Lecture 2
Propositional logic

syntax and semantics, the satisfiability problem, constraint problems

Dr Christoph Haase
University of Oxford

(with small changes by Javier Esparza)

Agenda

@ Propositional Logic

9 Syntax and semantics of propositional logic

e Encoding constraint problems into satisfiability problems

Propositional logic

@ Formulas of propositional logic (aka propositions) are built of
smaller formulas using connectives like and, or, not, implies, and
others.

@ The smallest formulas are propositional variables, aka atomic
propositions or atoms, which can be instantiated with statements
which are either true or false.

@ A prime concern: given a compound formula, determine which
truth values of its atoms make it true.

An example

@ Atomic propositions:
Atoms Instance
a “Alice is an architect”
b “Bob is a builder”
c “Charlie is a cook”

An example

@ Atomic propositions:
Atoms Instance

a “Alice is an architect”
b “Bob is a builder”
c “Charlie is a cook”

@ Compound formulas:

-C “Charlie is not a cook”
av b “Alice is an architect or Bob is a builder”
b— ¢ “If Bob is a builder then Charlie is a cook”

An example

@ Atomic propositions:
Atoms Instance

a “Alice is an architect”
b “Bob is a builder”
c “Charlie is a cook”

@ Compound formulas:

-C “Charlie is not a cook”
av b “Alice is an architect or Bob is a builder”
b— ¢ “If Bob is a builder then Charlie is a cook”

@ These entail that Alice is an architect: if the above three
propositions are all true then a must also be true
({—c, avb, b—c}ka).

An example

@ Atomic propositions:
Atoms Instance

a “Alice is an architect”
b “Bob is a builder”
c “Charlie is a cook”

@ Compound formulas:

-C “Charlie is not a cook”
av b “Alice is an architect or Bob is a builder”
b— ¢ “If Bob is a builder then Charlie is a cook”

@ These entail that Alice is an architect: if the above three
propositions are all true then a must also be true
({—c, avb, b—c}ka).

@ The correctness of this entailment is independent of the
instantiation of the atomic propositions!

9 Syntax and semantics of propositional logic

Syntax of propositional logic

Definition (Syntax of propositional logic)

Let X = {x1, X2, X3, ...} be a countably infinite set of propositional
variables. Formulas of propositional logic are inductively defined as
follows:

@ frue and false are formulas.

@ Every propositional variable x; is a formula.

© If Fis a formula, then —F is a formula.

@ If F and G are formulas, then (F A G) and (F v G) are formulas.

Additional notation

@ We often write x, y, z or p to denote propositional variables.
@ We call —=F the negation of F.

@ Given formulas F and G, (F A G) is the conjunction of F and G,
and (F Vv G) is the disjunction of F and G.

@ We call -, A and V logical connectives.

@ We denote by 7(X) the set of all formulas built from
propositional variables in X.

Derived connectives

Implication: (F1 — F2) = (-F1V F)

Bi-implication: (F; <) = (F;1 — R) A (Fo — Fy)

Exclusive Or: (F1 D Fg) = (F1 A —|F2) \Y (—\F1 A\ Fg)

Indexed Conjunction: A\, Fi:= (- ((Fi AF2) AF3) A -+ A Fp)

Indexed Disjunction: \/7_, F;:= (---((F1 V F2) V F3) V--- V Fp)

Note on bracketing:
e We usually drop outer brackets

e Operator precedences: <+ and — bind weaker than A and Vv, which
bind weaker than —.

e Example: -x Ay — zmeans ((-x Ay) — 2)

Syntax trees

@ Every formula F can be represented by a syntax tree whose
nodes are labelled either by connectives or by propositional
variables.

@ Subformulas of F correspond to all subtrees of F

Syntax trees

@ Every formula F can be represented by a syntax tree whose
nodes are labelled either by connectives or by propositional
variables.

@ Subformulas of F correspond to all subtrees of F

Example: syntax tree of =((—xs V X1) A X3):

Inductive definitions

Inductive definition of formulas allows us to define functions on
formulas by structural induction, by defining the function

@ For the base cases true, false and x;, and
@ For the induction steps —-F, F A Gand FV G.

Inductive definitions

Inductive definition of formulas allows us to define functions on
formulas by structural induction, by defining the function

@ For the base cases frue, false and x;, and
@ For the induction steps —-F, F A Gand FV G.

Example

The function sub: F(X) — 27(X) returning the set of all subformulas
of a given formula can be defined by:

@ sub(true) = {true}, sub(false) = {false}
@ sub(x) = {x} forall x e X

@ sub(—F) = {—~F} U sub(F)

@ sub(F A G) = {F A G} U sub(F) U sub(G)
@ sub(F Vv G) = {F Vv G} U sub(F) U sub(G)

Syntax vs semantics

The syntax tells us how we write something down, the semantics
what it means:

@ syntax: some formal language
@ semantics: some mathematical object
@ our syntax: propositional formulas

@ our semantics: truth tables

Semantics of propositional logic

Definition
An assignment is a function A: X — {0, 1} that induces an
assignment A: F(X) — {0, 1} by structural induction as follows:
Q@ A(false) = 0, A(true) = 1
@ Forevery x € X, A(x) := A(x)

. 1 ifAF)=0
—|F =]
Q AGF) {0 otherwise
. 1 if A(F)=1and A(G) =1
FAQG)) =
Al) {0 otherwise
. 1 if A(F)=1or A(G) =1
A((FV Q) =
9 A«) {0 otherwise

Semantics of propositional logic

@ The semantics of a formula F is the function that maps each
assignment A: X — {0, 1} to the truth value A(F).

@ Let Y C X be the set of variables occurring in F.

A(F) is completely determined by the values assigned by A to
the variables of Y.

@ With a slight abuse of language, we also say that the semantics
of F is the function that maps each restricted assignment
A’ 'Y — {0, 1} to the truth value :4\’(F).

@ Observe that X is infinite, but Y is finite. So there is an
uncountable infinity of assignments, but only 2!¥! restricted
assignments.

Semantics of propositional logic

Example

Let F = (x A—y)V z and A be an assignment such that A(x) = 1 and
A(y) = A(z) = 0. Then F evaluates to true under A, since

i 1 ifA(xA-y)) =1 0r A(z) =
A(F){O otherwise

1 if A((x A —y)) =1 (since A(z) = 0)
0 otherwise

{1 if A(x)=1and A(-y) =1
:

0 otherwise

1 if A(y) = 0 (since A(x) = 1)
0 otherwise

(since A(y) = 0).

Semantics of propositional logic

Example

Let F = (x A—y)V z and A be an assignment such that A(x) = 1 and
A(y) = A(z) = 0. Then F evaluates to true under A, since

i 1 ifA(xA-y)) =1 0r A(z) =
A(F){O otherwise

1 if A((x A —y)) =1 (since A(z) = 0)
0 otherwise

{1 if A(x)=1and A(-y) =1
1

0 otherwise

1 if A(y) = 0 (since A(x) = 1)
0 otherwise

(since A(y) = 0).

Subsequently we will not write the hat on top of A.

Semantics via truth tables

Example

The semantics of logical connectives via truth tables:
A(F) AG) | A(FAG) A(F) A(G) | A(FVG)

0 0 0 0 0 0
1 0 0 1 0 1
0 1 0 0 1 1
1 1 1 1 1 1

Semantics via truth tables

Example

The semantics of logical connectives via truth tables:
A(F) AG) | A(FAG) A(F) A(G) | A(FVG)

0 0 0 0 0 0
1 0 0 1 0 1
0 1 0 0 1 1
1 1 1 1 1 1

Semantics via truth tables

Example

The semantics of logical connectives via truth tables:
A(F) A(G) | A(FAG) A(F) A(G) \ A(F Vv G)

0

- O OO
- O = O
- a 00
_a a0

0

1 0
0 1
1 1

1 0 0

A(F) A(G) | A(F— G) A(F) AG) | A(FaG)
0 0
1 0
0 1
1 1

0
0 1 0 1
1 0 1 1
1 1 1 0

Semantics via truth tables

Example

The semantics of logical connectives via truth tables:
A(F) A(G) | A(FAG) A(F) A(G) \ A(F Vv G)

0

- O OO
- a 00
_a a0

- O =0

0

1 0
0 1
1 1

1 0 0

A(F) A(G) | A(F— G) A(F) AG) | A(FaG)
0 0
1 0
0 1
1 1

0
0 1 0 1
1 0 1 1
1 1 1 0

Formalising natural language: an example

A device consists of a thermostat, a pump, and a warning light.
Suppose we are told the following four facts about the pump:

@ The thermostat or the pump (or both) are broken.
@ [f the thermostat is broken then the pump is also broken.

@ If the pump is broken and the warning light is on then the
thermostat is not broken.

@ The warning light is on.
Is it possible for all four to be true at the same time?

Formalising natural language: an example

A device consists of a thermostat, a pump, and a warning light.
Suppose we are told the following four facts about the pump:

@ The thermostat or the pump (or both) are broken.
@ [f the thermostat is broken then the pump is also broken.

@ If the pump is broken and the warning light is on then the
thermostat is not broken.

@ The warning light is on.

Is it possible for all four to be true at the same time?
In a propositional formula:

F=(tVvp)A(t—=p)A((PAW) = —t) Aw

Truth table

(vp)A(t—=p)A((PAW) = -t)AW

F

—~oocoor~oooo
S O—~—O0O+—~O0O+O~+
Q0O+~~~ O0OO+
—~0O0O0O0O v+ +

Truth table

F:

(vp)A(t—=p)A((PAW) = -t)AW

4220200000~
4 200~ 20 O0T

w
0
1
0
1
0
1
0
1

OO OO - 00O —

There is a unique assignment that makes F true. We can think of
each assignment as describing a possible world, and there is only
one world in which F is true.

Models, satisfiability and validity

Definition
Let F € F(X) and A: X — {0,1} be an assignment.

Q If A(F) =1 then we write A |= F (“F holds under A”, or “Ais a
model of F”.)

@ If F has at least one model then F is satisfiable, otherwise F is
unsatisfiable.

@ If F holds under any assignment A: X — {0, 1} then F is called
valid or a tautology, written = F.

Models, satisfiability and validity

Definition
Let F € F(X) and A: X — {0,1} be an assignment.
Q If A(F) =1 then we write A |= F (“F holds under A”, or “Ais a
model of F”.)
@ If F has at least one model then F is satisfiable, otherwise F is
unsatisfiable.

@ If F holds under any assignment A: X — {0, 1} then F is called
valid or a tautology, written = F.

Definition
Given F € F(X), the Boolean satisfiability problem (SAT) is to
decide whether F is satisfiable.

Models, satisfiability and validity

Example

The subsequent first two tautologies are known as the distributive
laws, the last two as De Morgan’s laws:

= (FV(GAH)) & ((FVG)A(FVH))
F (FA(GVH)) < (FAG)V(FAH))
= ~(FAG) & -FV-G
= ~(FVG) & -F A-G.

Entailment and equivalence

Definition (Entailment)

A formula G is a consequence of (or is entailed by) a set of formulas
S if every assignment that satisfies each formula in S also satisfies G.
In this case we write S = G.

Entailment and equivalence

Definition (Entailment)

A formula G is a consequence of (or is entailed by) a set of formulas
S if every assignment that satisfies each formula in S also satisfies G.
In this case we write S = G.

Definition (Equivalence)

Two formulas F and G are said to be logically equivalent if

A(F) = A(G) for every assignment .A. We write F = G to denote that
F and G are equivalent.

e Encoding constraint problems into satisfiability problems

Sudoku

Sudoku

Foreach /,j,k € {1,...,9} we have a proposition x; ; x expressing
that grid position i, j contains number k. Build formula F as the
conjunction of the following constraints:

Sudoku

Foreach /,j,k € {1,...,9} we have a proposition x; ; x expressing
that grid position i, j contains number k. Build formula F as the
conjunction of the following constraints:

@ Each number appears in each row and in each column:

o 9 9 9 9 9
Fi= AN\ Vxix F=ANA\Vxi«

@ No square contains two numbers:

9 9

Fyq:= /\ /\ /\ ~(Xijk A Xijkr) -

i=1 j=1 1<k<k'<9

Sudoku

@ Certain numbers appear in certain positions: we assert

Fs .= Xo12ANX128 \NXo33/N\...\Xgge-

2 5 1 9
8 2 3 6

Sudoku

@ Missing constraints? What about: no number appears twice in
the same row?

i
n>@

9
/\ /\ lek/\xlj’k)
k=1 1<j<j’

@ Entailed by the existing formulas: adding Fg as an extra
constraint would not change the set of satisfying assignments.

Sudoku

@ Missing constraints? What about: no number appears twice in
the same row?

i
n>@

9
/\ /\ lek/\xlj’k)
k=1 1<j<j’

@ Entailed by the existing formulas: adding Fg as an extra
constraint would not change the set of satisfying assignments.

@ But adding logically redundant constraints may help a computer
search for a satisfying assignment.

@ The number of variables x; ; x is 9% = 729. Thus a truth table for
the corresponding formula would have 272° > 102 |ines!
Nevertheless a modern SAT-solver can find a satisfying
assignment in milliseconds.

Hamiltonian path

Figure: Example of a Hamiltonian path in an undirected graph.

Hamiltonian path

Given an undirected graph G = (V,E) suchthat EC V x V'is
symmetric, for each vertex i,j € {1,..., n} we have a proposition Xx; ;
expressing that vertex i is the jth vertex in the Hamiltonian path. Build
formula F as the conjunction of the following constraints:

@ Each vertex is visited precisely once:

n n n
Fi = /\ \/X/,j Fo := /\ /\ =X A Xik) A (6,0 A X, i)

=1 j=1 i=1 1<j#k<n
@ The path goes along edges:

n n n-1

F4 = /\ /\ /\ Xij N\ Xk jr1 — €k

i=1 k=1 j=1

Fs = /\ €ij N\ /\ €

(i)eE (ih))¢E

Polynomial-time vs exponential-time

Polynomial-time vs exponential-time

@ Can solve SAT in time O(2") (via truth tables).

Polynomial-time vs exponential-time

@ Can solve SAT in time O(2") (via truth tables).

@ No sub-exponential algorithm is known (e.g., O(n'928), nlog(n),
2n/log(n)’. .)

Polynomial-time vs exponential-time

@ Can solve SAT in time O(2") (via truth tables).

@ No sub-exponential algorithm is known (e.g., O(n'928), nlog(n),
2n/log(n)’. .)

@ Can do better for special formula classes: Horn formulas, 2-CNF
formulas, XOR-clauses, . ..

Polynomial-time vs exponential-time

@ Can solve SAT in time O(2") (via truth tables).

@ No sub-exponential algorithm is known (e.g., O(n'928), nlog(n),
2n/log(n)’. .)

@ Can do better for special formula classes: Horn formulas, 2-CNF
formulas, XOR-clauses, . ..

@ Reductions of combinatorial problems to SAT should run in
polynomial-time!

	Propositional Logic
	Syntax and semantics of propositional logic
	Encoding constraint problems into satisfiability problems

