Lecture 3
 Equivalences and normal forms

Equational reasoning, Boolean algebras, normal forms

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

Recap

- Syntax of formulas of propositional logic:
(1) true and false are formulas.
(2) Every propositional variable x_{i} is a formula.
(3) If F is a formula, then $\neg F$ is a formula.
(9) If F and G are formulas, then $(F \wedge G)$ and $(F \vee G)$ are formulas.
- Semantics of formulas via assignments, which are functions $\mathcal{A}: X \rightarrow\{0,1\}$ that inductively extend to formulas
- Four notions: satisfiability, validity, entailment, equivalence.

Agenda

(1) Equational reasoning
(2) Boolean algebras
(3) Normal forms

Decision problems

A decision problem is a computational problem whose output is either "yes" or "no".

- Satisfiability: Given a formula F, is F satisfiable?
- Validity: Given a formula F, is F valid?
- Entailment: Given formulas F and G, does $F \not \models G$ hold?
- Equivalence: Given formulas F and G, does $F \equiv G$ hold?

(1) Equational reasoning

2 Boolean algebras

3 Normal forms

Equational reasoning

- Can show logical equivalence with brute force via truth tables
- Equational reasoning is more practical in many cases:
- Establish basic equivalences
- Derive new equivalences using the closure of logical equivalence under substitution

Basic equivalences

The following is a list of basic equivalences:

$$
\begin{aligned}
& F \wedge F \equiv F \\
& F \vee F \equiv F
\end{aligned}
$$

Idempotence

$$
\begin{aligned}
& F \wedge G \equiv G \wedge F \\
& F \vee G \equiv G \vee F
\end{aligned}
$$

Commutativity

$$
\begin{aligned}
& (F \wedge G) \wedge H \equiv F \wedge(G \wedge H) \\
& (F \vee G) \vee H \equiv F \vee(G \vee H)
\end{aligned}
$$

$$
F \wedge(F \vee G) \equiv F
$$

$$
F \vee(F \wedge G) \equiv F
$$

$$
F \wedge(G \vee H) \equiv(F \wedge G) \vee(F \wedge H)
$$

$$
F \vee(G \wedge H) \equiv(F \vee G) \wedge(F \vee H)
$$

Absorption

Distributivity

Basic equivalences

$$
\neg \neg F \equiv F
$$

Double negation

$$
\begin{array}{rlrl}
\neg(F \wedge G) & \equiv(\neg F \vee \neg G) & \\
\neg(F \vee G) & \equiv(\neg F \wedge \neg G) & \text { De Morgan’s laws } \\
F \vee \neg F & \equiv \text { true } & \\
F \wedge \neg F & \equiv \text { false } & \text { Complementation } \\
F \vee \text { true } & \equiv \text { true } & \\
F \wedge \text { false } & \equiv \text { false } & & \\
F \vee \text { false } & \equiv F & & \\
F \wedge \text { true Laws } & \equiv F & & \text { Identity Laws }
\end{array}
$$

Substitution

The essence of equational reasoning is the substitution of equals for equals.

Substitution

The essence of equational reasoning is the substitution of equals for equals.

- Informally, $G[F / H]$ means "substitute F for H in G ". E.g.:

$$
\left(p_{1} \wedge\left(p_{2} \vee p_{1}\right)\right)\left[\neg q_{1} / p_{1}\right]=\neg q_{1} \wedge\left(p_{2} \vee \neg q_{1}\right)
$$

Substitution

The essence of equational reasoning is the substitution of equals for equals.

- Informally, $G[F / H]$ means "substitute F for H in G ". E.g.:

$$
\left(p_{1} \wedge\left(p_{2} \vee p_{1}\right)\right)\left[\neg q_{1} / p_{1}\right]=\neg q_{1} \wedge\left(p_{2} \vee \neg q_{1}\right)
$$

- Formally, $G[F / H]:=F$ if $G=H$. Whenever $G \neq H$, we proceed by induction:
- Base cases:

$$
x[F / H]:=x \quad \text { for all } x \in X
$$

- Induction steps:

$$
\begin{aligned}
(\neg G)[F / H] & :=\neg(G[F / H]) \\
\left(G_{1} \wedge G_{2}\right)[F / H]: & : G_{1}[F / H] \wedge G_{2}[F / H] \\
\left(G_{1} \vee G_{2}\right)[F / H] & :=G_{1}[F / H] \vee G_{2}[F / H] .
\end{aligned}
$$

Substitution Theorem

Theorem (Substitution Theorem)

If $F_{1} \equiv F_{2}$ and $G_{1} \equiv G_{2}$ then for every formula H

$$
G_{1}\left[F_{1} / H\right] \equiv G_{2}\left[F_{2} / H\right] .
$$

Corollary

If $F_{1} \equiv F_{2}$ then for every formula G

$$
G \equiv G\left[F_{2} / F_{1}\right]
$$

Proof.

Special case of the theorem with $G_{1}:=G, G_{2}:=G, H:=F_{1}$.

Substitution Theorem

We prove the Substitution Theorem for the special case $H=x$.
We need a semantic counterpart of substitution:
Given an assignment \mathcal{A}, a propositional variable x, and a truth value $b \in\{0,1\}$, define the assignment $\mathcal{A}_{[x \mapsto b]}$ by

$$
\mathcal{A}_{[x \mapsto b]}(y):= \begin{cases}b & \text { if } y=x \\ \mathcal{A}(y) & \text { if } y \neq x\end{cases}
$$

for each propositional variable $y \in X$.

Substitution Theorem

Lemma (Translation Lemma)

Given formulas F, G and a propositional variable x, we have

$$
\mathcal{A}(G[F / x])=\mathcal{A}_{[x \mapsto \mathcal{A}(F)]}(G) .
$$

Substitution Theorem

Lemma (Translation Lemma)

Given formulas F, G and a propositional variable x, we have

$$
\mathcal{A}(G[F / x])=\mathcal{A}_{[x \mapsto \mathcal{A}(F)]}(G) .
$$

Proof.

By structural induction on G.
If $G=x$ then $\mathcal{A}(x[F / x])=\mathcal{A}(F)=\mathcal{A}_{[x \rightarrow \mathcal{A}(F)]}(x)$.
If $G=y$ for $y \neq x$ then $\mathcal{A}(y[F / x])=\mathcal{A}(y)=\mathcal{A}_{[x \mapsto \mathcal{A}(F)]}(y)$.
If $G=G_{1} \wedge G_{2}$ then

$$
\begin{align*}
\mathcal{A} \models\left(G_{1} \wedge G_{2}\right)[F / x] & \text { iff } \mathcal{A} \models G_{1}[F / x] \wedge G_{2}[F / x] \\
& \text { iff } \mathcal{A} \models G_{1}[F / x] \text { and } \mathcal{A} \models G_{2}[F / x] \\
& \text { iff } \mathcal{A}_{[x \mapsto \mathcal{A}(F)]} \models G_{1} \text { and } \mathcal{A}_{[x \mapsto \mathcal{A}(F)]} \models G_{2} \tag{i.h.}\\
& \text { iff } \mathcal{A}_{[x \mapsto \mathcal{A}(F)]} \models G_{1} \wedge G_{2}
\end{align*}
$$

The induction cases for disjunction and negation are similar and are omitted.

Substitution Theorem

Theorem (Substitution Theorem for $H=x$)
If $F_{1} \equiv F_{2}$ and $G_{1} \equiv G_{2}$ then

$$
G_{1}\left[F_{1} / x\right] \equiv G_{2}\left[F_{2} / x\right] .
$$

Proof.

The proof is a direct application of Lemma 3.

$$
\begin{aligned}
\mathcal{A}\left(G_{1}\left[F_{1} / x\right]\right) & =\mathcal{A}_{\left[x \mapsto \mathcal{A}\left(F_{1}\right)\right]}\left(G_{1}\right) \\
& =\mathcal{A}_{\left[x \mapsto \mathcal{A}\left(F_{1}\right)\right]}\left(G_{2}\right) \\
& =\mathcal{A}_{\left[x \mapsto \mathcal{A}\left(F_{2)}\right)\right]}\left(G_{2}\right) \\
& =\mathcal{A}\left(G_{2}\left[F_{2} / x\right]\right)
\end{aligned}
$$

by Lemma 3
since $G_{1} \equiv G_{2}$
since $F_{1} \equiv F_{2}$
by Lemma 3

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Equational reasoning

The equivalence

$$
(P \vee(Q \vee R) \wedge(R \vee \neg P)) \equiv R \vee(\neg P \wedge Q)
$$

has the following equational proof:

$$
\begin{aligned}
(P \vee(Q \vee R)) \wedge(R \vee \neg P) & \equiv((P \vee Q) \vee R) \wedge(R \vee \neg P) \\
& \equiv(R \vee(P \vee Q)) \wedge(R \vee \neg P) \\
& \equiv R \vee((P \vee Q) \wedge \neg P) \\
& \equiv R \vee(\neg P \wedge(P \vee Q)) \\
& \equiv R \vee((\neg P \wedge P) \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\text { false } \vee(\neg P \wedge Q)) \\
& \equiv R \vee(\neg P \wedge Q) .
\end{aligned}
$$

Boolean algebras

A Boolean algebra is a set A together with two elements true, false $\in A$, one unary operation $\neg: A \rightarrow A$, and two binary operations $\wedge, \vee: A \times A \rightarrow A$ satisfying the Boolean algebra axioms.

Boolean algebras

A Boolean algebra is a set A together with two elements true, false $\in A$, one unary operation $\neg: A \rightarrow A$, and two binary operations $\wedge, \vee: A \times A \rightarrow A$ satisfying the Boolean algebra axioms.

Here are two other examples of Boolean algebras:

- $A=\{0,1\}$, true $=1$, false $=0, \wedge=\min , \vee=\max , \neg x=1-x$.

Boolean algebras

A Boolean algebra is a set A together with two elements true, false $\in A$, one unary operation $\neg: A \rightarrow A$, and two binary operations $\wedge, \vee: A \times A \rightarrow A$ satisfying the Boolean algebra axioms.

Here are two other examples of Boolean algebras:

- $A=\{0,1\}$, true $=1$, false $=0, \wedge=\min , \vee=\max , \neg x=1-x$.
- For any set X, take $A=2^{X}$ with true $=X$, false $=\emptyset, \wedge=\cap$, $\vee=\cup, \neg S=X \backslash S$.
In fact, any finite Boolean algebra is of the form 2^{X}.

Boolean algebras and Boolean rings

- A Boolean ring is a ring A with 1 in which every element satisfies $a^{2}=a$.

Boolean algebras and Boolean rings

- A Boolean ring is a ring A with 1 in which every element satisfies $a^{2}=a$.
- Any Boolean ring A gives a Boolean algebra by

$$
\begin{aligned}
a \wedge b & :=a b \\
a \vee b & :=a+b+a b \\
\neg a & :=1+a \\
\text { false } & :=0 \\
\text { true } & :=1
\end{aligned}
$$

Boolean algebras and Boolean rings

- A Boolean ring is a ring A with 1 in which every element satisfies $a^{2}=a$.
- Any Boolean ring A gives a Boolean algebra by

$$
\begin{aligned}
a \wedge b & :=a b \\
a \vee b & :=a+b+a b \\
\neg a & :=1+a \\
\text { false } & :=0 \\
\text { true } & :=1
\end{aligned}
$$

- Any Boolean algebra A gives a Boolean ring by

$$
\begin{aligned}
a b & :=a \wedge b \\
a+b & :=(a \wedge \neg b) \vee(\neg a \wedge b)
\end{aligned}
$$

- So Boolean algebras = Boolean rings
(1) Equational reasoning
(2) Boolean algebras
(3) Normal forms

Normal forms

- A literal is a propositional variable or the negation of a propositional variable:

$$
x \text { or } \neg x
$$

- A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals $L_{i, j}$:

$$
F=\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)
$$

Each conjunct is called a clause or (less often) a maxterm.

Normal forms

- A literal is a propositional variable or the negation of a propositional variable:

$$
x \text { or } \neg x
$$

- A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals $L_{i, j}$:

$$
F=\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)
$$

Each conjunct is called a clause or (less often) a maxterm.

- A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals $L_{i, j}$:

$$
F=\bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{m_{i}} L_{i, j}\right)
$$

Each conjunct is called a minterm.

- Convention: true is CNF with no clauses, false is CNF with a single clause without literals

Theorem (Normalisation Theorem)

For every formula there is an equivalent formula in CNF and an equivalent formula in DNF.

Proof by truth table

x	y	z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Each row with value 1 gives a clause in the DNF formula
- For each propositional variable x, the clause contains the literal x if 1 appears in column x, and $\neg x$ otherwise

Proof by truth table

x	y	z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Each row with value 1 gives a clause in the DNF formula
- For each propositional variable x, the clause contains the literal x if 1 appears in column x, and $\neg x$ otherwise

Proof by truth table

x	y	z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Each row with value 1 gives a clause in the DNF formula
- For each propositional variable x, the clause contains the literal x if 1 appears in column x, and $\neg x$ otherwise
- Each row with value 0 gives a clause in the CNF formula
- For each propositional variable x, the clause contains the literal x if 0 appears in column x, and $\neg x$ otherwise.

Proof by truth table

x	y	z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Each row with value 1 gives a clause in the DNF formula
- For each propositional variable x, the clause contains the literal x if 1 appears in column x, and $\neg x$ otherwise
- Each row with value 0 gives a clause in the CNF formula
- For each propositional variable x, the clause contains the literal x if 0 appears in column x, and $\neg x$ otherwise.

Equational transformation to CNF

Is this efficient?

Equational transformation to CNF

Is this efficient? No! Better way:

1. Use double negation and De Morgan's laws to substitute in F every occurrence of a subformula of the form

$$
\begin{array}{rll}
\neg \neg G & \text { by } & G \\
\neg(G \wedge H) & \text { by } & (\neg G \vee \neg H) \\
\neg(G \vee H) & \text { by } & (\neg G \wedge \neg H) \\
\neg \text { true } & \text { by } & \text { false } \\
\neg \text { false } & \text { by } & \text { true }
\end{array}
$$

until no such formulas occur (i.e., push all negations inward until negation is only applied to propositional variables), yielding the negation normal form

Equational transformation to CNF

2. Use distributivity to substitute in F every occurrence of a subformula of the form

$$
\begin{array}{rll}
G \vee(H \wedge R) & \text { by } & (G \vee H) \wedge(G \vee R) \\
(H \wedge R) \vee G & \text { by } & (H \vee G) \wedge(H \vee R) \\
G \vee \text { true } & \text { by } & \text { true } \\
\text { true } \vee G & \text { by } & \text { true }
\end{array}
$$

until no such formulas occur (i.e., push all disjunctions inward until no conjunction occurs under a disjunction).

Equational transformation to CNF

2. Use distributivity to substitute in F every occurrence of a subformula of the form

$$
\begin{array}{rll}
G \vee(H \wedge R) & \text { by } & (G \vee H) \wedge(G \vee R) \\
(H \wedge R) \vee G & \text { by } & (H \vee G) \wedge(H \vee R) \\
G \vee \text { true } & \text { by } & \text { true } \\
\text { true } \vee G & \text { by } & \text { true }
\end{array}
$$

until no such formulas occur (i.e., push all disjunctions inward until no conjunction occurs under a disjunction).
3. Use the identity and zero laws to remove false from any clause and to delete all clauses containing true.

Tseytin's transformation

We give an algorithm, known as Tseytin's transformation, that

- takes as input a formula F of length n, and
- outputs a formula G in CNF of length $O(n)$ such that F is satisfiable iff G is satisfiable.

Observe that G cannot be the result of putting F in CNF, because in the worst case G can have length $\Theta\left(2^{n}\right)$.
Trade-off:

- G is only a small constant factor larger than F.
- F and G will not be equivalent in general.

In fact, G will even contain auxiliary variables that do not apear in F.

Application: SAT-solving algorithms can assume that the input formula is in CNF.

There is not a similar algorithm for DNF.

Tseytin's transformation

- For every subformula G of F, let q_{G} be a fresh auxiliary variable. (Unless G is an atom, then we define $q_{G}:=G$.)
- For every subformula G, define the formula C_{G} as follows:
- If $G=x$ then $C_{G}:=x$.
- If $G=\neg H$, then
let C_{G} be a formula in CNF equivalent to ($q_{G} \leftrightarrow \neg q_{H}$).
- if $G=\left(H\right.$ op $\left.H^{\prime}\right)$ for $\mathrm{op} \in\{\wedge, \vee, \rightarrow, \leftrightarrow, \ldots\}$, then let C_{G} be a formula in CNF equivalent to

$$
C_{G} \equiv\left(q_{G} \leftrightarrow\left(q_{H} \circ p q_{H^{\prime}}\right)\right) .
$$

- Define

$$
E_{F}:=q_{F} \wedge \bigwedge_{G \in \operatorname{sub}(F)} C_{G}
$$

Observe that E_{F} is in CNF.

Tseytin's transformation

Theorem

For every formula $F: E_{F}$ is satisfiable iff F is satisfiable.

Proof Sketch.

For every assignment \mathcal{A}, let \mathcal{A}^{\prime} be an assignment satisfying $\mathcal{A}^{\prime}\left(q_{G}\right)=\mathcal{A}(G)$ for every subformula G of F.

We have:

- $\mathcal{A}(F)=\mathcal{A}^{\prime}(F)=\mathcal{A}^{\prime}\left(q_{F}\right)$.
- $\mathcal{A}^{\prime}\left(C_{G}\right)=1$ for every subformula G.

It follows $\mathcal{A}^{\prime}\left(E_{F}\right)=1$ iff $\mathcal{A}(F)=1$, and we are done.

Tseytin's transformation: Example

- Let $F=\left(p_{1} \wedge p_{2}\right) \vee\left(p_{3} \wedge p_{4}\right)$.
- Introducing auxiliary variables yields:

$$
q_{0} \wedge\left(q_{0} \leftrightarrow\left(q_{1} \vee q_{2}\right)\right) \wedge\left(q_{1} \leftrightarrow\left(p_{1} \wedge p_{2}\right)\right) \wedge\left(q_{2} \leftrightarrow\left(p_{3} \wedge p_{4}\right)\right)
$$

- For CNF we put each of the formulas $\left(q_{0} \leftrightarrow\left(q_{1} \vee q_{2}\right)\right)$, $\left(q_{1} \leftrightarrow\left(p_{1} \wedge p_{2}\right)\right)$ und $\left(q_{2} \leftrightarrow\left(p_{3} \wedge p_{4}\right)\right)$ in CNF.
- Each formula has 3 variables, and so the CNF can always be chosen with at most 4 clauses.
- We obtain:

$$
\begin{aligned}
E_{F}:=q_{0} & \wedge\left(\neg q_{0} \vee q_{1} \vee q_{2}\right) \wedge\left(q_{0} \vee \neg q_{1}\right) \wedge\left(q_{0} \vee \neg q_{2}\right) \\
& \wedge\left(q_{1} \vee \neg p_{1} \vee \neg p_{2}\right) \wedge\left(\neg q_{1} \vee p_{1}\right) \wedge\left(\neg q_{1} \vee p_{2}\right) \\
& \wedge\left(q_{2} \vee \neg p_{3} \vee \neg p_{4}\right) \wedge\left(\neg q_{2} \vee p_{3}\right) \wedge\left(\neg q_{2} \vee p_{4}\right)
\end{aligned}
$$

Summary

- Equational reasoning is often more practical than using truth tables
- It allows reduction to normal forms
- CNF and DNF formulas are equally expressive as the class of all formulas

Summary

- Equational reasoning is often more practical than using truth tables
- It allows reduction to normal forms
- CNF and DNF formulas are equally expressive as the class of all formulas

Note:

- CNF can be exponentially shorter than DNF, see Sheet 1
- SAT is trivial for DNF formulas
- Later: SAT for CNF formulas = SAT for any formula

