
Equivalences and
normal forms

3.1

Lecture 3
Equivalences and normal forms
Equational reasoning, Boolean algebras, normal forms

Dr Christoph Haase
University of Oxford

(with small changes by Javier Esparza)

1 / 27

Equivalences and
normal forms

3.2

Recap

Syntax of formulas of propositional logic:

1 true and false are formulas.

2 Every propositional variable xi is a formula.

3 If F is a formula, then ¬F is a formula.

4 If F and G are formulas, then (F ∧G) and (F ∨G) are formulas.

Semantics of formulas via assignments, which are functions
A : X → {0,1} that inductively extend to formulas

Four notions: satisfiability, validity, entailment, equivalence.

2 / 27

Equivalences and
normal forms

3.3

Agenda

1 Equational reasoning

2 Boolean algebras

3 Normal forms

3 / 27

Equivalences and
normal forms

3.4

Decision problems

A decision problem is a computational problem whose output is either
“yes” or “no”.

Satisfiability: Given a formula F , is F satisfiable?

Validity: Given a formula F , is F valid?

Entailment: Given formulas F and G, does F |= G hold?

Equivalence: Given formulas F and G, does F ≡ G hold?

4 / 27

Equivalences and
normal forms

3.5

1 Equational reasoning

2 Boolean algebras

3 Normal forms

5 / 27

Equivalences and
normal forms

3.6

Equational reasoning

Can show logical equivalence with brute force via truth tables

Equational reasoning is more practical in many cases:
Establish basic equivalences
Derive new equivalences using the closure of logical equivalence
under substitution

George Boole

6 / 27

Equivalences and
normal forms

3.7

Basic equivalences

The following is a list of basic equivalences:

F ∧ F ≡ F
F ∨ F ≡ F Idempotence

F ∧G ≡ G ∧ F
F ∨G ≡ G ∨ F Commutativity

(F ∧G) ∧ H ≡ F ∧ (G ∧ H)

(F ∨G) ∨ H ≡ F ∨ (G ∨ H) Associativity

F ∧ (F ∨G) ≡ F
F ∨ (F ∧G) ≡ F Absorption

F ∧ (G ∨ H) ≡ (F ∧G) ∨ (F ∧ H)

F ∨ (G ∧ H) ≡ (F ∨G) ∧ (F ∨ H) Distributivity

7 / 27

Equivalences and
normal forms

3.8

Basic equivalences

¬¬F ≡ F Double negation

¬(F ∧G) ≡ (¬F ∨ ¬G)

¬(F ∨G) ≡ (¬F ∧ ¬G) De Morgan’s laws

F ∨ ¬F ≡ true
F ∧ ¬F ≡ false Complementation

F ∨ true ≡ true
F ∧ false ≡ false Zero Laws

F ∨ false ≡ F
F ∧ true ≡ F Identity Laws

8 / 27

Equivalences and
normal forms

3.9

Substitution

The essence of equational reasoning is the substitution of equals for
equals.

Informally, G[F/H] means “substitute F for H in G”. E.g.:

(p1 ∧ (p2 ∨ p1))[¬q1/p1] = ¬q1 ∧ (p2 ∨ ¬q1)

Formally, G[F/H] := F if G = H. Whenever G 6= H, we proceed
by induction:

Base cases:

x [F/H] := x for all x ∈ X

Induction steps:

(¬G)[F/H] := ¬(G[F/H])

(G1 ∧G2)[F/H] := G1[F/H] ∧G2[F/H]

(G1 ∨G2)[F/H] := G1[F/H] ∨G2[F/H].

9 / 27

Equivalences and
normal forms

3.9

Substitution

The essence of equational reasoning is the substitution of equals for
equals.

Informally, G[F/H] means “substitute F for H in G”. E.g.:

(p1 ∧ (p2 ∨ p1))[¬q1/p1] = ¬q1 ∧ (p2 ∨ ¬q1)

Formally, G[F/H] := F if G = H. Whenever G 6= H, we proceed
by induction:

Base cases:

x [F/H] := x for all x ∈ X

Induction steps:

(¬G)[F/H] := ¬(G[F/H])

(G1 ∧G2)[F/H] := G1[F/H] ∧G2[F/H]

(G1 ∨G2)[F/H] := G1[F/H] ∨G2[F/H].

9 / 27

Equivalences and
normal forms

3.9

Substitution

The essence of equational reasoning is the substitution of equals for
equals.

Informally, G[F/H] means “substitute F for H in G”. E.g.:

(p1 ∧ (p2 ∨ p1))[¬q1/p1] = ¬q1 ∧ (p2 ∨ ¬q1)

Formally, G[F/H] := F if G = H. Whenever G 6= H, we proceed
by induction:

Base cases:

x [F/H] := x for all x ∈ X

Induction steps:

(¬G)[F/H] := ¬(G[F/H])

(G1 ∧G2)[F/H] := G1[F/H] ∧G2[F/H]

(G1 ∨G2)[F/H] := G1[F/H] ∨G2[F/H].

9 / 27

Equivalences and
normal forms

3.10

Substitution Theorem

Theorem (Substitution Theorem)

If F1 ≡ F2 and G1 ≡ G2 then for every formula H

G1[F1/H] ≡ G2[F2/H].

Corollary

If F1 ≡ F2 then for every formula G

G ≡ G[F2/F1]

Proof.

Special case of the theorem with G1 := G, G2 := G, H := F1.

10 / 27

Equivalences and
normal forms

3.11

Substitution Theorem

We prove the Substitution Theorem for the special case H = x .

We need a semantic counterpart of substitution:

Given an assignment A, a propositional variable x , and a truth value
b ∈ {0,1}, define the assignment A[x 7→b] by

A[x 7→b](y) :=

{
b if y = x
A(y) if y 6= x

for each propositional variable y ∈ X .

11 / 27

Equivalences and
normal forms

3.12

Substitution Theorem

Lemma (Translation Lemma)

Given formulas F , G and a propositional variable x, we have

A(G[F/x]) = A[x 7→A(F)](G).

Proof.

By structural induction on G.
If G = x then A(x [F/x]) = A(F) = A[x 7→A(F)](x).
If G = y for y 6= x then A(y [F/x]) = A(y) = A[x 7→A(F)](y).
If G = G1 ∧G2 then

A |= (G1 ∧G2)[F/x] iff A |= G1[F/x] ∧G2[F/x]

iff A |= G1[F/x] and A |= G2[F/x]

iff A[x 7→A(F)] |= G1 and A[x 7→A(F)] |= G2 (i.h.)
iff A[x 7→A(F)] |= G1 ∧G2

The induction cases for disjunction and negation are similar and are
omitted.

12 / 27

Equivalences and
normal forms

3.12

Substitution Theorem

Lemma (Translation Lemma)

Given formulas F , G and a propositional variable x, we have

A(G[F/x]) = A[x 7→A(F)](G).

Proof.

By structural induction on G.
If G = x then A(x [F/x]) = A(F) = A[x 7→A(F)](x).
If G = y for y 6= x then A(y [F/x]) = A(y) = A[x 7→A(F)](y).
If G = G1 ∧G2 then

A |= (G1 ∧G2)[F/x] iff A |= G1[F/x] ∧G2[F/x]

iff A |= G1[F/x] and A |= G2[F/x]

iff A[x 7→A(F)] |= G1 and A[x 7→A(F)] |= G2 (i.h.)
iff A[x 7→A(F)] |= G1 ∧G2

The induction cases for disjunction and negation are similar and are
omitted.

12 / 27

Equivalences and
normal forms

3.13

Substitution Theorem

Theorem (Substitution Theorem for H = x)

If F1 ≡ F2 and G1 ≡ G2 then

G1[F1/x] ≡ G2[F2/x].

Proof.

The proof is a direct application of Lemma 3.

A(G1[F1/x]) = A[x 7→A(F1)](G1) by Lemma 3
= A[x 7→A(F1)](G2) since G1 ≡ G2

= A[x 7→A(F2)](G2) since F1 ≡ F2

= A(G2[F2/x]) by Lemma 3

13 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.14

Equational reasoning

The equivalence

(P ∨ (Q ∨ R) ∧ (R ∨ ¬P)) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨ R)) ∧ (R ∨ ¬P) ≡ ((P ∨Q) ∨ R) ∧ (R ∨ ¬P)

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P)

≡ R ∨ ((P ∨Q) ∧ ¬P)

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

14 / 27

Equivalences and
normal forms

3.15

Boolean algebras

A Boolean algebra is a set A together with two elements
true, false ∈ A, one unary operation ¬ : A→ A, and two binary
operations ∧,∨ : A× A→ A satisfying the Boolean algebra axioms.

Here are two other examples of Boolean algebras:

A = {0,1}, true = 1, false = 0, ∧ = min, ∨ = max, ¬x = 1− x .
For any set X , take A = 2X with true = X , false = ∅, ∧ = ∩,
∨ = ∪, ¬S = X \ S.
In fact, any finite Boolean algebra is of the form 2X .

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

15 / 27

Equivalences and
normal forms

3.15

Boolean algebras

A Boolean algebra is a set A together with two elements
true, false ∈ A, one unary operation ¬ : A→ A, and two binary
operations ∧,∨ : A× A→ A satisfying the Boolean algebra axioms.

Here are two other examples of Boolean algebras:

A = {0,1}, true = 1, false = 0, ∧ = min, ∨ = max, ¬x = 1− x .

For any set X , take A = 2X with true = X , false = ∅, ∧ = ∩,
∨ = ∪, ¬S = X \ S.
In fact, any finite Boolean algebra is of the form 2X .

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

15 / 27

Equivalences and
normal forms

3.15

Boolean algebras

A Boolean algebra is a set A together with two elements
true, false ∈ A, one unary operation ¬ : A→ A, and two binary
operations ∧,∨ : A× A→ A satisfying the Boolean algebra axioms.

Here are two other examples of Boolean algebras:

A = {0,1}, true = 1, false = 0, ∧ = min, ∨ = max, ¬x = 1− x .
For any set X , take A = 2X with true = X , false = ∅, ∧ = ∩,
∨ = ∪, ¬S = X \ S.
In fact, any finite Boolean algebra is of the form 2X .

∅

{a} {b} {c}

{a,b} {a, c} {b, c}

{a,b, c}

15 / 27

Equivalences and
normal forms

3.16

Boolean algebras and Boolean rings

A Boolean ring is a ring A with 1 in which every element
satisfies a2 = a.

Any Boolean ring A gives a Boolean algebra by

a ∧ b := ab
a ∨ b := a + b + ab
¬a := 1 + a

false := 0
true := 1

Any Boolean algebra A gives a Boolean ring by

ab := a ∧ b
a + b := (a ∧ ¬b) ∨ (¬a ∧ b)

So Boolean algebras = Boolean rings

16 / 27

Equivalences and
normal forms

3.16

Boolean algebras and Boolean rings

A Boolean ring is a ring A with 1 in which every element
satisfies a2 = a.

Any Boolean ring A gives a Boolean algebra by

a ∧ b := ab
a ∨ b := a + b + ab
¬a := 1 + a

false := 0
true := 1

Any Boolean algebra A gives a Boolean ring by

ab := a ∧ b
a + b := (a ∧ ¬b) ∨ (¬a ∧ b)

So Boolean algebras = Boolean rings

16 / 27

Equivalences and
normal forms

3.16

Boolean algebras and Boolean rings

A Boolean ring is a ring A with 1 in which every element
satisfies a2 = a.

Any Boolean ring A gives a Boolean algebra by

a ∧ b := ab
a ∨ b := a + b + ab
¬a := 1 + a

false := 0
true := 1

Any Boolean algebra A gives a Boolean ring by

ab := a ∧ b
a + b := (a ∧ ¬b) ∨ (¬a ∧ b)

So Boolean algebras = Boolean rings

16 / 27

Equivalences and
normal forms

3.17

1 Equational reasoning

2 Boolean algebras

3 Normal forms

17 / 27

Equivalences and
normal forms

3.18

Normal forms

A literal is a propositional variable or the negation of a
propositional variable:

x or ¬x

A formula F is in conjunctive normal form (CNF) if it is a
conjunction of disjunctions of literals Li,j :

F =
n∧

i=1

(

mi∨
j=1

Li,j)

Each conjunct is called a clause or (less often) a maxterm.

A formula F is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals Li,j :

F =
n∨

i=1

(

mi∧
j=1

Li,j)

Each conjunct is called a minterm.
Convention: true is CNF with no clauses, false is CNF with a
single clause without literals

18 / 27

Equivalences and
normal forms

3.18

Normal forms

A literal is a propositional variable or the negation of a
propositional variable:

x or ¬x

A formula F is in conjunctive normal form (CNF) if it is a
conjunction of disjunctions of literals Li,j :

F =
n∧

i=1

(

mi∨
j=1

Li,j)

Each conjunct is called a clause or (less often) a maxterm.
A formula F is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals Li,j :

F =
n∨

i=1

(

mi∧
j=1

Li,j)

Each conjunct is called a minterm.
Convention: true is CNF with no clauses, false is CNF with a
single clause without literals

18 / 27

Equivalences and
normal forms

3.19

Theorem (Normalisation Theorem)

For every formula there is an equivalent formula in CNF and an
equivalent formula in DNF.

19 / 27

Equivalences and
normal forms

3.20

Proof by truth table

x y z F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Each row with value 1 gives a clause in the DNF formula
For each propositional variable x , the clause contains the literal x
if 1 appears in column x , and ¬x otherwise

Each row with value 0 gives a clause in the CNF formula
For each propositional variable x , the clause contains the literal x
if 0 appears in column x , and ¬x otherwise.

20 / 27

Equivalences and
normal forms

3.20

Proof by truth table

x y z F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Each row with value 1 gives a clause in the DNF formula
For each propositional variable x , the clause contains the literal x
if 1 appears in column x , and ¬x otherwise

Each row with value 0 gives a clause in the CNF formula
For each propositional variable x , the clause contains the literal x
if 0 appears in column x , and ¬x otherwise.

20 / 27

Equivalences and
normal forms

3.20

Proof by truth table

x y z F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Each row with value 1 gives a clause in the DNF formula
For each propositional variable x , the clause contains the literal x
if 1 appears in column x , and ¬x otherwise

Each row with value 0 gives a clause in the CNF formula
For each propositional variable x , the clause contains the literal x
if 0 appears in column x , and ¬x otherwise.

20 / 27

Equivalences and
normal forms

3.20

Proof by truth table

x y z F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Each row with value 1 gives a clause in the DNF formula
For each propositional variable x , the clause contains the literal x
if 1 appears in column x , and ¬x otherwise

Each row with value 0 gives a clause in the CNF formula
For each propositional variable x , the clause contains the literal x
if 0 appears in column x , and ¬x otherwise.

20 / 27

Equivalences and
normal forms

3.21

Equational transformation to CNF

Is this efficient?

No! Better way:

1. Use double negation and De Morgan’s laws to substitute in F
every occurrence of a subformula of the form

¬¬G by G
¬(G ∧ H) by (¬G ∨ ¬H)

¬(G ∨ H) by (¬G ∧ ¬H)

¬true by false
¬false by true

until no such formulas occur (i.e., push all negations inward until
negation is only applied to propositional variables), yielding the
negation normal form

21 / 27

Equivalences and
normal forms

3.21

Equational transformation to CNF

Is this efficient? No! Better way:

1. Use double negation and De Morgan’s laws to substitute in F
every occurrence of a subformula of the form

¬¬G by G
¬(G ∧ H) by (¬G ∨ ¬H)

¬(G ∨ H) by (¬G ∧ ¬H)

¬true by false
¬false by true

until no such formulas occur (i.e., push all negations inward until
negation is only applied to propositional variables), yielding the
negation normal form

21 / 27

Equivalences and
normal forms

3.22

Equational transformation to CNF

2. Use distributivity to substitute in F every occurrence of a
subformula of the form

G ∨ (H ∧ R) by (G ∨ H) ∧ (G ∨ R)

(H ∧ R) ∨G by (H ∨G) ∧ (H ∨ R)

G ∨ true by true
true ∨G by true

until no such formulas occur (i.e., push all disjunctions inward
until no conjunction occurs under a disjunction).

3. Use the identity and zero laws to remove false from any clause
and to delete all clauses containing true.

22 / 27

Equivalences and
normal forms

3.22

Equational transformation to CNF

2. Use distributivity to substitute in F every occurrence of a
subformula of the form

G ∨ (H ∧ R) by (G ∨ H) ∧ (G ∨ R)

(H ∧ R) ∨G by (H ∨G) ∧ (H ∨ R)

G ∨ true by true
true ∨G by true

until no such formulas occur (i.e., push all disjunctions inward
until no conjunction occurs under a disjunction).

3. Use the identity and zero laws to remove false from any clause
and to delete all clauses containing true.

22 / 27

Equivalences and
normal forms

3.23

Tseytin’s transformation

We give an algorithm, known as Tseytin’s transformation, that

takes as input a formula F of length n, and
outputs a formula G in CNF of length O(n) such that F is
satisfiable iff G is satisfiable.

Observe that G cannot be the result of putting F in CNF, because in
the worst case G can have length Θ(2n).

Trade-off:
G is only a small constant factor larger than F .
F and G will not be equivalent in general.
In fact, G will even contain auxiliary variables that do not apear in
F .

Application: SAT-solving algorithms can assume that the input
formula is in CNF.

There is not a similar algorithm for DNF.

23 / 27

Equivalences and
normal forms

3.24

Tseytin’s transformation

For every subformula G of F , let qG be a fresh auxiliary variable.
(Unless G is an atom, then we define qG := G.)
For every subformula G, define the formula CG as follows:

If G = x then CG := x .
If G = ¬H, then
let CG be a formula in CNF equivalent to (qG ↔ ¬qH).
if G = (H op H ′) for op ∈ {∧,∨,→,↔, . . .},
then let CG be a formula in CNF equivalent to
CG ≡ (qG ↔ (qH op qH′)).

Define
EF := qF ∧

∧
G∈sub(F)

CG

Observe that EF is in CNF.

24 / 27

Equivalences and
normal forms

3.25

Tseytin’s transformation

Theorem

For every formula F : EF is satisfiable iff F is satisfiable.

Proof Sketch.

For every assignment A, let A′ be an assignment satisfying
A′(qG) = A(G) for every subformula G of F .

We have:

A(F) = A′(F) = A′(qF).
A′(CG) = 1 for every subformula G.

It follows A′(EF) = 1 iff A(F) = 1, and we are done.

25 / 27

Equivalences and
normal forms

3.26

Tseytin’s transformation: Example

Let F = (p1 ∧ p2) ∨ (p3 ∧ p4).

Introducing auxiliary variables yields:
q0 ∧ (q0 ↔ (q1 ∨ q2)) ∧ (q1 ↔ (p1 ∧ p2)) ∧ (q2 ↔ (p3 ∧ p4))

For CNF we put each of the formulas (q0 ↔ (q1 ∨ q2)),
(q1 ↔ (p1 ∧ p2)) und (q2 ↔ (p3 ∧ p4)) in CNF.

Each formula has 3 variables, and so the CNF can always be
chosen with at most 4 clauses.

We obtain:

EF := q0 ∧ (¬q0 ∨ q1 ∨ q2) ∧ (q0 ∨ ¬q1) ∧ (q0 ∨ ¬q2)
∧ (q1 ∨ ¬p1 ∨ ¬p2) ∧ (¬q1 ∨ p1) ∧ (¬q1 ∨ p2)
∧ (q2 ∨ ¬p3 ∨ ¬p4) ∧ (¬q2 ∨ p3) ∧ (¬q2 ∨ p4)

26 / 27

Equivalences and
normal forms

3.27

Summary

Equational reasoning is often more practical than using truth
tables

It allows reduction to normal forms

CNF and DNF formulas are equally expressive as the class of all
formulas

Note:
CNF can be exponentially shorter than DNF, see Sheet 1

SAT is trivial for DNF formulas

Later: SAT for CNF formulas = SAT for any formula

27 / 27

Equivalences and
normal forms

3.27

Summary

Equational reasoning is often more practical than using truth
tables

It allows reduction to normal forms

CNF and DNF formulas are equally expressive as the class of all
formulas

Note:
CNF can be exponentially shorter than DNF, see Sheet 1

SAT is trivial for DNF formulas

Later: SAT for CNF formulas = SAT for any formula

27 / 27

	Equational reasoning
	Boolean algebras
	Normal forms

