Lecture 5
 Resolution

Resolution proof calculus, Davis-Putnam procedure

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

Overview

SAT is bad:

- Truth tables: exponential time
- Horn-SAT, 2-SAT and X-SAT require special formulas
- Resolution: still worst case exponential time

Overview

SAT is bad:

- Truth tables: exponential time
- Horn-SAT, 2-SAT and X-SAT require special formulas
- Resolution: still worst case exponential time

But:

- very easy to automate
- very easy to analyse theoretically
- still sound and complete
- only takes polynomial time on Horn and 2-CNF formulas

Proof calculus

Resolution is a proof calculus for propositional logic

- rules of inference
- derive series of conclusions from series of hypothesis
- mechanical

Proof calculus

Resolution is a proof calculus for propositional logic

- rules of inference
- derive series of conclusions from series of hypothesis
- mechanical
- resolution has only one rule of inference
- is sound and complete:
- soundness: anything that we prove is valid
- completeness: anything that is valid can be proved

Set representation of CNF formulas

Resolution only works on CNF formulas. Handy representation:

- clause \rightarrow set of literals
- CNF formula \rightarrow set of clauses

Set representation of CNF formulas

Resolution only works on CNF formulas. Handy representation:

- clause \rightarrow set of literals
- CNF formula \rightarrow set of clauses

Example

$$
\left(p_{1} \vee \neg p_{2}\right) \wedge\left(p_{3} \vee \neg p_{4} \vee p_{5}\right) \wedge\left(\neg p_{2}\right)
$$

is represented as

$$
\left\{\left\{p_{1}, \neg p_{2}\right\},\left\{p_{3}, \neg p_{4}, p_{5}\right\},\left\{\neg p_{2}\right\}\right\}
$$

Set representation of CNF formulas

Elements have no order or multiplicity, so set representation is only normal form modulo associativity, commutativity, and idempotence:

$$
\begin{aligned}
& \left(p_{3} \wedge\left(p_{1} \vee p_{1} \vee \neg p_{2}\right) \wedge p_{3}\right) \\
& \left(\left(\neg p_{2} \vee p_{1} \vee \neg p_{2}\right) \wedge\left(p_{3} \vee p_{3}\right)\right) \\
& \left(p_{3} \wedge\left(\neg p_{2} \vee p_{1}\right)\right)
\end{aligned}
$$

all have representation $\left\{\left\{p_{3}\right\},\left\{p_{1}, \neg p_{2}\right\}\right\}$

Set representation of CNF formulas

Elements have no order or multiplicity, so set representation is only normal form modulo associativity, commutativity, and idempotence:

$$
\begin{aligned}
& \left(p_{3} \wedge\left(p_{1} \vee p_{1} \vee \neg p_{2}\right) \wedge p_{3}\right) \\
& \left(\left(\neg p_{2} \vee p_{1} \vee \neg p_{2}\right) \wedge\left(p_{3} \vee p_{3}\right)\right) \\
& \left(p_{3} \wedge\left(\neg p_{2} \vee p_{1}\right)\right)
\end{aligned}
$$

all have representation $\left\{\left\{p_{3}\right\},\left\{p_{1}, \neg p_{2}\right\}\right\}$

- Empty clause, denoted \square, is equivalent to false
- If CNF formula contains \square, it is unsatisfiable
- If CNF formula is \square, it is equivalent to true
(Compare: sum of empty set of natural numbers is 0 , but product of empty set of natural numbers is 1 .)

Resolvents

Recall: for L, complementary one \bar{L} is defined by

$$
\bar{L}:= \begin{cases}\neg p & \text { if } L=p \\ p & \text { if } L=\neg p\end{cases}
$$

Resolvents

Recall: for L, complementary one \bar{L} is defined by

$$
\bar{L}:= \begin{cases}\neg p & \text { if } L=p \\ p & \text { if } L=\neg p\end{cases}
$$

Definition

Let C_{1} and C_{2} be clauses. A clause R is called a resolvent of C_{1} and C_{2} if there are complementary literals $L \in C_{1}$ and $\bar{L} \in C_{2}$ such that

$$
R=\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right)
$$

Resolvents

Recall: for L, complementary one \bar{L} is defined by

$$
\bar{L}:= \begin{cases}\neg p & \text { if } L=p \\ p & \text { if } L=\neg p\end{cases}
$$

Definition

Let C_{1} and C_{2} be clauses. A clause R is called a resolvent of C_{1} and C_{2} if there are complementary literals $L \in C_{1}$ and $\bar{L} \in C_{2}$ such that

$$
R=\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right)
$$

We say R is derived from C_{1} and C_{2} by resolution, and write

$$
\frac{C_{1} \quad C_{2}}{R}
$$

Resolvents: example

Example

$\left\{p_{1}, p_{3}, \neg p_{4}\right\}$ resolves $\left\{p_{1}, p_{2}, \neg p_{4}\right\}$ and $\left\{\neg p_{2}, p_{3}\right\}$, the empty clause is a resolvent of $\left\{p_{1}\right\}$ and $\left\{\neg p_{1}\right\}$:

$$
\frac{\left\{p_{1}, p_{2}, \neg p_{4}\right\} \quad\left\{\neg p_{2}, p_{3}\right\}}{\left\{p_{1}, p_{3}, \neg p_{4}\right\}} \quad \frac{\left\{p_{1}\right\} \quad\left\{\neg p_{1}\right\}}{\square}
$$

Derivations and refutations

Definition

A derivation (or proof) of a clause C from a set of clauses F is a sequence $C_{1}, C_{2}, \ldots, C_{m}$ of clauses where $C_{m}=C$ and for each $i=1,2, \ldots, m$ either $C_{i} \in F$ or C_{i} is a resolvent of C_{j} and C_{k} for some $j, k<i$.

Derivations and refutations

Definition

A derivation (or proof) of a clause C from a set of clauses F is a sequence $C_{1}, C_{2}, \ldots, C_{m}$ of clauses where $C_{m}=C$ and for each $i=1,2, \ldots, m$ either $C_{i} \in F$ or C_{i} is a resolvent of C_{j} and C_{k} for some $j, k<i$.

A derivation of the empty clause \square from a formula F is called a refutation of F.

Derivations: example

A resolution refutation of the CNF formula

$$
\{\{x, \neg y\},\{y, z\},\{\neg x, \neg y, z\},\{\neg z\}\}
$$

is as follows:

1. $\{x, \neg y\}$ (Assumption)
2. $\{\neg x, z\}$
(2,4 Resolution)
3. $\{y, z\}$ (Assumption)
(1,2 Resolution)
4. $\{\neg z\}$
(Assumption)
5. $\{x, z\}$
6. $\{\neg x, \neg y, z\}$ (Assumption) 8. $\square \quad$ (6,7 Resolution)
7. $\{z\}$
(3,5 Resolution)

Derivations: example

A resolution refutation of the CNF formula

$$
\{\{x, \neg y\},\{y, z\},\{\neg x, \neg y, z\},\{\neg z\}\}
$$

is as follows:

1. $\{x, \neg y\}$ (Assumption)
2. $\{\neg x, z\}$
(2,4 Resolution)
3. $\{y, z\}$ (Assumption)
4. $\{\neg z\}$
(Assumption)
5. $\{x, z\} \quad(1,2$ Resolution)
6. $\{z\}$
(3,5 Resolution)
7. $\{\neg x, \neg y, z\} \quad$ (Assumption) 8. $\square \quad$ (6,7 Resolution)

Graphically represented by the following proof tree:

\[

\]

Refutations: comments

- A resolution refutation of a formula F can be seen as a proof that F is unsatisfiable
- Resolution can be used to prove entailments by transforming them to refutations
- For example, the refutation in previous example can be used to show that

$$
(x \vee \neg y) \wedge(y \vee z) \wedge(\neg x \vee \neg y \vee z) \models z
$$

Set of resolvents

Given set of clauses F, interested in set of all clauses derivable from F by resolution.

Definition

For set F of clauses, $\operatorname{Res}(F)$ is defined as

$$
\operatorname{Res}(F)=F \cup\{R \mid R \text { is a resolvent of two clauses in } F\}
$$

Furthermore define

$$
\begin{aligned}
\operatorname{Res}^{0}(F) & =F \\
\operatorname{Res}^{n+1}(F) & =\operatorname{Res}\left(\operatorname{Res}^{n}(F)\right) \text { for } n \geq 0
\end{aligned}
$$

and write

$$
\operatorname{Res}^{*}(F)=\bigcup_{n \geq 0} \operatorname{Res}^{n}(F)
$$

Set of resolvents

Given set of clauses F, interested in set of all clauses derivable from F by resolution.

Definition

For set F of clauses, $\operatorname{Res}(F)$ is defined as

$$
\operatorname{Res}(F)=F \cup\{R \mid R \text { is a resolvent of two clauses in } F\}
$$

Furthermore define

$$
\begin{aligned}
\operatorname{Res}^{0}(F) & =F \\
\operatorname{Res}^{n+1}(F) & =\operatorname{Res}\left(\operatorname{Res}^{n}(F)\right) \text { for } n \geq 0
\end{aligned}
$$

and write

$$
\operatorname{Res}^{*}(F)=\bigcup_{n \geq 0} \operatorname{Res}^{n}(F)
$$

Theorem

$C \in \operatorname{Res}^{*}(F)$ iff there is a derivation of C from F.

Soundness and completeness

Soundness: anything that we prove is valid Completeness: anything that is valid can be proved

The resolution lemma

Lemma

Let F be CNF formula represented as set of clauses. If R is a resolvent of clauses C_{1} and C_{2} of F, then $F \equiv F \cup\{R\}$.

The resolution lemma

Lemma

Let F be CNF formula represented as set of clauses. If R is a resolvent of clauses C_{1} and C_{2} of F, then $F \equiv F \cup\{R\}$.

Proof.

For assignment \mathcal{A}, clearly, if $\mathcal{A} \models F \cup\{R\}$ then $\mathcal{A} \models F$. Conversely, suppose $\mathcal{A} \models F$ and $R=\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right)$ for some literal L, where $L \in C_{1}$ and $\bar{L} \in C_{2}$.

- If $\mathcal{A} \models L$, then since $\mathcal{A} \models C_{2}$, it follows that $\mathcal{A} \models C_{2} \backslash\{\bar{L}\}$, and thus $\mathcal{A} \models R$.
- If $\mathcal{A} \models \bar{L}$, then since $\mathcal{A} \models C_{1}$, it follows that $\mathcal{A} \models C_{1} \backslash\{L\}$, and thus $\mathcal{A} \models R$.

Soundness

Soundness: can only derive a contradiction from an unsatisfiable set of clauses.

Soundness

Soundness: can only derive a contradiction from an unsatisfiable set of clauses.

Theorem
If we can derive \square from F, then F is unsatisfiable.

Soundness

Soundness: can only derive a contradiction from an unsatisfiable set of clauses.

```
Theorem
If we can derive }\square\mathrm{ from F, then F is unsatisfiable.
```


Proof.

Suppose $C_{1}, C_{2}, \ldots, C_{m}=\square$ is a proof of \square from F. Repeated application of the Resolution Lemma shows
$F \equiv F \cup\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$. But the latter set of clauses includes the empty clause.

Completeness

Completeness is converse of soundness: if a CNF formula is unsatisfiable then can derive the empty clause from it by resolution.

Completeness

Completeness is converse of soundness: if a CNF formula is unsatisfiable then can derive the empty clause from it by resolution.

Theorem

If F is unsatisfiable, then we can derive \square from F.

Completeness

Proof.

By induction on number n of variables in F.

Completeness

Proof.

By induction on number n of variables in F.

- If $n=0$, then F has no variables, so either contains no clauses or only the empty clause. In the former case $F \equiv$ true, which is satisfiable, so must have $F=\{\square\}$, giving one-line resolution refutation of F.

Completeness

Proof.

By induction on number n of variables in F.

- If $n=0$, then F has no variables, so either contains no clauses or only the empty clause. In the former case $F \equiv$ true, which is satisfiable, so must have $F=\{\square\}$, giving one-line resolution refutation of F.
- Suppose variables p_{0}, \ldots, p_{n}. Since F is unsatisfiable, so is $F_{0}:=F\left[f a l s e / p_{n}\right]$. Induction hypothesis gives resolution proof $C_{0}, C_{1}, \ldots, C_{m}=\square$ that derives \square from F_{0}.

Completeness

Proof.

By induction on number n of variables in F.

- If $n=0$, then F has no variables, so either contains no clauses or only the empty clause. In the former case $F \equiv$ true, which is satisfiable, so must have $F=\{\square\}$, giving one-line resolution refutation of F.
- Suppose variables p_{0}, \ldots, p_{n}. Since F is unsatisfiable, so is $F_{0}:=F\left[f a l s e / p_{n}\right]$. Induction hypothesis gives resolution proof $C_{0}, C_{1}, \ldots, C_{m}=\square$ that derives \square from F_{0}. Each C_{i} from F_{0} is either already in F or $C_{i} \cup\left\{p_{n}\right\}$ is in F.

Completeness

Proof.

By induction on number n of variables in F.

- If $n=0$, then F has no variables, so either contains no clauses or only the empty clause. In the former case $F \equiv$ true, which is satisfiable, so must have $F=\{\square\}$, giving one-line resolution refutation of F.
- Suppose variables p_{0}, \ldots, p_{n}. Since F is unsatisfiable, so is $F_{0}:=F\left[f a l s e / p_{n}\right]$. Induction hypothesis gives resolution proof $C_{0}, C_{1}, \ldots, C_{m}=\square$ that derives \square from F_{0}. Each C_{i} from F_{0} is either already in F or $C_{i} \cup\left\{p_{n}\right\}$ is in F. Re-introducing p_{n} and propagating gives proof $C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{m}^{\prime}$ from F where either $C_{m}^{\prime}=\square$ or $C_{m}^{\prime}=\left\{p_{n}\right\}$.

Completeness

Proof.

By induction on number n of variables in F.

- If $n=0$, then F has no variables, so either contains no clauses or only the empty clause. In the former case $F \equiv$ true, which is satisfiable, so must have $F=\{\square\}$, giving one-line resolution refutation of F.
- Suppose variables p_{0}, \ldots, p_{n}. Since F is unsatisfiable, so is $F_{0}:=F\left[f a l s e / p_{n}\right]$. Induction hypothesis gives resolution proof $C_{0}, C_{1}, \ldots, C_{m}=\square$ that derives \square from F_{0}. Each C_{i} from F_{0} is either already in F or $C_{i} \cup\left\{p_{n}\right\}$ is in F. Re-introducing p_{n} and propagating gives proof $C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{m}^{\prime}$ from F where either $C_{m}^{\prime}=\square$ or $C_{m}^{\prime}=\left\{p_{n}\right\}$.
- Apply similar reasoning to $F_{1}:=F\left[\right.$ true $\left./ p_{n}\right]$, get proof of $\left\{\neg p_{n}\right\}$ from F.

Completeness

Proof.

By induction on number n of variables in F.

- If $n=0$, then F has no variables, so either contains no clauses or only the empty clause. In the former case $F \equiv$ true, which is satisfiable, so must have $F=\{\square\}$, giving one-line resolution refutation of F.
- Suppose variables p_{0}, \ldots, p_{n}. Since F is unsatisfiable, so is $F_{0}:=F\left[f a l s e / p_{n}\right]$. Induction hypothesis gives resolution proof $C_{0}, C_{1}, \ldots, C_{m}=\square$ that derives \square from F_{0}. Each C_{i} from F_{0} is either already in F or $C_{i} \cup\left\{p_{n}\right\}$ is in F. Re-introducing p_{n} and propagating gives proof $C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{m}^{\prime}$ from F where either $C_{m}^{\prime}=\square$ or $C_{m}^{\prime}=\left\{p_{n}\right\}$.
- Apply similar reasoning to $F_{1}:=F\left[\right.$ true $\left./ p_{n}\right]$, get proof of $\left\{\neg p_{n}\right\}$ from F. Glue together these two proofs and apply one more resolution step to $\left\{p_{n}\right\}$ and $\left\{\neg p_{n}\right\}$.

Completeness: example

Example

Consider $F=\{\{p, r\},\{\neg p, q\},\{\neg q, r\}\}$.
Transform the following derivation of \square from $F[f a / s e / r]$

to the following derivation of $\{r\}$ from F :

\[

\]

The Davis-Putnam procedure

Can turn resolution into a SAT solver
Basic idea: Davis-Putnam procedure

Use resolution to perform variable elimination, and compute satisfying valuation

Variable elimination

Eliminate p from CNF formula F to get new formula G :
(1) If p occurs only positively in F, delete all clauses containing p, so $G:=F[$ true $/ p]$
(2) If p occurs only negatively in F, delete all clauses containing \bar{p}, so $G:=F[$ false $/ p]$
(3) Suppose p occurs both positively and negatively in F. For every pair of clauses C, D in F with $p \in C$ and $\bar{p} \in D$, add the resolvent of C and D (w.r.t. p) to F. Delete all clauses containing p or \bar{p} from F to get G.

Variable elimination

Eliminate p from CNF formula F to get new formula G :
(1) If p occurs only positively in F, delete all clauses containing p, so $G:=F[$ true $/ p]$
(2) If p occurs only negatively in F, delete all clauses containing \bar{p}, so $G:=F[$ false $/ p]$
(3) Suppose p occurs both positively and negatively in F. For every pair of clauses C, D in F with $p \in C$ and $\bar{p} \in D$, add the resolvent of C and D (w.r.t. p) to F. Delete all clauses containing p or \bar{p} from F to get G.

Example

Eliminating p from $\{\{p\},\{\neg p, q\},\{\neg q, r\},\{\neg r, s, t\}\}$ gives $\{\{q\},\{\neg q, r\},\{\neg r, s, t\}\}$.

Variable elimination: correctness

Lemma (Elimination Lemma)

If eliminating variable p from F gives G then

- F and G are equisatisfiable
- if $\mathcal{A} \models G$ then $\mathcal{A}_{[p \mapsto a]} \models F$ for some $a \in\{0,1\}$ that can be determined from \mathcal{A} and F.

The Davis-Putnam algorithm

Davis-Putnam (F)
begin
remove all valid clauses from F
if $F=\{\square\}$ then return UNSAT
if $F=\emptyset$ then return the 0 assignment
let G arise by eliminating a variable p from F
if Davis-Putnam $(G)=$ UNSAT then return UNSAT
if Davis-Putnam $(G)=\mathcal{A}$ then return $\mathcal{A}_{[p \mapsto a]}$,
with a chosen as in the Elimination Lemma
end

Davis-Putnam: example

First eliminate variables (p, q, r, s) :

$$
\begin{aligned}
& \text { Davis-Putnam }(\{\{p\},\{\neg p, q\},\{\neg q, r\},\{\neg r, s, t\}\}) \\
& =\operatorname{Davis-Putnam}(\{\{q\},\{\neg q, r\},\{\neg r, s, t\}\}) \\
& =\operatorname{Davis-Putnam}(\{\{r\},\{\neg r, s, t\}\}) \\
& =\text { Davis-Putnam }(\{\{s, t\}\}) \\
& =\operatorname{Davis-Putnam}(\emptyset)
\end{aligned}
$$

Then recurse back up to get satisfying assignment:

$$
\begin{aligned}
t & \mapsto 0 \\
s & \mapsto 1 \\
r & \mapsto 1 \\
q & \mapsto 1 \\
p & \mapsto 1
\end{aligned}
$$

Complexity

Davis-Putnam is worst case exponential time (unsurprising: intermediate clauses can become big)

Complexity

Davis-Putnam is worst case exponential time (unsurprising: intermediate clauses can become big)

Questions:

- Can one efficiently precompute a (near)optimal variable ordering?

Complexity

Davis-Putnam is worst case exponential time (unsurprising: intermediate clauses can become big)

Questions:

- Can one efficiently precompute a (near)optimal variable ordering?
- Given k, can one efficiently precompute a variable ordering such that Davis-Putnam only produces k-clauses?

Complexity

Davis-Putnam is worst case exponential time (unsurprising: intermediate clauses can become big)

Questions:

- Can one efficiently precompute a (near)optimal variable ordering?
- Given k, can one efficiently precompute a variable ordering such that Davis-Putnam only produces k-clauses?
- More simply: suppose $F=F_{1} \wedge F_{2}$, where F_{1} and F_{2} have only variable p in common. Should I eliminate p first, last or in some other position?

Answers:
 next time ...

Summary

Resolution is:

- a proof calculus
- sound and complete
- very simple

Davis-Putnam:

- depend on order of elimination

