation on clause C.

Decision level of assignment pi 7→ bi in a given state A is
number of decision assignments in A that precede pi 7→ bi .

(Note: conflict state if F |A 3 �, successful state if F |A = ∅)

6 / 14

The DPLL Algorithm

6.6

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A |= F . Conflict state when A 6|= F .

Each assignment pi 7→ bi classifies as
decision assignment or implied assignment.

pi in a decision assignment pi 7→ bi is decision variable.

Denote by pi
C7→ bi an implied assignment arising through unit

propagation on clause C.

Decision level of assignment pi 7→ bi in a given state A is
number of decision assignments in A that precede pi 7→ bi .

(Note: conflict state if F |A 3 �, successful state if F |A = ∅)

6 / 14

The DPLL Algorithm

6.6

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A |= F . Conflict state when A 6|= F .

Each assignment pi 7→ bi classifies as
decision assignment or implied assignment.

pi in a decision assignment pi 7→ bi is decision variable.

Denote by pi
C7→ bi an implied assignment arising through unit

propagation on clause C.

Decision level of assignment pi 7→ bi in a given state A is
number of decision assignments in A that precede pi 7→ bi .

(Note: conflict state if F |A 3 �, successful state if F |A = ∅)

6 / 14

The DPLL Algorithm

6.6

Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A |= F . Conflict state when A 6|= F .

Each assignment pi 7→ bi classifies as
decision assignment or implied assignment.

pi in a decision assignment pi 7→ bi is decision variable.

Denote by pi
C7→ bi an implied assignment arising through unit

propagation on clause C.

Decision level of assignment pi 7→ bi in a given state A is
number of decision assignments in A that precede pi 7→ bi .

(Note: conflict state if F |A 3 �, successful state if F |A = ∅)

6 / 14

The DPLL Algorithm

6.7

Unit propagation

Unit propagation: the while loop in line 2 updates assignment L 7→ 1
whenever there is unit clause {L} ∈ F |A.

Example: start with set of clauses F = {C1, . . . ,C5}, where

C1 ={¬p1,¬p4,p5}
C2 ={¬p1,p6,¬p5}
C3 ={¬p1,¬p6,p7}
C4 ={¬p1,¬p7,¬p5}
C5 ={p1,p4,p6}

Say current assignment is (p1 7→ 1,p2 7→ 0,p3 7→ 0,p4 7→ 1).
Notice F |A contains unit clause {p5}.
Unit propagation further generates (p5

C17→ 1,p6
C27→ 1,p7

C37→ 1). This
leads to a conflict, with C4 being made false.

7 / 14

The DPLL Algorithm

6.7

Unit propagation

Unit propagation: the while loop in line 2 updates assignment L 7→ 1
whenever there is unit clause {L} ∈ F |A.

Example: start with set of clauses F = {C1, . . . ,C5}, where

C1 ={¬p1,¬p4,p5}
C2 ={¬p1,p6,¬p5}
C3 ={¬p1,¬p6,p7}
C4 ={¬p1,¬p7,¬p5}
C5 ={p1,p4,p6}

Say current assignment is (p1 7→ 1,p2 7→ 0,p3 7→ 0,p4 7→ 1).
Notice F |A contains unit clause {p5}.
Unit propagation further generates (p5

C17→ 1,p6
C27→ 1,p7

C37→ 1). This
leads to a conflict, with C4 being made false.

7 / 14

The DPLL Algorithm

6.8

Conflict analysis

After unit propagation:
If not in conflict nor successful, make decision (line 5)
If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F ,A)
leads to conflict, clause C is learned such that:

1 F ≡ F ∪ {C}

2 C is conflict clause: each literal is made false by A

3 C mentions only decision variables in A

8 / 14

The DPLL Algorithm

6.8

Conflict analysis

After unit propagation:
If not in conflict nor successful, make decision (line 5)
If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F ,A)
leads to conflict, clause C is learned such that:

1 F ≡ F ∪ {C}

2 C is conflict clause: each literal is made false by A

3 C mentions only decision variables in A

8 / 14

The DPLL Algorithm

6.8

Conflict analysis

After unit propagation:
If not in conflict nor successful, make decision (line 5)
If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F ,A)
leads to conflict, clause C is learned such that:

1 F ≡ F ∪ {C}

2 C is conflict clause: each literal is made false by A

3 C mentions only decision variables in A

8 / 14

The DPLL Algorithm

6.8

Conflict analysis

After unit propagation:
If not in conflict nor successful, make decision (line 5)
If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F ,A)
leads to conflict, clause C is learned such that:

1 F ≡ F ∪ {C}

2 C is conflict clause: each literal is made false by A

3 C mentions only decision variables in A

8 / 14

The DPLL Algorithm

6.8

Conflict analysis

After unit propagation:
If not in conflict nor successful, make decision (line 5)
If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F ,A)
leads to conflict, clause C is learned such that:

1 F ≡ F ∪ {C}

2 C is conflict clause: each literal is made false by A

3 C mentions only decision variables in A

8 / 14

The DPLL Algorithm

6.9

Clause learning

Suppose A = (p1 7→ b1, . . . ,pk 7→ bk) leads to conflict.
Find associated clauses A1, . . . ,Ak+1 by backward induction:

1 Take any conflict clause under A as Ak+1

2 If pi 7→ bi is decision assignment or pi not mentioned in Ai+1,
set Ai = Ai+1

3 If pi
Ci7→ bi is implied assignment and pi mentioned in Ai+1,

define Ai to be resolvent of Ai+1 and Ci with respect to pi

The final clause A1 is the learned clause

9 / 14

The DPLL Algorithm

6.9

Clause learning

Suppose A = (p1 7→ b1, . . . ,pk 7→ bk) leads to conflict.
Find associated clauses A1, . . . ,Ak+1 by backward induction:

1 Take any conflict clause under A as Ak+1

2 If pi 7→ bi is decision assignment or pi not mentioned in Ai+1,
set Ai = Ai+1

3 If pi
Ci7→ bi is implied assignment and pi mentioned in Ai+1,

define Ai to be resolvent of Ai+1 and Ci with respect to pi

The final clause A1 is the learned clause

9 / 14

The DPLL Algorithm

6.9

Clause learning

Suppose A = (p1 7→ b1, . . . ,pk 7→ bk) leads to conflict.
Find associated clauses A1, . . . ,Ak+1 by backward induction:

1 Take any conflict clause under A as Ak+1

2 If pi 7→ bi is decision assignment or pi not mentioned in Ai+1,
set Ai = Ai+1

3 If pi
Ci7→ bi is implied assignment and pi mentioned in Ai+1,

define Ai to be resolvent of Ai+1 and Ci with respect to pi

The final clause A1 is the learned clause

9 / 14

The DPLL Algorithm

6.9

Clause learning

Suppose A = (p1 7→ b1, . . . ,pk 7→ bk) leads to conflict.
Find associated clauses A1, . . . ,Ak+1 by backward induction:

1 Take any conflict clause under A as Ak+1

2 If pi 7→ bi is decision assignment or pi not mentioned in Ai+1,
set Ai = Ai+1

3 If pi
Ci7→ bi is implied assignment and pi mentioned in Ai+1,

define Ai to be resolvent of Ai+1 and Ci with respect to pi

The final clause A1 is the learned clause

9 / 14

The DPLL Algorithm

6.9

Clause learning

Suppose A = (p1 7→ b1, . . . ,pk 7→ bk) leads to conflict.
Find associated clauses A1, . . . ,Ak+1 by backward induction:

1 Take any conflict clause under A as Ak+1

2 If pi 7→ bi is decision assignment or pi not mentioned in Ai+1,
set Ai = Ai+1

3 If pi
Ci7→ bi is implied assignment and pi mentioned in Ai+1,

define Ai to be resolvent of Ai+1 and Ci with respect to pi

The final clause A1 is the learned clause

9 / 14

The DPLL Algorithm

6.10

Clause learning: example

In conflict of above example, learning generates clauses

A8 := {¬p1,¬p7,¬p5} (clause C4)

A7 := {¬p1,¬p5,¬p6} (resolve A8, C3)

A6 := {¬p1,¬p5} (resolve A7, C2)

A5 := {¬p1,¬p4} (resolve A6, C1)

...
A1 := {¬p1,¬p4}

Learned clause A1 is conflict clause with only decision variables,
including top-level one p4. Intuitively:

record that conflict arose from decision to make p1,p4 true
adding A1 makes assignments validating p1,p4 unreachable
backtrack to highest level where A1 is unit clause (p1 7→ 1), unit
propagation leads to p4 7→ 0.

10 / 14

The DPLL Algorithm

6.10

Clause learning: example

In conflict of above example, learning generates clauses

A8 := {¬p1,¬p7,¬p5} (clause C4)

A7 := {¬p1,¬p5,¬p6} (resolve A8, C3)

A6 := {¬p1,¬p5} (resolve A7, C2)

A5 := {¬p1,¬p4} (resolve A6, C1)

...
A1 := {¬p1,¬p4}

Learned clause A1 is conflict clause with only decision variables,
including top-level one p4. Intuitively:

record that conflict arose from decision to make p1,p4 true
adding A1 makes assignments validating p1,p4 unreachable
backtrack to highest level where A1 is unit clause (p1 7→ 1), unit
propagation leads to p4 7→ 0.

10 / 14

The DPLL Algorithm

6.11

Clause learning
Proposition: this policy fulfills the desiderata

Proof sketch: Observation: If pi
Ci7→ bi , then the only literal of Ci true

under A is the literal for pi (that is, Ci contains either pi or ¬pi , and bi
is chosen to make the literal true).

1 F ≡ F ∪ {C}
Because C is obtained from clauses of F through resolution
steps.

2 C is conflict clause: each literal is made false by A.
We show by induction that it holds for Ak+1,Ak ,Ak−1 · · ·A1 = C.
It holds for Ak+1 by definition.
If it holds for Ai+1 and Ai = Ai+1, then obviously it holds for Ai .
If it holds for Ai+1 and Ai 6= Ai+1, then Ai is the result of resolving
Ai+1 and Ci . By the observation, all literals of Ai are made false
by A.

3 C mentions only decision variables in A.
Because every other variable, say pi , dissapears after resolving
with Ai+1 w.r.t. pi . Indeed, since A makes Ai+1 false, by the
observation pi has opposite signs in Ai+1 and Ci .

11 / 14

The DPLL Algorithm

6.11

Clause learning
Proposition: this policy fulfills the desiderata

Proof sketch: Observation: If pi
Ci7→ bi , then the only literal of Ci true

under A is the literal for pi (that is, Ci contains either pi or ¬pi , and bi
is chosen to make the literal true).

1 F ≡ F ∪ {C}
Because C is obtained from clauses of F through resolution
steps.

2 C is conflict clause: each literal is made false by A.
We show by induction that it holds for Ak+1,Ak ,Ak−1 · · ·A1 = C.
It holds for Ak+1 by definition.
If it holds for Ai+1 and Ai = Ai+1, then obviously it holds for Ai .
If it holds for Ai+1 and Ai 6= Ai+1, then Ai is the result of resolving
Ai+1 and Ci . By the observation, all literals of Ai are made false
by A.

3 C mentions only decision variables in A.
Because every other variable, say pi , dissapears after resolving
with Ai+1 w.r.t. pi . Indeed, since A makes Ai+1 false, by the
observation pi has opposite signs in Ai+1 and Ci .

11 / 14

The DPLL Algorithm

6.11

Clause learning
Proposition: this policy fulfills the desiderata

Proof sketch: Observation: If pi
Ci7→ bi , then the only literal of Ci true

under A is the literal for pi (that is, Ci contains either pi or ¬pi , and bi
is chosen to make the literal true).

1 F ≡ F ∪ {C}
Because C is obtained from clauses of F through resolution
steps.

2 C is conflict clause: each literal is made false by A.
We show by induction that it holds for Ak+1,Ak ,Ak−1 · · ·A1 = C.
It holds for Ak+1 by definition.
If it holds for Ai+1 and Ai = Ai+1, then obviously it holds for Ai .
If it holds for Ai+1 and Ai 6= Ai+1, then Ai is the result of resolving
Ai+1 and Ci . By the observation, all literals of Ai are made false
by A.

3 C mentions only decision variables in A.
Because every other variable, say pi , dissapears after resolving
with Ai+1 w.r.t. pi . Indeed, since A makes Ai+1 false, by the
observation pi has opposite signs in Ai+1 and Ci .

11 / 14

The DPLL Algorithm

6.11

Clause learning
Proposition: this policy fulfills the desiderata

Proof sketch: Observation: If pi
Ci7→ bi , then the only literal of Ci true

under A is the literal for pi (that is, Ci contains either pi or ¬pi , and bi
is chosen to make the literal true).

1 F ≡ F ∪ {C}
Because C is obtained from clauses of F through resolution
steps.

2 C is conflict clause: each literal is made false by A.
We show by induction that it holds for Ak+1,Ak ,Ak−1 · · ·A1 = C.
It holds for Ak+1 by definition.
If it holds for Ai+1 and Ai = Ai+1, then obviously it holds for Ai .
If it holds for Ai+1 and Ai 6= Ai+1, then Ai is the result of resolving
Ai+1 and Ci . By the observation, all literals of Ai are made false
by A.

3 C mentions only decision variables in A.
Because every other variable, say pi , dissapears after resolving
with Ai+1 w.r.t. pi . Indeed, since A makes Ai+1 false, by the
observation pi has opposite signs in Ai+1 and Ci .

11 / 14

The DPLL Algorithm

6.12

Example: 4 queens

Problem: place 4 non-attacking queens on a 4x4 chess board

Variable pij models: there is a queen in square (i , j)

≥ 1 in each row:
∧4

i=1
∨4

j=1 pij

≤ 1 in each row:
∧4

i=1
∧4

j 6=j′=1 ¬pij ∨ ¬pij′

≤ 1 in each column:
∧4

j=1
∧4

i 6=i′=1 ¬pij ∨ ¬pi′ j

≤ 1 on each diagonal:
∧4

i,j=1
∨

k ¬pi−k,i+k ∨ ¬pi+k,j+k

Total number of clauses: 4 + 24 + 24 + 28 = 80

12 / 14

The DPLL Algorithm

6.12

Example: 4 queens

Problem: place 4 non-attacking queens on a 4x4 chess board
Variable pij models: there is a queen in square (i , j)

≥ 1 in each row:
∧4

i=1
∨4

j=1 pij

≤ 1 in each row:
∧4

i=1
∧4

j 6=j′=1 ¬pij ∨ ¬pij′

≤ 1 in each column:
∧4

j=1
∧4

i 6=i′=1 ¬pij ∨ ¬pi′ j

≤ 1 on each diagonal:
∧4

i,j=1
∨

k ¬pi−k,i+k ∨ ¬pi+k,j+k

Total number of clauses: 4 + 24 + 24 + 28 = 80

12 / 14

The DPLL Algorithm

6.13

DPLL: 4 queens

Running the DPLL algorithm:

Start with p11 7→ 1
delete {p11,p12,p13,p14}, delete ¬p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

Set p23 7→ 1
4 new unit clauses: {¬p24}, {¬p43}, {¬p32}, {¬p34}
unit propagation of {¬p34}: UNSAT

fixing only two literals collapsed from 80 clauses to 1
ruled out 214 of 216 possible assignments!

Backtrack: p11 7→ 0, p12 7→ 1
delete {¬p12}: 9 new unit clauses
unit propagation: leaves only 1 clause {p43}!

Answer: p12,p24,p31,p43 7→ 1

13 / 14

The DPLL Algorithm

6.13

DPLL: 4 queens

Running the DPLL algorithm:

Start with p11 7→ 1
delete {p11,p12,p13,p14}, delete ¬p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

Set p23 7→ 1
4 new unit clauses: {¬p24}, {¬p43}, {¬p32}, {¬p34}
unit propagation of {¬p34}: UNSAT

fixing only two literals collapsed from 80 clauses to 1
ruled out 214 of 216 possible assignments!

Backtrack: p11 7→ 0, p12 7→ 1
delete {¬p12}: 9 new unit clauses
unit propagation: leaves only 1 clause {p43}!

Answer: p12,p24,p31,p43 7→ 1

13 / 14

The DPLL Algorithm

6.13

DPLL: 4 queens

Running the DPLL algorithm:

Start with p11 7→ 1
delete {p11,p12,p13,p14}, delete ¬p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

Set p23 7→ 1
4 new unit clauses: {¬p24}, {¬p43}, {¬p32}, {¬p34}
unit propagation of {¬p34}: UNSAT

fixing only two literals collapsed from 80 clauses to 1
ruled out 214 of 216 possible assignments!

Backtrack: p11 7→ 0, p12 7→ 1
delete {¬p12}: 9 new unit clauses
unit propagation: leaves only 1 clause {p43}!

Answer: p12,p24,p31,p43 7→ 1

13 / 14

The DPLL Algorithm

6.13

DPLL: 4 queens

Running the DPLL algorithm:

Start with p11 7→ 1
delete {p11,p12,p13,p14}, delete ¬p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

Set p23 7→ 1
4 new unit clauses: {¬p24}, {¬p43}, {¬p32}, {¬p34}
unit propagation of {¬p34}: UNSAT

fixing only two literals collapsed from 80 clauses to 1
ruled out 214 of 216 possible assignments!

Backtrack: p11 7→ 0, p12 7→ 1
delete {¬p12}: 9 new unit clauses
unit propagation: leaves only 1 clause {p43}!

Answer: p12,p24,p31,p43 7→ 1

13 / 14

The DPLL Algorithm

6.14

Summary

Resolution:
very simple sound and complete proof calculus
basis for type unification

DPLL algorithm
improves resolution with clause learning and backtracking
very efficient basis for modern SAT solvers

14 / 14

