
Resolution

5.1

Lecture 5
Resolution
Resolution proof calculus, Davis-Putnam procedure

Dr Christoph Haase
University of Oxford

(with small changes by Javier Esparza)

1 / 24

Resolution

5.2

Overview

SAT is bad:
Truth tables: exponential time

Horn-SAT, 2-SAT and X-SAT require special formulas
Resolution: still worst case exponential time

But:
very easy to automate

very easy to analyse theoretically

still sound and complete

only takes polynomial time on Horn and 2-CNF formulas

2 / 24

Resolution

5.2

Overview

SAT is bad:
Truth tables: exponential time

Horn-SAT, 2-SAT and X-SAT require special formulas
Resolution: still worst case exponential time

But:
very easy to automate

very easy to analyse theoretically

still sound and complete

only takes polynomial time on Horn and 2-CNF formulas

2 / 24

Resolution

5.3

Proof calculus

Resolution is a proof calculus for propositional logic
rules of inference

derive series of conclusions from series of hypothesis

mechanical

resolution has only one rule of inference

is sound and complete:
soundness: anything that we prove is valid
completeness: anything that is valid can be proved

3 / 24

Resolution

5.3

Proof calculus

Resolution is a proof calculus for propositional logic
rules of inference

derive series of conclusions from series of hypothesis

mechanical

resolution has only one rule of inference

is sound and complete:
soundness: anything that we prove is valid
completeness: anything that is valid can be proved

3 / 24

Resolution

5.4

Set representation of CNF formulas

Resolution only works on CNF formulas.
Handy representation:

clause→ set of literals
CNF formula→ set of clauses

Example

(p1 ∨ ¬p2) ∧ (p3 ∨ ¬p4 ∨ p5) ∧ (¬p2)

is represented as

{{p1,¬p2}, {p3,¬p4,p5}, {¬p2}}

4 / 24

Resolution

5.4

Set representation of CNF formulas

Resolution only works on CNF formulas.
Handy representation:

clause→ set of literals
CNF formula→ set of clauses

Example

(p1 ∨ ¬p2) ∧ (p3 ∨ ¬p4 ∨ p5) ∧ (¬p2)

is represented as

{{p1,¬p2}, {p3,¬p4,p5}, {¬p2}}

4 / 24

Resolution

5.5

Set representation of CNF formulas

Elements have no order or multiplicity, so set representation is only
normal form modulo associativity, commutativity, and idempotence:

(p3 ∧ (p1 ∨ p1 ∨ ¬p2) ∧ p3)

((¬p2 ∨ p1 ∨ ¬p2) ∧ (p3 ∨ p3))

(p3 ∧ (¬p2 ∨ p1))

all have representation {{p3}, {p1,¬p2}}

Empty clause, denoted �, is equivalent to false
If CNF formula contains �, it is unsatisfiable
If CNF formula is �, it is equivalent to true

(Compare: sum of empty set of natural numbers is 0,
but product of empty set of natural numbers is 1.)

5 / 24

Resolution

5.5

Set representation of CNF formulas

Elements have no order or multiplicity, so set representation is only
normal form modulo associativity, commutativity, and idempotence:

(p3 ∧ (p1 ∨ p1 ∨ ¬p2) ∧ p3)

((¬p2 ∨ p1 ∨ ¬p2) ∧ (p3 ∨ p3))

(p3 ∧ (¬p2 ∨ p1))

all have representation {{p3}, {p1,¬p2}}
Empty clause, denoted �, is equivalent to false
If CNF formula contains �, it is unsatisfiable
If CNF formula is �, it is equivalent to true

(Compare: sum of empty set of natural numbers is 0,
but product of empty set of natural numbers is 1.)

5 / 24

Resolution

5.6

Resolvents

Recall: for L, complementary one L is defined by

L :=

{
¬p if L = p
p if L = ¬p

Definition

Let C1 and C2 be clauses. A clause R is called a resolvent of C1 and
C2 if there are complementary literals L ∈ C1 and L ∈ C2 such that

R = (C1 \ {L}) ∪ (C2 \ {L})

We say R is derived from C1 and C2 by resolution, and write

C1 C2

R

6 / 24

Resolution

5.6

Resolvents

Recall: for L, complementary one L is defined by

L :=

{
¬p if L = p
p if L = ¬p

Definition

Let C1 and C2 be clauses. A clause R is called a resolvent of C1 and
C2 if there are complementary literals L ∈ C1 and L ∈ C2 such that

R = (C1 \ {L}) ∪ (C2 \ {L})

We say R is derived from C1 and C2 by resolution, and write

C1 C2

R

6 / 24

Resolution

5.6

Resolvents

Recall: for L, complementary one L is defined by

L :=

{
¬p if L = p
p if L = ¬p

Definition

Let C1 and C2 be clauses. A clause R is called a resolvent of C1 and
C2 if there are complementary literals L ∈ C1 and L ∈ C2 such that

R = (C1 \ {L}) ∪ (C2 \ {L})

We say R is derived from C1 and C2 by resolution, and write

C1 C2

R

6 / 24

Resolution

5.7

Resolvents: example

Example

{p1,p3,¬p4} resolves {p1,p2,¬p4} and {¬p2,p3},
the empty clause is a resolvent of {p1} and {¬p1}:

{p1,p2,¬p4} {¬p2,p3}
{p1,p3,¬p4}

{p1} {¬p1}
�

7 / 24

Resolution

5.8

Derivations and refutations

Definition

A derivation (or proof) of a clause C from a set of clauses F is a
sequence C1,C2, . . . ,Cm of clauses where Cm = C and for each
i = 1,2, . . . ,m either Ci ∈ F or Ci is a resolvent of Cj and Ck for some
j , k < i .

A derivation of the empty clause � from a formula F is called a
refutation of F .

8 / 24

Resolution

5.8

Derivations and refutations

Definition

A derivation (or proof) of a clause C from a set of clauses F is a
sequence C1,C2, . . . ,Cm of clauses where Cm = C and for each
i = 1,2, . . . ,m either Ci ∈ F or Ci is a resolvent of Cj and Ck for some
j , k < i .

A derivation of the empty clause � from a formula F is called a
refutation of F .

8 / 24

Resolution

5.9

Derivations: example

A resolution refutation of the CNF formula

{{x ,¬y}, {y , z}, {¬x ,¬y , z}, {¬z}}

is as follows:

1. {x ,¬y} (Assumption) 5. {¬x , z} (2,4 Resolution)
2. {y , z} (Assumption) 6. {¬z} (Assumption)
3. {x , z} (1,2 Resolution) 7. {z} (3,5 Resolution)
4. {¬x ,¬y , z} (Assumption) 8. � (6,7 Resolution)

Graphically represented by the following proof tree:

{x ,¬y} {y , z}
{x , z}

{y , z} {¬x ,¬y , z}
{¬x , z}

{z} {¬z}
�

9 / 24

Resolution

5.9

Derivations: example

A resolution refutation of the CNF formula

{{x ,¬y}, {y , z}, {¬x ,¬y , z}, {¬z}}

is as follows:

1. {x ,¬y} (Assumption) 5. {¬x , z} (2,4 Resolution)
2. {y , z} (Assumption) 6. {¬z} (Assumption)
3. {x , z} (1,2 Resolution) 7. {z} (3,5 Resolution)
4. {¬x ,¬y , z} (Assumption) 8. � (6,7 Resolution)

Graphically represented by the following proof tree:

{x ,¬y} {y , z}
{x , z}

{y , z} {¬x ,¬y , z}
{¬x , z}

{z} {¬z}
�

9 / 24

Resolution

5.10

Refutations: comments

A resolution refutation of a formula F can be seen as a proof that
F is unsatisfiable

Resolution can be used to prove entailments by transforming
them to refutations

For example, the refutation in previous example can be used to
show that

(x ∨ ¬y) ∧ (y ∨ z) ∧ (¬x ∨ ¬y ∨ z) |= z

10 / 24

Resolution

5.11

Set of resolvents
Given set of clauses F , interested in set of all clauses derivable from
F by resolution.

Definition

For set F of clauses, Res(F) is defined as

Res(F) = F ∪ {R | R is a resolvent of two clauses in F}

Furthermore define

Res0(F) = F

Resn+1(F) = Res(Resn(F)) for n ≥ 0

and write
Res∗(F) =

⋃
n≥0

Resn(F)

Theorem

C ∈ Res∗(F) iff there is a derivation of C from F.

11 / 24

Resolution

5.11

Set of resolvents
Given set of clauses F , interested in set of all clauses derivable from
F by resolution.

Definition

For set F of clauses, Res(F) is defined as

Res(F) = F ∪ {R | R is a resolvent of two clauses in F}

Furthermore define

Res0(F) = F

Resn+1(F) = Res(Resn(F)) for n ≥ 0

and write
Res∗(F) =

⋃
n≥0

Resn(F)

Theorem

C ∈ Res∗(F) iff there is a derivation of C from F.

11 / 24

Resolution

5.12

Soundness and completeness

Soundness: anything that we prove is valid
Completeness: anything that is valid can be proved

12 / 24

Resolution

5.13

The resolution lemma

Lemma

Let F be CNF formula represented as set of clauses. If R is a
resolvent of clauses C1 and C2 of F , then F ≡ F ∪ {R}.

Proof.

For assignment A, clearly, if A |= F ∪ {R} then A |= F . Conversely,
suppose A |= F and R = (C1 \ {L}) ∪ (C2 \ {L}) for some literal L,
where L ∈ C1 and L ∈ C2.

If A |= L, then since A |= C2, it follows that A |= C2 \ {L}, and
thus A |= R.
If A |= L, then since A |= C1, it follows that A |= C1 \ {L}, and
thus A |= R.

13 / 24

Resolution

5.13

The resolution lemma

Lemma

Let F be CNF formula represented as set of clauses. If R is a
resolvent of clauses C1 and C2 of F , then F ≡ F ∪ {R}.

Proof.

For assignment A, clearly, if A |= F ∪ {R} then A |= F . Conversely,
suppose A |= F and R = (C1 \ {L}) ∪ (C2 \ {L}) for some literal L,
where L ∈ C1 and L ∈ C2.

If A |= L, then since A |= C2, it follows that A |= C2 \ {L}, and
thus A |= R.
If A |= L, then since A |= C1, it follows that A |= C1 \ {L}, and
thus A |= R.

13 / 24

Resolution

5.14

Soundness

Soundness: can only derive a contradiction from an unsatisfiable set
of clauses.

Theorem

If we can derive � from F, then F is unsatisfiable.

Proof.

Suppose C1,C2, . . . ,Cm = � is a proof of � from F . Repeated
application of the Resolution Lemma shows
F ≡ F ∪ {C1,C2, . . . ,Cm}. But the latter set of clauses includes the
empty clause.

14 / 24

Resolution

5.14

Soundness

Soundness: can only derive a contradiction from an unsatisfiable set
of clauses.

Theorem

If we can derive � from F, then F is unsatisfiable.

Proof.

Suppose C1,C2, . . . ,Cm = � is a proof of � from F . Repeated
application of the Resolution Lemma shows
F ≡ F ∪ {C1,C2, . . . ,Cm}. But the latter set of clauses includes the
empty clause.

14 / 24

Resolution

5.14

Soundness

Soundness: can only derive a contradiction from an unsatisfiable set
of clauses.

Theorem

If we can derive � from F, then F is unsatisfiable.

Proof.

Suppose C1,C2, . . . ,Cm = � is a proof of � from F . Repeated
application of the Resolution Lemma shows
F ≡ F ∪ {C1,C2, . . . ,Cm}. But the latter set of clauses includes the
empty clause.

14 / 24

Resolution

5.15

Completeness

Completeness is converse of soundness: if a CNF formula is
unsatisfiable then can derive the empty clause from it by resolution.

Theorem

If F is unsatisfiable, then we can derive � from F.

15 / 24

Resolution

5.15

Completeness

Completeness is converse of soundness: if a CNF formula is
unsatisfiable then can derive the empty clause from it by resolution.

Theorem

If F is unsatisfiable, then we can derive � from F.

15 / 24

Resolution

5.16

Completeness

Proof.

By induction on number n of variables in F .

If n = 0, then F has no variables, so either contains no clauses
or only the empty clause. In the former case F ≡ true, which is
satisfiable, so must have F = {�}, giving one-line resolution
refutation of F .
Suppose variables p0, . . . ,pn. Since F is unsatisfiable, so is
F0 := F [false/pn]. Induction hypothesis gives resolution proof
C0,C1, . . . ,Cm = � that derives � from F0. Each Ci from F0 is
either already in F or Ci ∪ {pn} is in F . Re-introducing pn and
propagating gives proof C′0,C

′
1, . . . ,C

′
m from F where either

C′m = � or C′m = {pn}.
Apply similar reasoning to F1 := F [true/pn], get proof of {¬pn}
from F . Glue together these two proofs and apply one more
resolution step to {pn} and {¬pn}.

16 / 24

Resolution

5.16

Completeness

Proof.

By induction on number n of variables in F .
If n = 0, then F has no variables, so either contains no clauses
or only the empty clause. In the former case F ≡ true, which is
satisfiable, so must have F = {�}, giving one-line resolution
refutation of F .

Suppose variables p0, . . . ,pn. Since F is unsatisfiable, so is
F0 := F [false/pn]. Induction hypothesis gives resolution proof
C0,C1, . . . ,Cm = � that derives � from F0. Each Ci from F0 is
either already in F or Ci ∪ {pn} is in F . Re-introducing pn and
propagating gives proof C′0,C

′
1, . . . ,C

′
m from F where either

C′m = � or C′m = {pn}.
Apply similar reasoning to F1 := F [true/pn], get proof of {¬pn}
from F . Glue together these two proofs and apply one more
resolution step to {pn} and {¬pn}.

16 / 24

Resolution

5.16

Completeness

Proof.

By induction on number n of variables in F .
If n = 0, then F has no variables, so either contains no clauses
or only the empty clause. In the former case F ≡ true, which is
satisfiable, so must have F = {�}, giving one-line resolution
refutation of F .
Suppose variables p0, . . . ,pn. Since F is unsatisfiable, so is
F0 := F [false/pn]. Induction hypothesis gives resolution proof
C0,C1, . . . ,Cm = � that derives � from F0.

Each Ci from F0 is
either already in F or Ci ∪ {pn} is in F . Re-introducing pn and
propagating gives proof C′0,C

′
1, . . . ,C

′
m from F where either

C′m = � or C′m = {pn}.
Apply similar reasoning to F1 := F [true/pn], get proof of {¬pn}
from F . Glue together these two proofs and apply one more
resolution step to {pn} and {¬pn}.

16 / 24

Resolution

5.16

Completeness

Proof.

By induction on number n of variables in F .
If n = 0, then F has no variables, so either contains no clauses
or only the empty clause. In the former case F ≡ true, which is
satisfiable, so must have F = {�}, giving one-line resolution
refutation of F .
Suppose variables p0, . . . ,pn. Since F is unsatisfiable, so is
F0 := F [false/pn]. Induction hypothesis gives resolution proof
C0,C1, . . . ,Cm = � that derives � from F0. Each Ci from F0 is
either already in F or Ci ∪ {pn} is in F .

Re-introducing pn and
propagating gives proof C′0,C

′
1, . . . ,C

′
m from F where either

C′m = � or C′m = {pn}.
Apply similar reasoning to F1 := F [true/pn], get proof of {¬pn}
from F . Glue together these two proofs and apply one more
resolution step to {pn} and {¬pn}.

16 / 24

Resolution

5.16

Completeness

Proof.

By induction on number n of variables in F .
If n = 0, then F has no variables, so either contains no clauses
or only the empty clause. In the former case F ≡ true, which is
satisfiable, so must have F = {�}, giving one-line resolution
refutation of F .
Suppose variables p0, . . . ,pn. Since F is unsatisfiable, so is
F0 := F [false/pn]. Induction hypothesis gives resolution proof
C0,C1, . . . ,Cm = � that derives � from F0. Each Ci from F0 is
either already in F or Ci ∪ {pn} is in F . Re-introducing pn and
propagating gives proof C′0,C

′
1, . . . ,C

′
m from F where either

C′m = � or C′m = {pn}.

Apply similar reasoning to F1 := F [true/pn], get proof of {¬pn}
from F . Glue together these two proofs and apply one more
resolution step to {pn} and {¬pn}.

16 / 24

Resolution

5.16

Completeness

Proof.

By induction on number n of variables in F .
If n = 0, then F has no variables, so either contains no clauses
or only the empty clause. In the former case F ≡ true, which is
satisfiable, so must have F = {�}, giving one-line resolution
refutation of F .
Suppose variables p0, . . . ,pn. Since F is unsatisfiable, so is
F0 := F [false/pn]. Induction hypothesis gives resolution proof
C0,C1, . . . ,Cm = � that derives � from F0. Each Ci from F0 is
either already in F or Ci ∪ {pn} is in F . Re-introducing pn and
propagating gives proof C′0,C

′
1, . . . ,C

′
m from F where either

C′m = � or C′m = {pn}.
Apply similar reasoning to F1 := F [true/pn], get proof of {¬pn}
from F .

Glue together these two proofs and apply one more
resolution step to {pn} and {¬pn}.

16 / 24

Resolution

5.16

Completeness

Proof.

By induction on number n of variables in F .
If n = 0, then F has no variables, so either contains no clauses
or only the empty clause. In the former case F ≡ true, which is
satisfiable, so must have F = {�}, giving one-line resolution
refutation of F .
Suppose variables p0, . . . ,pn. Since F is unsatisfiable, so is
F0 := F [false/pn]. Induction hypothesis gives resolution proof
C0,C1, . . . ,Cm = � that derives � from F0. Each Ci from F0 is
either already in F or Ci ∪ {pn} is in F . Re-introducing pn and
propagating gives proof C′0,C

′
1, . . . ,C

′
m from F where either

C′m = � or C′m = {pn}.
Apply similar reasoning to F1 := F [true/pn], get proof of {¬pn}
from F . Glue together these two proofs and apply one more
resolution step to {pn} and {¬pn}.

16 / 24

Resolution

5.17

Completeness: example

Example

Consider F = {{p, r}, {¬p,q}, {¬q, r}}.
Transform the following derivation of � from F [false/r]

{p} {¬p,q}
{q} {¬q}

�

to the following derivation of {r} from F :

{p, r} {¬p,q}
{q, r} {¬q, r}

{r}

17 / 24

Resolution

5.18

The Davis–Putnam procedure

Can turn resolution into a SAT solver

Basic idea: Davis–Putnam procedure

Use resolution to perform variable elimination,
and compute satisfying valuation

18 / 24

Resolution

5.19

Variable elimination

Eliminate p from CNF formula F to get new formula G:

1 If p occurs only positively in F ,
delete all clauses containing p, so G := F [true/p]

2 If p occurs only negatively in F ,
delete all clauses containing p, so G := F [false/p]

3 Suppose p occurs both positively and negatively in F .
For every pair of clauses C,D in F with p ∈ C and p ∈ D,
add the resolvent of C and D (w.r.t. p) to F .
Delete all clauses containing p or p from F to get G.

Example

Eliminating p from {{p}, {¬p,q}, {¬q, r}, {¬r , s, t}} gives
{{q}, {¬q, r}, {¬r , s, t}}.

19 / 24

Resolution

5.19

Variable elimination

Eliminate p from CNF formula F to get new formula G:

1 If p occurs only positively in F ,
delete all clauses containing p, so G := F [true/p]

2 If p occurs only negatively in F ,
delete all clauses containing p, so G := F [false/p]

3 Suppose p occurs both positively and negatively in F .
For every pair of clauses C,D in F with p ∈ C and p ∈ D,
add the resolvent of C and D (w.r.t. p) to F .
Delete all clauses containing p or p from F to get G.

Example

Eliminating p from {{p}, {¬p,q}, {¬q, r}, {¬r , s, t}} gives
{{q}, {¬q, r}, {¬r , s, t}}.

19 / 24

Resolution

5.20

Variable elimination: correctness

Lemma (Elimination Lemma)

If eliminating variable p from F gives G then

F and G are equisatisfiable

if A |= G then A[p 7→a] |= F for some a ∈ {0,1}
that can be determined from A and F.

20 / 24

Resolution

5.21

The Davis–Putnam algorithm

Davis–Putnam(F)
begin
remove all valid clauses from F
if F = {�} then return UNSAT
if F = ∅ then return the 0 assignment
let G arise by eliminating a variable p from F
if Davis–Putnam(G) = UNSAT then return UNSAT
if Davis–Putnam(G) = A then return A[p 7→a],

with a chosen as in the Elimination Lemma
end

21 / 24

Resolution

5.22

Davis–Putnam: example

First eliminate variables (p,q, r , s):

Davis–Putnam({{p}, {¬p,q}, {¬q, r}, {¬r , s, t}})
= Davis–Putnam({{q}, {¬q, r}, {¬r , s, t}})
= Davis–Putnam({{r}, {¬r , s, t}})
= Davis–Putnam({{s, t}})
= Davis–Putnam(∅)

Then recurse back up to get satisfying assignment:

t 7→ 0
s 7→ 1
r 7→ 1
q 7→ 1
p 7→ 1

22 / 24

Resolution

5.23

Complexity

Davis–Putnam is worst case exponential time
(unsurprising: intermediate clauses can become big)

Questions:

Can one efficiently precompute a (near)optimal variable
ordering?

Given k , can one efficiently precompute a variable ordering such
that Davis–Putnam only produces k -clauses?

More simply: suppose F = F1 ∧ F2, where F1 and F2 have only
variable p in common. Should I eliminate p first, last or in some
other position?

Answers:

next time ...

23 / 24

Resolution

5.23

Complexity

Davis–Putnam is worst case exponential time
(unsurprising: intermediate clauses can become big)

Questions:

Can one efficiently precompute a (near)optimal variable
ordering?

Given k , can one efficiently precompute a variable ordering such
that Davis–Putnam only produces k -clauses?

More simply: suppose F = F1 ∧ F2, where F1 and F2 have only
variable p in common. Should I eliminate p first, last or in some
other position?

Answers:

next time ...

23 / 24

Resolution

5.23

Complexity

Davis–Putnam is worst case exponential time
(unsurprising: intermediate clauses can become big)

Questions:

Can one efficiently precompute a (near)optimal variable
ordering?

Given k , can one efficiently precompute a variable ordering such
that Davis–Putnam only produces k -clauses?

More simply: suppose F = F1 ∧ F2, where F1 and F2 have only
variable p in common. Should I eliminate p first, last or in some
other position?

Answers:

next time ...

23 / 24

Resolution

5.23

Complexity

Davis–Putnam is worst case exponential time
(unsurprising: intermediate clauses can become big)

Questions:

Can one efficiently precompute a (near)optimal variable
ordering?

Given k , can one efficiently precompute a variable ordering such
that Davis–Putnam only produces k -clauses?

More simply: suppose F = F1 ∧ F2, where F1 and F2 have only
variable p in common. Should I eliminate p first, last or in some
other position?

Answers:

next time ...

23 / 24

Resolution

5.24

Summary

Resolution is:
a proof calculus
sound and complete
very simple

Davis–Putnam:
decision algorithm for SAT
basis of SAT solvers
polynomial time on nice formulas
worst case exponential time
depend on order of elimination

24 / 24

	Resolution

