Lecture 4 Polynomial-time formula classes

Horn-SAT, 2-SAT, X-SAT, Walk-SAT

Dr Christoph Haase
University of Oxford (with small changes by Javier Esparza)

Recap and some additional notation

- A literal is a propositional variable or the negation of a propositional variable:

$$
x \text { or } \neg x
$$

- We call x a positive literal and $\neg x$ a negative literal
- A disjunction of literals is a clause
- A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals $L_{i, j}$:

$$
F=\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)
$$

- Convention: true is CNF with no clauses, false is CNF with a single empty clause without literals

Agenda

(9) Polynomial-time fragments of propositional logic
(2) Walk-SAT: A randomised algorithm for satisfiability

The satisfiability problem

"SAT is bad": Only method so far to solve SAT is truth tables, which takes exponential time in worst case.

The satisfiability problem

"SAT is bad": Only method so far to solve SAT is truth tables, which takes exponential time in worst case.
But: can often do better for formulas of special form:

- Horn formulas: SAT can be decided in polynomial time
- 2-CNF formulas: SAT can be decided in polynomial time
- X-CNF formulas: SAT can be decided in polynomial time

Horn formulas

Definition

A CNF formula is a Horn formula if each clause contains at most one positive literal.

Horn formulas

Definition

A CNF formula is a Horn formula if each clause contains at most one positive literal.

- An example of a Horn formula:

$$
p_{1} \wedge\left(\neg p_{2} \vee \neg p_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{2} \vee p_{4}\right)
$$

Horn formulas

Definition

A CNF formula is a Horn formula if each clause contains at most one positive literal.

- An example of a Horn formula:

$$
p_{1} \wedge\left(\neg p_{2} \vee \neg p_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{2} \vee p_{4}\right)
$$

- Horn formulas can be rewritten in a more intuitive way as conjunctions of implications, called implication form. E.g.:

$$
\left(\text { true } \rightarrow p_{1}\right) \wedge\left(p_{2} \wedge p_{3} \rightarrow \text { false }\right) \wedge\left(p_{1} \wedge p_{2} \rightarrow p_{4}\right)
$$

Horn formulas

Definition

A CNF formula is a Horn formula if each clause contains at most one positive literal.

- An example of a Horn formula:

$$
p_{1} \wedge\left(\neg p_{2} \vee \neg p_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{2} \vee p_{4}\right)
$$

- Horn formulas can be rewritten in a more intuitive way as conjunctions of implications, called implication form. E.g.:

$$
\left(\text { true } \rightarrow p_{1}\right) \wedge\left(p_{2} \wedge p_{3} \rightarrow \text { false }\right) \wedge\left(p_{1} \wedge p_{2} \rightarrow p_{4}\right)
$$

Horn formulas have many computer science applications: Programming languages Prolog and Datalog based on them.

Horn-SAT algorithm

Can decide satisfiability for Horn formulas in polynomial time! Idea:

- maintain valuation \mathcal{A} on propositional variables in formula F, starting with $p \mapsto 0$
- update $\mathcal{A}\left(p_{i}\right)$ from 0 to 1 until either F satisfied or contradiction reached

Horn-SAT algorithm

Can decide satisfiability for Horn formulas in polynomial time! Idea:

- maintain valuation \mathcal{A} on propositional variables in formula F, starting with $p \mapsto 0$
- update $\mathcal{A}\left(p_{i}\right)$ from 0 to 1 until either F satisfied or contradiction reached

INPUT: Horn formula F
$T:=\emptyset$
while T does not satisfy F do
begin
pick an unsatisfied clause $p_{1} \wedge \cdots \wedge p_{k} \rightarrow G$
if G is a variable then $T:=T \cup\{G\}$
if $G=$ false then return UNSAT
end
return T

Horn-SAT algorithm: correctness

- Encoding $T=\left\{p_{i} \mid \mathcal{A}\left(p_{i}\right)=1\right\}$.
- Order valuations by $\mathcal{A} \leq \mathcal{B}$ when $\mathcal{A}\left(p_{i}\right) \leq \mathcal{B}\left(p_{i}\right)$ for each i
- Each iteration changes $\mathcal{A}\left(p_{i}\right)$ from 0 to 1
- There are at most n iterations, so overall polynomial time
- Any \mathcal{A} returned must satisfy F by termination condition
- If UNSAT returned then F is unsatisfiable:
- If \mathcal{B} satisfies F, then $\mathcal{A} \leq \mathcal{B}$ is a loop invariant:
- Consider implication $p_{1} \wedge \cdots \wedge p_{k} \rightarrow G$ not satisfied by \mathcal{A}.

Then \mathcal{A} satisfies p_{1}, \ldots, p_{k} but not G, so $\mathcal{B} \models p_{1} \wedge \ldots \wedge p_{k}$.
But then $\mathcal{B} \vDash G$, so $G \neq$ false; contradiction.
Moreover, $\mathcal{B}(G)=1$ so $\mathcal{A}(G):=1$ preserves invariant.

2-CNF formulas

Definition

A 2-CNF formula, or Krom formula is a CNF formula F such that every clause has at most two literals.

2-CNF formulas

Definition

A 2-CNF formula, or Krom formula is a CNF formula F such that every clause has at most two literals.

- For a literal L, define $\bar{L}:= \begin{cases}p & \text { if } L=\neg p \\ \neg p & \text { otherwise }\end{cases}$

2-CNF formulas

Definition

A 2-CNF formula, or Krom formula is a CNF formula F such that every clause has at most two literals.

- For a literal L, define $\bar{L}:= \begin{cases}p & \text { if } L=\neg p \\ \neg p & \text { otherwise }\end{cases}$
- The implication graph of a 2-CNF formula F is a directed graph $\mathcal{G}=(V, E)$, where

$$
V:=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \cup\left\{\neg p_{1}, \neg p_{2}, \ldots, \neg p_{n}\right\},
$$

with $p_{1}, p_{2}, \ldots, p_{n}$ the propositional variables mentioned in F. For each pair of literals L and M, there is an edge (L, M) iff the clause $(\bar{L} \vee M)$ or $(M \vee \bar{L})$ appears in F.

2-CNF formulas

Definition

A 2-CNF formula, or Krom formula is a CNF formula F such that every clause has at most two literals.

- For a literal L, define $\bar{L}:= \begin{cases}p & \text { if } L=\neg p \\ \neg p & \text { otherwise }\end{cases}$
- The implication graph of a 2-CNF formula F is a directed graph $\mathcal{G}=(V, E)$, where

$$
V:=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \cup\left\{\neg p_{1}, \neg p_{2}, \ldots, \neg p_{n}\right\},
$$

with $p_{1}, p_{2}, \ldots, p_{n}$ the propositional variables mentioned in F. For each pair of literals L and M, there is an edge (L, M) iff the clause $(\bar{L} \vee M)$ or $(M \vee \bar{L})$ appears in F.

- Example: clause $x \vee y$ requires edge $(\neg y, x)$ in \mathcal{G} (alternatively $(\neg x, y))$

2-CNF formulas: example

$$
\begin{aligned}
\left(p_{0} \vee p_{2}\right) & \wedge\left(p_{0} \vee \neg p_{3}\right)
\end{aligned} \wedge\left(p_{1} \vee \neg p_{3}\right) \wedge\left(p_{1} \vee \neg p_{4}\right) \wedge\left(p_{2} \vee \neg p_{4}\right), ~\left(p_{0} \vee \neg p_{5}\right) \wedge\left(p_{1} \vee \neg p_{5}\right) \wedge\left(p_{2} \vee \neg p_{5}\right) \wedge\left(p_{3} \vee p_{6}\right) \wedge\left(p_{4} \vee p_{6}\right) \wedge\left(p_{5} \vee p_{6}\right) .
$$

2-CNF formulas: example

- Paths in \mathcal{G} correspond to chains of implications.
- Edge (\bar{M}, \bar{L}) is contrapositive implication $\bar{M} \rightarrow \bar{L}$ corresponding to (L, M)
- Can reduce satisfiability for 2-CNF formulas to reachability problem of implication graph, which is solvable in linear time.
- Implication graph \mathcal{G} is consistent if there is no propositional variable p with paths from p to $\neg p$ and from $\neg p$ to p.

2-SAT

- Can reduce satisfiability for 2-CNF formulas to reachability problem of implication graph, which is solvable in linear time.
- Implication graph \mathcal{G} is consistent if there is no propositional variable p with paths from p to $\neg p$ and from $\neg p$ to p.

Theorem

A 2-CNF formula F is satisfiable iff its implication graph \mathcal{G} is consistent.

Proof.

(\Rightarrow) If \mathcal{G} not consistent, there are paths $\neg p \rightarrow p, p \rightarrow \neg p$. So $\mathcal{A} \models F$ would imply $\mathcal{A}(p) \leq \mathcal{A}(\neg p) \leq \mathcal{A}(p)$.
(\Leftarrow) Construct a satisfying assignment.

2-SAT Algorithm

INPUT: 2-CNF formula F
$\mathcal{A}:=$ empty valuation
while there is some unassigned variable do
begin
pick a literal L for which there is no path from L to \bar{L}, and
set $\mathcal{A}(L):=1$
while there is an edge (M, N) with $\mathcal{A}(M)=1$ and $\mathcal{A}(N)$ is undefined do $\mathcal{A}(N):=1$
end
return \mathcal{A}

2-SAT Algorithm: correctness

- Outer loop invariant: any node reachable from a true node is also true
- If outer invariant holds and all variables assigned, we have a satisfying assigment.

2-SAT Algorithm: correctness

- Outer loop invariant: any node reachable from a true node is also true
- If outer invariant holds and all variables assigned, we have a satisfying assigment.
- Inner loop invariant: no path from true node to false node

2-SAT Algorithm: correctness

- Outer loop invariant: any node reachable from a true node is also true
- If outer invariant holds and all variables assigned, we have a satisfying assigment.
- Inner loop invariant: no path from true node to false node
- If outer invariant holds but not all variables assigned, there is unassigned literal L with no path $L \rightarrow \bar{L}$ (by consistency)

2-SAT Algorithm: correctness

- Outer loop invariant: any node reachable from a true node is also true
- If outer invariant holds and all variables assigned, we have a satisfying assigment.
- Inner loop invariant: no path from true node to false node
- If outer invariant holds but not all variables assigned, there is unassigned literal L with no path $L \rightarrow \bar{L}$ (by consistency)
- After updating $\mathcal{A}(L):=1$, inner invariant holds

2-SAT Algorithm: correctness

- Outer loop invariant: any node reachable from a true node is also true
- If outer invariant holds and all variables assigned, we have a satisfying assigment.
- Inner loop invariant: no path from true node to false node
- If outer invariant holds but not all variables assigned, there is unassigned literal L with no path $L \rightarrow \bar{L}$ (by consistency)
- After updating $\mathcal{A}(L):=1$, inner invariant holds
- Inner loop maintains invariant, so when it terminates every node reachable from a true node is true

3-CNF formulas

2-SAT solvable in polynomial time, 3-SAT not unless $\mathrm{P}=\mathrm{NP}$

- A 3-CNF formula is a CNF one with ≤ 3 literals per clause
- Tseytin's transformation: for an arbitrary formula F, we can compute an equisatisfiable 3-CNF formula G in polynomial time.
- So a polynomial-time algorithm for 3-SAT would give us a polynomial algorithm for SAT.

XOR-CNF formulas

Can think of propositional logic as linear algebra over $\{0,1\}$.

- XOR-clause is exclusive-or of literals. X-CNF formula is conjunction of XOR-clauses

$$
F=\left(p_{1} \oplus p_{3}\right) \wedge\left(\neg p_{1} \oplus p_{2}\right) \wedge\left(p_{1} \oplus p_{2} \oplus \neg p_{3}\right)
$$

XOR-CNF formulas

Can think of propositional logic as linear algebra over $\{0,1\}$.

- XOR-clause is exclusive-or of literals. X-CNF formula is conjunction of XOR-clauses

$$
F=\left(p_{1} \oplus p_{3}\right) \wedge\left(\neg p_{1} \oplus p_{2}\right) \wedge\left(p_{1} \oplus p_{2} \oplus \neg p_{3}\right)
$$

- Rewrite as system of equations over \mathbb{Z}_{2} and solve

$$
\begin{aligned}
& p_{1}+p_{3}=1 \\
& p_{1}+p_{2}=0 \\
& p_{1}+p_{2}+p_{3}=0
\end{aligned}
$$

- So X-SAT reduces to Gaussian elimination, which is solvable in cubic time

Lights out

Given: an $N \times N$ grid, each button coloured black or white. Move: pressing a button inverts colours of its neighbours. Goal: end up with all buttons black. Question: translate to X-SAT.

Lights out

Given: an $N \times N$ grid, each button coloured black or white. Move: pressing a button inverts colours of its neighbours. Goal: end up with all buttons black.
Question: translate to X-SAT.

- Even number of same moves doesn't do anything
- Let variable $p_{i, j}$ denote whether button (i, j) is pressed
- Valuations of formula

$$
\bigwedge_{1 \leq i, j \leq N}\left(p_{i, j} \oplus p_{i \oplus 1, j} \oplus p_{i \ominus 1, j} \oplus p_{i, j \oplus 1} \oplus p_{i, j \ominus 1}\right)
$$

correspond to solutions of the puzzle.

Randomised algorithms

Randomised algorithm decides satisfiability for CNF formulas. Takes polynomial time on 2-CNF formulas.

- Guess assignment uniformly at random
- While there is unsatisfied clause F, pick literal and flip its truth value
- If no satisfying assignment after r steps, return UNSAT.

Idea: if formula unsatisfiable, algorithm will say so.
But algorithm could halt before finding satisfying assignment.
Want parameter r large enough so that this probability is small.

Walk-SAT

Input: CNF formula F with n variables, repetition parameter r pick a random assignment repeat r times

Pick an unsatisfied clause
Pick literal in the clause uniformly at random, and flip value
if F is satisfied then return the current assignment return UNSAT

Walk-SAT: analysis

- Let F be 2-CNF formula with satisfying assignment \mathcal{A} Will bound expected number of flips to find \mathcal{A}.

Walk-SAT: analysis

- Let F be 2-CNF formula with satisfying assignment \mathcal{A} Will bound expected number of flips to find \mathcal{A}.
- Distance between assignments := \#variables where differ

$$
T_{i}:=\max \{\mathbf{E}[\# \text { flippings } \mathcal{A} \rightarrow \mathcal{B}] \mid \text { distance }(\mathcal{A}, \mathcal{B})=i\}
$$

- Then T_{n} is time it takes to find satisfying assignment \mathcal{A}

Walk-SAT: analysis

- Let F be 2-CNF formula with satisfying assignment \mathcal{A} Will bound expected number of flips to find \mathcal{A}.
- Distance between assignments := \#variables where differ

$$
T_{i}:=\max \{\mathbf{E}[\# \text { lippings } \mathcal{A} \rightarrow \mathcal{B}] \mid \text { distance }(\mathcal{A}, \mathcal{B})=i\}
$$

- Then T_{n} is time it takes to find satisfying assignment \mathcal{A}

$$
\begin{aligned}
T_{0} & =0 \\
T_{n} & =1+T_{n-1} \\
T_{i} & \leq 1+\left(T_{i+1}+\left(T_{i-1}\right)\right) / 2
\end{aligned}
$$

Walk-SAT: analysis

- Replacing by equalities gives bound $T_{i} \leq H_{i}$:

$$
\begin{aligned}
H_{0} & =0 \\
H_{n} & =1+H_{n-1} \\
H_{i} & =1+\left(H_{i+1}+\left(H_{i-1}\right)\right) / 2
\end{aligned}
$$

Walk-SAT: analysis

- Replacing by equalities gives bound $T_{i} \leq H_{i}$:

$$
\begin{aligned}
H_{0} & =0 \\
H_{n} & =1+H_{n-1} \\
H_{i} & =1+\left(H_{i+1}+\left(H_{i-1}\right)\right) / 2
\end{aligned}
$$

- $n+1$ linearly independent equations in $n+1$ unknowns. Unique solution: $H_{i}=2 i n-i^{2}$ So worst expected time to hit \mathcal{A} is $H_{n}=n^{2}$

Walk-SAT: analysis

- Replacing by equalities gives bound $T_{i} \leq H_{i}$:

$$
\begin{aligned}
H_{0} & =0 \\
H_{n} & =1+H_{n-1} \\
H_{i} & =1+\left(H_{i+1}+\left(H_{i-1}\right)\right) / 2
\end{aligned}
$$

- $n+1$ linearly independent equations in $n+1$ unknowns.

Unique solution: $H_{i}=2 i n-i^{2}$
So worst expected time to hit \mathcal{A} is $H_{n}=n^{2}$

- Markov's inequality: If X is nonnegative random variable, then $\mathbf{P}[X \geq a] \leq \frac{1}{a} \mathrm{E}[X]$ for all $a>0$.
- Theorem: Walk-SAT on n-variable satisfiable 2-CNF formula for $r=2 m n^{2}$ succeeds with probability $\geq 1-2^{-m}$.

Proof: Divide $2 m n^{2}$ iterations of main loop into m phases. Markov: not finding satisfying valuation in a phase has probability $\leq n^{2} / 2 n^{2}=1 / 2$.

What's bad about 3-SAT?

- Common feature of Horn-SAT and 2-SAT algorithms: build satisfying assignments incrementally, without backtracking. This is different for general CNF formulas.

What's bad about 3-SAT?

- Common feature of Horn-SAT and 2-SAT algorithms: build satisfying assignments incrementally, without backtracking. This is different for general CNF formulas.
- Walk-SAT: one-dimensional random walk on line $\{0, \ldots, n\}$ with absorbing barrier 0 and reflecting barrier n

Similar trick for 3-CNF formulas with probability $2 / 3$ of going right and $1 / 3$ of going left

However, then r needs to be exponential in $n \ldots$

Summary

SAT is bad, but we can do better in special cases:

- Horn-SAT, 2-SAT and X-SAT have a polynomial-time decidable satisfiability problem
- But 3-SAT is as "bad" as all of propositional logic

