
Polynomial-time
formula classes

4.1

Lecture 4
Polynomial-time formula classes
Horn-SAT, 2-SAT, X-SAT, Walk-SAT

Dr Christoph Haase
University of Oxford

(with small changes by Javier Esparza)

1 / 21



Polynomial-time
formula classes

4.2

Recap and some additional notation

A literal is a propositional variable or the negation of a
propositional variable:

x or ¬x

We call x a positive literal and ¬x a negative literal

A disjunction of literals is a clause

A formula F is in conjunctive normal form (CNF) if it is a
conjunction of disjunctions of literals Li,j :

F =
n∧

i=1

(

mi∨
j=1

Li,j)

Convention: true is CNF with no clauses, false is CNF with a
single empty clause without literals

2 / 21



Polynomial-time
formula classes

4.3

Agenda

1 Polynomial-time fragments of propositional logic

2 Walk-SAT: A randomised algorithm for satisfiability

3 / 21



Polynomial-time
formula classes

4.4

The satisfiability problem

“SAT is bad”: Only method so far to solve SAT is truth tables, which
takes exponential time in worst case.

But: can often do better for formulas of special form:

Horn formulas: SAT can be decided in polynomial time

2-CNF formulas: SAT can be decided in polynomial time

X-CNF formulas: SAT can be decided in polynomial time

4 / 21



Polynomial-time
formula classes

4.4

The satisfiability problem

“SAT is bad”: Only method so far to solve SAT is truth tables, which
takes exponential time in worst case.

But: can often do better for formulas of special form:

Horn formulas: SAT can be decided in polynomial time

2-CNF formulas: SAT can be decided in polynomial time

X-CNF formulas: SAT can be decided in polynomial time

4 / 21



Polynomial-time
formula classes

4.5

Horn formulas

Definition

A CNF formula is a Horn formula if each clause contains at most one
positive literal.

An example of a Horn formula:

p1 ∧ (¬p2 ∨ ¬p3) ∧ (¬p1 ∨ ¬p2 ∨ p4)

Horn formulas can be rewritten in a more intuitive way as
conjunctions of implications, called implication form. E.g.:

(true→ p1) ∧ (p2 ∧ p3 → false) ∧ (p1 ∧ p2 → p4)

Horn formulas have many computer science applications:
Programming languages Prolog and Datalog based on them.

5 / 21



Polynomial-time
formula classes

4.5

Horn formulas

Definition

A CNF formula is a Horn formula if each clause contains at most one
positive literal.

An example of a Horn formula:

p1 ∧ (¬p2 ∨ ¬p3) ∧ (¬p1 ∨ ¬p2 ∨ p4)

Horn formulas can be rewritten in a more intuitive way as
conjunctions of implications, called implication form. E.g.:

(true→ p1) ∧ (p2 ∧ p3 → false) ∧ (p1 ∧ p2 → p4)

Horn formulas have many computer science applications:
Programming languages Prolog and Datalog based on them.

5 / 21



Polynomial-time
formula classes

4.5

Horn formulas

Definition

A CNF formula is a Horn formula if each clause contains at most one
positive literal.

An example of a Horn formula:

p1 ∧ (¬p2 ∨ ¬p3) ∧ (¬p1 ∨ ¬p2 ∨ p4)

Horn formulas can be rewritten in a more intuitive way as
conjunctions of implications, called implication form. E.g.:

(true→ p1) ∧ (p2 ∧ p3 → false) ∧ (p1 ∧ p2 → p4)

Horn formulas have many computer science applications:
Programming languages Prolog and Datalog based on them.

5 / 21



Polynomial-time
formula classes

4.5

Horn formulas

Definition

A CNF formula is a Horn formula if each clause contains at most one
positive literal.

An example of a Horn formula:

p1 ∧ (¬p2 ∨ ¬p3) ∧ (¬p1 ∨ ¬p2 ∨ p4)

Horn formulas can be rewritten in a more intuitive way as
conjunctions of implications, called implication form. E.g.:

(true→ p1) ∧ (p2 ∧ p3 → false) ∧ (p1 ∧ p2 → p4)

Horn formulas have many computer science applications:
Programming languages Prolog and Datalog based on them.

5 / 21



Polynomial-time
formula classes

4.6

Horn-SAT algorithm

Can decide satisfiability for Horn formulas in polynomial time!
Idea:

maintain valuation A on propositional variables in formula F ,
starting with p 7→ 0
update A(pi) from 0 to 1 until either F satisfied or contradiction
reached

INPUT: Horn formula F
T := ∅
while T does not satisfy F do
begin

pick an unsatisfied clause p1 ∧ · · · ∧ pk → G
if G is a variable then T := T ∪ {G}
if G = false then return UNSAT

end
return T

6 / 21



Polynomial-time
formula classes

4.6

Horn-SAT algorithm

Can decide satisfiability for Horn formulas in polynomial time!
Idea:

maintain valuation A on propositional variables in formula F ,
starting with p 7→ 0
update A(pi) from 0 to 1 until either F satisfied or contradiction
reached

INPUT: Horn formula F
T := ∅
while T does not satisfy F do
begin

pick an unsatisfied clause p1 ∧ · · · ∧ pk → G
if G is a variable then T := T ∪ {G}
if G = false then return UNSAT

end
return T

6 / 21



Polynomial-time
formula classes

4.7

Horn-SAT algorithm: correctness

Encoding T = {pi | A(pi) = 1}.

Order valuations by A ≤ B when A(pi) ≤ B(pi) for each i

Each iteration changes A(pi) from 0 to 1

There are at most n iterations, so overall polynomial time

Any A returned must satisfy F by termination condition

If UNSAT returned then F is unsatisfiable:

If B satisfies F , then A ≤ B is a loop invariant:

Consider implication p1 ∧ · · · ∧ pk → G not satisfied by A.
Then A satisfies p1, . . . , pk but not G, so B |= p1 ∧ . . . ∧ pk .
But then B |= G, so G 6= false; contradiction.
Moreover, B(G) = 1 so A(G) := 1 preserves invariant.

7 / 21



Polynomial-time
formula classes

4.8

2-CNF formulas

Definition

A 2-CNF formula, or Krom formula is a CNF formula F such that
every clause has at most two literals.

For a literal L, define L :=

{
p if L = ¬p
¬p otherwise

The implication graph of a 2-CNF formula F is a directed graph
G = (V ,E), where

V := {p1,p2, . . . ,pn} ∪ {¬p1,¬p2, . . . ,¬pn} ,

with p1,p2, . . . ,pn the propositional variables mentioned in F . For
each pair of literals L and M, there is an edge (L,M) iff the
clause (L ∨M) or (M ∨ L) appears in F .

Example: clause x ∨ y requires edge (¬y , x) in G (alternatively
(¬x , y))

8 / 21



Polynomial-time
formula classes

4.8

2-CNF formulas

Definition

A 2-CNF formula, or Krom formula is a CNF formula F such that
every clause has at most two literals.

For a literal L, define L :=

{
p if L = ¬p
¬p otherwise

The implication graph of a 2-CNF formula F is a directed graph
G = (V ,E), where

V := {p1,p2, . . . ,pn} ∪ {¬p1,¬p2, . . . ,¬pn} ,

with p1,p2, . . . ,pn the propositional variables mentioned in F . For
each pair of literals L and M, there is an edge (L,M) iff the
clause (L ∨M) or (M ∨ L) appears in F .

Example: clause x ∨ y requires edge (¬y , x) in G (alternatively
(¬x , y))

8 / 21



Polynomial-time
formula classes

4.8

2-CNF formulas

Definition

A 2-CNF formula, or Krom formula is a CNF formula F such that
every clause has at most two literals.

For a literal L, define L :=

{
p if L = ¬p
¬p otherwise

The implication graph of a 2-CNF formula F is a directed graph
G = (V ,E), where

V := {p1,p2, . . . ,pn} ∪ {¬p1,¬p2, . . . ,¬pn} ,

with p1,p2, . . . ,pn the propositional variables mentioned in F . For
each pair of literals L and M, there is an edge (L,M) iff the
clause (L ∨M) or (M ∨ L) appears in F .

Example: clause x ∨ y requires edge (¬y , x) in G (alternatively
(¬x , y))

8 / 21



Polynomial-time
formula classes

4.8

2-CNF formulas

Definition

A 2-CNF formula, or Krom formula is a CNF formula F such that
every clause has at most two literals.

For a literal L, define L :=

{
p if L = ¬p
¬p otherwise

The implication graph of a 2-CNF formula F is a directed graph
G = (V ,E), where

V := {p1,p2, . . . ,pn} ∪ {¬p1,¬p2, . . . ,¬pn} ,

with p1,p2, . . . ,pn the propositional variables mentioned in F . For
each pair of literals L and M, there is an edge (L,M) iff the
clause (L ∨M) or (M ∨ L) appears in F .

Example: clause x ∨ y requires edge (¬y , x) in G (alternatively
(¬x , y))

8 / 21



Polynomial-time
formula classes

4.9

2-CNF formulas: example

(p0 ∨ p2) ∧ (p0 ∨ ¬p3) ∧ (p1 ∨ ¬p3) ∧ (p1 ∨ ¬p4) ∧ (p2 ∨ ¬p4)

∧(p0 ∨ ¬p5) ∧ (p1 ∨ ¬p5) ∧ (p2 ∨ ¬p5) ∧ (p3 ∨ p6) ∧ (p4 ∨ p6) ∧ (p5 ∨ p6)

¬p0

¬p1

¬p2

¬p3

¬p4

¬p5

¬p6

p0

p1

p2

p3

p4

p5

p6

Paths in G correspond to chains of implications.
Edge (M,L) is contrapositive implication M → L corresponding to
(L,M)

9 / 21



Polynomial-time
formula classes

4.9

2-CNF formulas: example

(p0 ∨ p2) ∧ (p0 ∨ ¬p3) ∧ (p1 ∨ ¬p3) ∧ (p1 ∨ ¬p4) ∧ (p2 ∨ ¬p4)

∧(p0 ∨ ¬p5) ∧ (p1 ∨ ¬p5) ∧ (p2 ∨ ¬p5) ∧ (p3 ∨ p6) ∧ (p4 ∨ p6) ∧ (p5 ∨ p6)

¬p0

¬p1

¬p2

¬p3

¬p4

¬p5

¬p6

p0

p1

p2

p3

p4

p5

p6

Paths in G correspond to chains of implications.
Edge (M,L) is contrapositive implication M → L corresponding to
(L,M)

9 / 21



Polynomial-time
formula classes

4.10

2-SAT

Can reduce satisfiability for 2-CNF formulas to reachability
problem of implication graph, which is solvable in linear time.

Implication graph G is consistent if there is no propositional
variable p with paths from p to ¬p and from ¬p to p.

Theorem

A 2-CNF formula F is satisfiable iff its implication graph G is
consistent.

Proof.

(⇒) If G not consistent, there are paths ¬p → p, p → ¬p. So A |= F
would imply A(p) ≤ A(¬p) ≤ A(p).

(⇐) Construct a satisfying assignment.

10 / 21



Polynomial-time
formula classes

4.10

2-SAT

Can reduce satisfiability for 2-CNF formulas to reachability
problem of implication graph, which is solvable in linear time.

Implication graph G is consistent if there is no propositional
variable p with paths from p to ¬p and from ¬p to p.

Theorem

A 2-CNF formula F is satisfiable iff its implication graph G is
consistent.

Proof.

(⇒) If G not consistent, there are paths ¬p → p, p → ¬p. So A |= F
would imply A(p) ≤ A(¬p) ≤ A(p).

(⇐) Construct a satisfying assignment.

10 / 21



Polynomial-time
formula classes

4.11

2-SAT Algorithm

INPUT: 2-CNF formula F
A := empty valuation
while there is some unassigned variable do

begin
pick a literal L for which there is no path from L to L, and
set A(L) := 1
while there is an edge (M,N) with A(M) = 1 and A(N) is undefined

do A(N) := 1
end

return A

11 / 21



Polynomial-time
formula classes

4.12

2-SAT Algorithm: correctness

Outer loop invariant: any node reachable from a true node is also
true

If outer invariant holds and all variables assigned, we have a
satisfying assigment.

Inner loop invariant: no path from true node to false node

If outer invariant holds but not all variables assigned, there is
unassigned literal L with no path L→ L (by consistency)

After updating A(L) := 1, inner invariant holds

Inner loop maintains invariant, so when it terminates every node
reachable from a true node is true

12 / 21



Polynomial-time
formula classes

4.12

2-SAT Algorithm: correctness

Outer loop invariant: any node reachable from a true node is also
true

If outer invariant holds and all variables assigned, we have a
satisfying assigment.

Inner loop invariant: no path from true node to false node

If outer invariant holds but not all variables assigned, there is
unassigned literal L with no path L→ L (by consistency)

After updating A(L) := 1, inner invariant holds

Inner loop maintains invariant, so when it terminates every node
reachable from a true node is true

12 / 21



Polynomial-time
formula classes

4.12

2-SAT Algorithm: correctness

Outer loop invariant: any node reachable from a true node is also
true

If outer invariant holds and all variables assigned, we have a
satisfying assigment.

Inner loop invariant: no path from true node to false node

If outer invariant holds but not all variables assigned, there is
unassigned literal L with no path L→ L (by consistency)

After updating A(L) := 1, inner invariant holds

Inner loop maintains invariant, so when it terminates every node
reachable from a true node is true

12 / 21



Polynomial-time
formula classes

4.12

2-SAT Algorithm: correctness

Outer loop invariant: any node reachable from a true node is also
true

If outer invariant holds and all variables assigned, we have a
satisfying assigment.

Inner loop invariant: no path from true node to false node

If outer invariant holds but not all variables assigned, there is
unassigned literal L with no path L→ L (by consistency)

After updating A(L) := 1, inner invariant holds

Inner loop maintains invariant, so when it terminates every node
reachable from a true node is true

12 / 21



Polynomial-time
formula classes

4.12

2-SAT Algorithm: correctness

Outer loop invariant: any node reachable from a true node is also
true

If outer invariant holds and all variables assigned, we have a
satisfying assigment.

Inner loop invariant: no path from true node to false node

If outer invariant holds but not all variables assigned, there is
unassigned literal L with no path L→ L (by consistency)

After updating A(L) := 1, inner invariant holds

Inner loop maintains invariant, so when it terminates every node
reachable from a true node is true

12 / 21



Polynomial-time
formula classes

4.13

3-CNF formulas

2-SAT solvable in polynomial time, 3-SAT not unless P=NP

A 3-CNF formula is a CNF one with ≤ 3 literals per clause

Tseytin’s transformation: for an arbitrary formula F , we can
compute an equisatisfiable 3-CNF formula G in polynomial time.

So a polynomial-time algorithm for 3-SAT would give us a
polynomial algorithm for SAT.

13 / 21



Polynomial-time
formula classes

4.14

XOR-CNF formulas

Can think of propositional logic as linear algebra over {0,1}.

XOR-clause is exclusive-or of literals.
X-CNF formula is conjunction of XOR-clauses

F = (p1 ⊕ p3) ∧ (¬p1 ⊕ p2) ∧ (p1 ⊕ p2 ⊕ ¬p3)

Rewrite as system of equations over Z2 and solve

p1 + p3 = 1
p1 + p2 = 0
p1 + p2 + p3 = 0

So X-SAT reduces to Gaussian elimination,
which is solvable in cubic time

14 / 21



Polynomial-time
formula classes

4.14

XOR-CNF formulas

Can think of propositional logic as linear algebra over {0,1}.

XOR-clause is exclusive-or of literals.
X-CNF formula is conjunction of XOR-clauses

F = (p1 ⊕ p3) ∧ (¬p1 ⊕ p2) ∧ (p1 ⊕ p2 ⊕ ¬p3)

Rewrite as system of equations over Z2 and solve

p1 + p3 = 1
p1 + p2 = 0
p1 + p2 + p3 = 0

So X-SAT reduces to Gaussian elimination,
which is solvable in cubic time

14 / 21



Polynomial-time
formula classes

4.15

Lights out
Given: an N × N grid, each button coloured black or white.
Move: pressing a button inverts colours of its neighbours.
Goal: end up with all buttons black.
Question: translate to X-SAT.

Even number of same moves doesn’t do anything

Let variable pi,j denote whether button (i , j) is pressed

Valuations of formula∧
1≤i,j≤N

(pi,j ⊕ pi⊕1,j ⊕ pi	1,j ⊕ pi,j⊕1 ⊕ pi,j	1)

correspond to solutions of the puzzle.

15 / 21



Polynomial-time
formula classes

4.15

Lights out
Given: an N × N grid, each button coloured black or white.
Move: pressing a button inverts colours of its neighbours.
Goal: end up with all buttons black.
Question: translate to X-SAT.

Even number of same moves doesn’t do anything

Let variable pi,j denote whether button (i , j) is pressed

Valuations of formula∧
1≤i,j≤N

(pi,j ⊕ pi⊕1,j ⊕ pi	1,j ⊕ pi,j⊕1 ⊕ pi,j	1)

correspond to solutions of the puzzle.
15 / 21



Polynomial-time
formula classes

4.16

Randomised algorithms

Randomised algorithm decides satisfiability for CNF formulas.
Takes polynomial time on 2-CNF formulas.

Guess assignment uniformly at random

While there is unsatisfied clause F , pick literal and flip its truth
value

If no satisfying assignment after r steps, return UNSAT.

Idea: if formula unsatisfiable, algorithm will say so.

But algorithm could halt before finding satisfying assignment.

Want parameter r large enough so that this probability is small.

16 / 21



Polynomial-time
formula classes

4.17

Walk-SAT

Input: CNF formula F with n variables, repetition parameter r
pick a random assignment
repeat r times

Pick an unsatisfied clause
Pick literal in the clause uniformly at random, and flip value
if F is satisfied then return the current assignment

return UNSAT

17 / 21



Polynomial-time
formula classes

4.18

Walk-SAT: analysis

Let F be 2-CNF formula with satisfying assignment A
Will bound expected number of flips to find A.

Distance between assignments := #variables where differ

Ti := max{E[#flippings A → B] | distance(A,B) = i}

Then Tn is time it takes to find satisfying assignment A

T0 = 0
Tn = 1 + Tn−1

Ti ≤ 1 + (Ti+1 + (Ti−1))/2

18 / 21



Polynomial-time
formula classes

4.18

Walk-SAT: analysis

Let F be 2-CNF formula with satisfying assignment A
Will bound expected number of flips to find A.

Distance between assignments := #variables where differ

Ti := max{E[#flippings A → B] | distance(A,B) = i}

Then Tn is time it takes to find satisfying assignment A

T0 = 0
Tn = 1 + Tn−1

Ti ≤ 1 + (Ti+1 + (Ti−1))/2

18 / 21



Polynomial-time
formula classes

4.18

Walk-SAT: analysis

Let F be 2-CNF formula with satisfying assignment A
Will bound expected number of flips to find A.

Distance between assignments := #variables where differ

Ti := max{E[#flippings A → B] | distance(A,B) = i}

Then Tn is time it takes to find satisfying assignment A

T0 = 0
Tn = 1 + Tn−1

Ti ≤ 1 + (Ti+1 + (Ti−1))/2

18 / 21



Polynomial-time
formula classes

4.19

Walk-SAT: analysis

Replacing by equalities gives bound Ti ≤ Hi :

H0 = 0
Hn = 1 + Hn−1

Hi = 1 + (Hi+1 + (Hi−1))/2

n + 1 linearly independent equations in n + 1 unknowns.
Unique solution: Hi = 2in − i2

So worst expected time to hit A is Hn = n2

Markov’s inequality: If X is nonnegative random variable, then
P[X ≥ a] ≤ 1

a E[X ] for all a > 0.

Theorem: Walk-SAT on n-variable satisfiable 2-CNF formula for
r = 2mn2 succeeds with probability ≥ 1− 2−m.

Proof: Divide 2mn2 iterations of main loop into m phases.
Markov: not finding satisfying valuation in a phase has probability
≤ n2/2n2 = 1/2.

19 / 21



Polynomial-time
formula classes

4.19

Walk-SAT: analysis

Replacing by equalities gives bound Ti ≤ Hi :

H0 = 0
Hn = 1 + Hn−1

Hi = 1 + (Hi+1 + (Hi−1))/2

n + 1 linearly independent equations in n + 1 unknowns.
Unique solution: Hi = 2in − i2

So worst expected time to hit A is Hn = n2

Markov’s inequality: If X is nonnegative random variable, then
P[X ≥ a] ≤ 1

a E[X ] for all a > 0.

Theorem: Walk-SAT on n-variable satisfiable 2-CNF formula for
r = 2mn2 succeeds with probability ≥ 1− 2−m.

Proof: Divide 2mn2 iterations of main loop into m phases.
Markov: not finding satisfying valuation in a phase has probability
≤ n2/2n2 = 1/2.

19 / 21



Polynomial-time
formula classes

4.19

Walk-SAT: analysis

Replacing by equalities gives bound Ti ≤ Hi :

H0 = 0
Hn = 1 + Hn−1

Hi = 1 + (Hi+1 + (Hi−1))/2

n + 1 linearly independent equations in n + 1 unknowns.
Unique solution: Hi = 2in − i2

So worst expected time to hit A is Hn = n2

Markov’s inequality: If X is nonnegative random variable, then
P[X ≥ a] ≤ 1

a E[X ] for all a > 0.

Theorem: Walk-SAT on n-variable satisfiable 2-CNF formula for
r = 2mn2 succeeds with probability ≥ 1− 2−m.

Proof: Divide 2mn2 iterations of main loop into m phases.
Markov: not finding satisfying valuation in a phase has probability
≤ n2/2n2 = 1/2.

19 / 21



Polynomial-time
formula classes

4.20

What’s bad about 3-SAT?

Common feature of Horn-SAT and 2-SAT algorithms: build
satisfying assignments incrementally, without backtracking. This
is different for general CNF formulas.

Walk-SAT: one-dimensional random walk on line {0, . . . ,n} with
absorbing barrier 0 and reflecting barrier n

Similar trick for 3-CNF formulas with probability 2/3 of going right
and 1/3 of going left

However, then r needs to be exponential in n ...

20 / 21



Polynomial-time
formula classes

4.20

What’s bad about 3-SAT?

Common feature of Horn-SAT and 2-SAT algorithms: build
satisfying assignments incrementally, without backtracking. This
is different for general CNF formulas.

Walk-SAT: one-dimensional random walk on line {0, . . . ,n} with
absorbing barrier 0 and reflecting barrier n

Similar trick for 3-CNF formulas with probability 2/3 of going right
and 1/3 of going left

However, then r needs to be exponential in n ...

20 / 21



Polynomial-time
formula classes

4.21

Summary

SAT is bad, but we can do better in special cases:

Horn-SAT, 2-SAT and X-SAT have a polynomial-time decidable
satisfiability problem

But 3-SAT is as “bad” as all of propositional logic

21 / 21


	Polynomial-time fragments of propositional logic
	Walk-SAT: A randomised algorithm for satisfiability

