Lecture 5 Resolution

Resolution proof calculus, Davis-Putnam procedure

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

Overview

SAT is bad:

- Truth tables: exponential time
- Horn-SAT, 2-SAT and X-SAT require special formulas
- Resolution: still worst case exponential time

Overview

SAT is bad:

- Truth tables: exponential time
- Horn-SAT, 2-SAT and X-SAT require special formulas
- Resolution: still worst case exponential time

But:

- very easy to automate
- very easy to analyse theoretically
- still sound and complete
- only takes polynomial time on Horn and 2-CNF formulas

Proof calculus

Resolution is a proof calculus for propositional logic

- rules of inference
- derive series of conclusions from series of hypothesis
- mechanical

Proof calculus

Resolution is a proof calculus for propositional logic

- rules of inference
- derive series of conclusions from series of hypothesis
- mechanical
- resolution has only one rule of inference
- is sound and complete:
 - soundness: anything that we prove is valid
 - completeness: anything that is valid can be proved

Resolution only works on CNF formulas. Handy representation:

- clause \rightarrow set of literals
- $\bullet \ \ \text{CNF formula} \to \text{set of clauses}$

Resolution only works on CNF formulas. Handy representation:

- clause \rightarrow set of literals
- CNF formula \rightarrow set of clauses

Example

$$(p_1 \lor \neg p_2) \land (p_3 \lor \neg p_4 \lor p_5) \land (\neg p_2)$$

is represented as

 $\{\{p_1,\neg p_2\},\{p_3,\neg p_4,p_5\},\{\neg p_2\}\}$

Elements have no order or multiplicity, so set representation is only normal form modulo associativity, commutativity, and idempotence:

$$(p_3 \land (p_1 \lor p_1 \lor \neg p_2) \land p_3) \\ ((\neg p_2 \lor p_1 \lor \neg p_2) \land (p_3 \lor p_3)) \\ (p_3 \land (\neg p_2 \lor p_1))$$

all have representation $\{\{p_3\}, \{p_1, \neg p_2\}\}$

Elements have no order or multiplicity, so set representation is only normal form modulo associativity, commutativity, and idempotence:

$$\begin{array}{l} (\rho_3 \wedge (\rho_1 \vee \rho_1 \vee \neg \rho_2) \wedge \rho_3) \\ ((\neg \rho_2 \vee \rho_1 \vee \neg \rho_2) \wedge (\rho_3 \vee \rho_3)) \\ (\rho_3 \wedge (\neg \rho_2 \vee \rho_1)) \end{array}$$

all have representation $\{\{p_3\}, \{p_1, \neg p_2\}\}$

- Empty clause, denoted □, is equivalent to false
- If CNF formula contains □, it is unsatisfiable
- If CNF formula is □, it is equivalent to true

(Compare: sum of empty set of natural numbers is 0, but product of empty set of natural numbers is 1.)

Resolvents

Recall: for *L*, complementary one \overline{L} is defined by

$$\overline{L} := \begin{cases} \neg p & \text{if } L = p \\ p & \text{if } L = \neg p \end{cases}$$

Resolvents

Recall: for *L*, complementary one \overline{L} is defined by

$$\overline{L} := \begin{cases} \neg p & \text{if } L = p \\ p & \text{if } L = \neg p \end{cases}$$

Definition

Let C_1 and C_2 be clauses. A clause *R* is called a **resolvent** of C_1 and C_2 if there are complementary literals $L \in C_1$ and $\overline{L} \in C_2$ such that

 $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$

Resolvents

Recall: for *L*, complementary one \overline{L} is defined by

$$\overline{L} := \begin{cases} \neg p & \text{if } L = p \\ p & \text{if } L = \neg p \end{cases}$$

Definition

Let C_1 and C_2 be clauses. A clause *R* is called a **resolvent** of C_1 and C_2 if there are complementary literals $L \in C_1$ and $\overline{L} \in C_2$ such that

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$$

We say *R* is derived from C_1 and C_2 by resolution, and write

$$\frac{C_1 \quad C_2}{R}$$

Example

 $\{p_1, p_3, \neg p_4\}$ resolves $\{p_1, p_2, \neg p_4\}$ and $\{\neg p_2, p_3\}$, the empty clause is a resolvent of $\{p_1\}$ and $\{\neg p_1\}$:

$$\frac{\{p_1, p_2, \neg p_4\} \ \{\neg p_2, p_3\}}{\{p_1, p_3, \neg p_4\}} \qquad \frac{\{p_1\} \ \{\neg p_1\}}{\Box}$$

Derivations and refutations

Definition

A **derivation** (or **proof**) of a clause *C* from a set of clauses *F* is a sequence C_1, C_2, \ldots, C_m of clauses where $C_m = C$ and for each $i = 1, 2, \ldots, m$ either $C_i \in F$ or C_i is a resolvent of C_j and C_k for some j, k < i.

Derivations and refutations

Definition

A **derivation** (or **proof**) of a clause *C* from a set of clauses *F* is a sequence C_1, C_2, \ldots, C_m of clauses where $C_m = C$ and for each $i = 1, 2, \ldots, m$ either $C_i \in F$ or C_i is a resolvent of C_j and C_k for some j, k < i.

A derivation of the empty clause \Box from a formula *F* is called a **refutation** of *F*.

Derivations: example

A resolution refutation of the CNF formula

$$\{\{x, \neg y\}, \{y, z\}, \{\neg x, \neg y, z\}, \{\neg z\}\}$$

is as follows:

1. $\{x, \neg y\}$ (Assumption)5. $\{\neg x, z\}$ (2,4 Resolution)2. $\{y, z\}$ (Assumption)6. $\{\neg z\}$ (Assumption)3. $\{x, z\}$ (1,2 Resolution)7. $\{z\}$ (3,5 Resolution) 4. $\{\neg x, \neg y, z\}$ (Assumption) 8. \Box (6,7 Resolution)

5.
$$\{\neg X, Z\}$$

6. $\{\neg Z\}$
7. $\{z\}$

Derivations: example

A resolution refutation of the CNF formula

$$\{\{x, \neg y\}, \{y, z\}, \{\neg x, \neg y, z\}, \{\neg z\}\}$$

is as follows:

1. $\{x, \neg y\}$ (Assumption)5. $\{\neg x, z\}$ (2,4 Resolution)2. $\{y, z\}$ (Assumption)6. $\{\neg z\}$ (Assumption)3. $\{x, z\}$ (1,2 Resolution)7. $\{z\}$ (3,5 Resolution)4. $\{\neg x, \neg y, z\}$ (Assumption)8. \Box (6,7 Resolution)

Graphically represented by the following proof tree:

$$\frac{\{x, \neg y\} \quad \{y, z\}}{\{x, z\}} \quad \frac{\{y, z\} \quad \{\neg x, \neg y, z\}}{\{\neg x, z\}}}{\{z\}} \quad \frac{\{z\}}{\Box}$$

Refutations: comments

- A resolution refutation of a formula *F* can be seen as a proof that *F* is unsatisfiable
- Resolution can be used to prove entailments by transforming them to refutations
- For example, the refutation in previous example can be used to show that

$$(x \vee \neg y) \land (y \vee z) \land (\neg x \vee \neg y \vee z) \models z$$

Set of resolvents

Given set of clauses F, interested in set of all clauses derivable from F by resolution.

Definition

For set F of clauses, Res(F) is defined as

 $Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}$

Furthermore define

$$Res^{0}(F) = F$$

 $Res^{n+1}(F) = Res(Res^{n}(F))$ for $n \ge 0$

and write

$$Res^*(F) = \bigcup_{n \ge 0} Res^n(F)$$

Set of resolvents

Given set of clauses F, interested in set of all clauses derivable from F by resolution.

Definition

For set F of clauses, Res(F) is defined as

 $Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}$

Furthermore define

$$egin{array}{rcl} Res^0(F)&=&F\ Res^{n+1}(F)&=&Res(Res^n(F))\ \ ext{for}\ n\geq 0 \end{array}$$

and write

$$Res^*(F) = \bigcup_{n \ge 0} Res^n(F)$$

Theorem

 $C \in Res^*(F)$ iff there is a derivation of C from F.

Soundness and completeness

Soundness: anything that we prove is valid **Completeness**: anything that is valid can be proved

The resolution lemma

Lemma

Let F be CNF formula represented as set of clauses. If R is a resolvent of clauses C_1 and C_2 of F, then $F \equiv F \cup \{R\}$.

The resolution lemma

Lemma

Let F be CNF formula represented as set of clauses. If R is a resolvent of clauses C_1 and C_2 of F, then $F \equiv F \cup \{R\}$.

Proof.

For assignment A, clearly, if $A \models F \cup \{R\}$ then $A \models F$. Conversely, suppose $A \models F$ and $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$ for some literal L, where $L \in C_1$ and $\overline{L} \in C_2$.

- If A ⊨ L, then since A ⊨ C₂, it follows that A ⊨ C₂ \ {L
 }, and thus A ⊨ R.
- If $A \models \overline{L}$, then since $A \models C_1$, it follows that $A \models C_1 \setminus \{L\}$, and thus $A \models R$.

Soundness

Soundness: can only derive a contradiction from an unsatisfiable set of clauses.

Soundness

Soundness: can only derive a contradiction from an unsatisfiable set of clauses.

Theorem

If we can derive \Box from *F*, then *F* is unsatisfiable.

Soundness

Soundness: can only derive a contradiction from an unsatisfiable set of clauses.

Theorem

If we can derive \Box from *F*, then *F* is unsatisfiable.

Proof.

Suppose $C_1, C_2, \ldots, C_m = \Box$ is a proof of \Box from *F*. Repeated application of the Resolution Lemma shows $F \equiv F \cup \{C_1, C_2, \ldots, C_m\}$. But the latter set of clauses includes the empty clause.

Completeness is converse of soundness: if a CNF formula is unsatisfiable then can derive the empty clause from it by resolution.

Completeness is converse of soundness: if a CNF formula is unsatisfiable then can derive the empty clause from it by resolution.

Theorem

If F is unsatisfiable, then we can derive \Box from F.

Proof.

Proof.

By induction on number *n* of variables in *F*.

 If n = 0, then F has no variables, so either contains no clauses or only the empty clause. In the former case F ≡ true, which is satisfiable, so must have F = {□}, giving one-line resolution refutation of F.

Proof.

- If n = 0, then F has no variables, so either contains no clauses or only the empty clause. In the former case F ≡ true, which is satisfiable, so must have F = {□}, giving one-line resolution refutation of F.
- Suppose variables p₀,..., p_n. Since F is unsatisfiable, so is F₀ := F[false/p_n]. Induction hypothesis gives resolution proof C₀, C₁,..., C_m = □ that derives □ from F₀.

Proof.

- If n = 0, then F has no variables, so either contains no clauses or only the empty clause. In the former case F ≡ true, which is satisfiable, so must have F = {□}, giving one-line resolution refutation of F.
- Suppose variables p_0, \ldots, p_n . Since *F* is unsatisfiable, so is $F_0 := F[false/p_n]$. Induction hypothesis gives resolution proof $C_0, C_1, \ldots, C_m = \Box$ that derives \Box from F_0 . Each C_i from F_0 is either already in *F* or $C_i \cup \{p_n\}$ is in *F*.

Proof.

- If n = 0, then F has no variables, so either contains no clauses or only the empty clause. In the former case F ≡ true, which is satisfiable, so must have F = {□}, giving one-line resolution refutation of F.
- Suppose variables p_0, \ldots, p_n . Since *F* is unsatisfiable, so is $F_0 := F[false/p_n]$. Induction hypothesis gives resolution proof $C_0, C_1, \ldots, C_m = \Box$ that derives \Box from F_0 . Each C_i from F_0 is either already in *F* or $C_i \cup \{p_n\}$ is in *F*. Re-introducing p_n and propagating gives proof C'_0, C'_1, \ldots, C'_m from *F* where either $C'_m = \Box$ or $C'_m = \{p_n\}$.

Proof.

- If n = 0, then F has no variables, so either contains no clauses or only the empty clause. In the former case F ≡ true, which is satisfiable, so must have F = {□}, giving one-line resolution refutation of F.
- Suppose variables p_0, \ldots, p_n . Since *F* is unsatisfiable, so is $F_0 := F[false/p_n]$. Induction hypothesis gives resolution proof $C_0, C_1, \ldots, C_m = \Box$ that derives \Box from F_0 . Each C_i from F_0 is either already in *F* or $C_i \cup \{p_n\}$ is in *F*. Re-introducing p_n and propagating gives proof C'_0, C'_1, \ldots, C'_m from *F* where either $C'_m = \Box$ or $C'_m = \{p_n\}$.
- Apply similar reasoning to F₁ := F[true/p_n], get proof of {¬p_n} from F.

Proof.

- If n = 0, then F has no variables, so either contains no clauses or only the empty clause. In the former case F ≡ true, which is satisfiable, so must have F = {□}, giving one-line resolution refutation of F.
- Suppose variables p_0, \ldots, p_n . Since *F* is unsatisfiable, so is $F_0 := F[false/p_n]$. Induction hypothesis gives resolution proof $C_0, C_1, \ldots, C_m = \Box$ that derives \Box from F_0 . Each C_i from F_0 is either already in *F* or $C_i \cup \{p_n\}$ is in *F*. Re-introducing p_n and propagating gives proof C'_0, C'_1, \ldots, C'_m from *F* where either $C'_m = \Box$ or $C'_m = \{p_n\}$.
- Apply similar reasoning to F₁ := F[true/p_n], get proof of {¬p_n} from F. Glue together these two proofs and apply one more resolution step to {p_n} and {¬p_n}.

Completeness: example

Example

Consider $F = \{\{p, r\}, \{\neg p, q\}, \{\neg q, r\}\}$. Transform the following derivation of \Box from F[false/r]

$$\frac{\{p\} \quad \{\neg p, q\}}{\{q\}} \quad \{\neg q\}$$

to the following derivation of $\{r\}$ from *F*:

$$\frac{\{p,r\} \quad \{\neg p,q\}}{\{q,r\}} \quad \{\neg q,r\}}{\{r\}}$$

The Davis–Putnam procedure

Can turn resolution into a SAT solver

Basic idea: Davis-Putnam procedure

Use resolution to perform **variable elimination**, and compute satisfying valuation

Variable elimination

Eliminate *p* from CNF formula *F* to get new formula *G*:

- If p occurs only positively in F, delete all clauses containing p, so G := F[true/p]
- If p occurs only negatively in F, delete all clauses containing p

 , so G := F[false/p]
- Suppose *p* occurs both positively and negatively in *F*.
 For every pair of clauses *C*, *D* in *F* with *p* ∈ *C* and *p* ∈ *D*, add the resolvent of *C* and *D* (w.r.t. *p*) to *F*.
 Delete all clauses containing *p* or *p* from *F* to get *G*.

Variable elimination

Eliminate *p* from CNF formula *F* to get new formula *G*:

- If p occurs only positively in F, delete all clauses containing p, so G := F[true/p]
- If p occurs only negatively in F, delete all clauses containing p

 , so G := F[false/p]
- Suppose *p* occurs both positively and negatively in *F*.
 For every pair of clauses *C*, *D* in *F* with *p* ∈ *C* and *p* ∈ *D*, add the resolvent of *C* and *D* (w.r.t. *p*) to *F*.
 Delete all clauses containing *p* or *p* from *F* to get *G*.

Example

Eliminating p from {{p}, { $\neg p$, q}, { $\neg q$, r}, { $\neg r$, s, t} gives {{q}, { $\neg q$, r}, { $\neg r$, s, t}.

Variable elimination: correctness

Lemma (Elimination Lemma)

If eliminating variable p from F gives G then

- F and G are equisatisfiable
- if A ⊨ G then A_[p→a] ⊨ F for some a ∈ {0,1} that can be determined from A and F.

The Davis–Putnam algorithm

Davis–Putnam(F) **begin** remove all valid clauses from F **if** $F = \{\Box\}$ **then** return UNSAT **if** $F = \emptyset$ **then** return the 0 assignment let G arise by eliminating a variable p from F **if** Davis–Putnam(G) = UNSAT **then** return UNSAT **if** Davis–Putnam(G) = \mathcal{A} **then** return $\mathcal{A}_{[p \mapsto a]}$, with a chosen as in the Elimination Lemma **end**

Davis-Putnam: example

First eliminate variables (p, q, r, s):

 $Davis-Putnam(\{\{p\}, \{\neg p, q\}, \{\neg q, r\}, \{\neg r, s, t\}\}) = Davis-Putnam(\{\{q\}, \{\neg q, r\}, \{\neg r, s, t\}\}) = Davis-Putnam(\{\{r\}, \{\neg r, s, t\}\}) = Davis-Putnam(\{\{s, t\}\}) = Davis-Putnam(\emptyset)$

Then recurse back up to get satisfying assignment:

 $t \mapsto 0$ $s \mapsto 1$ $r \mapsto 1$ $q \mapsto 1$ $p \mapsto 1$

Davis–Putnam is worst case exponential time (unsurprising: intermediate clauses can become big)

Davis–Putnam is worst case exponential time (unsurprising: intermediate clauses can become big)

Questions:

• Can one efficiently precompute a (near)optimal variable ordering?

Davis–Putnam is worst case exponential time (unsurprising: intermediate clauses can become big)

Questions:

- Can one efficiently precompute a (near)optimal variable ordering?
- Given *k*, can one efficiently precompute a variable ordering such that Davis–Putnam only produces *k*-clauses?

Davis–Putnam is worst case exponential time (unsurprising: intermediate clauses can become big)

Questions:

- Can one efficiently precompute a (near)optimal variable ordering?
- Given *k*, can one efficiently precompute a variable ordering such that Davis–Putnam only produces *k*-clauses?
- More simply: suppose *F* = *F*₁ ∧ *F*₂, where *F*₁ and *F*₂ have only variable *p* in common. Should I eliminate *p* first, last or in some other position?

Answers:

next time ...

Summary

Resolution is:

- a proof calculus
- sound and complete
- very simple

Davis–Putnam:

- decision algorithm for SAT
- basis of SAT solvers
- polynomial time on nice formulas
- worst case exponential time
- depend on order of elimination

