Lecture 2 Propositional logic

syntax and semantics, the satisfiability problem, constraint problems

Dr Christoph Haase

University of Oxford

Agenda

(9) Propositional Logic

2 Syntax and semantics of propositional logic
(3) Encoding constraint problems into satisfiability problems

Propositional logic

- Formulas of propositional logic (aka propositions) are built of smaller formulas using connectives like and, or, not, implies, and others.
- The smallest formulas are propositional variables, aka atomic propositions or atoms, which can be instantiated with statements which are either true or false.
- A prime concern: given a compound formula, determine which truth values of its atoms make it true.

An example

- Atomic propositions:

Atoms	Instance
a	"Alice is an architect"
b	"Bob is a builder"
c	"Charlie is a cook"

An example

- Atomic propositions:

Atoms	Instance
a	"Alice is an architect"
b	"Bob is a builder"
c	"Charlie is a cook"

- Compound formulas:
$\neg C \quad$ "Charlie is not a cook"
$a \vee b \quad$ "Alice is an architect or Bob is a builder"
$b \rightarrow c$ "If Bob is a builder then Charlie is a cook"

An example

- Atomic propositions:

Atoms	Instance
a	"Alice is an architect"
b	"Bob is a builder"
c	"Charlie is a cook"

- Compound formulas:
$\neg C \quad$ "Charlie is not a cook"
$a \vee b \quad$ "Alice is an architect or Bob is a builder"
$b \rightarrow c \quad$ "If Bob is a builder then Charlie is a cook"
- These entail that Alice is an architect: if the above three propositions are all true then a must also be true $(\{\neg c, a \vee b, b \rightarrow c\} \vDash a)$.

An example

- Atomic propositions:

Atoms	Instance
a	"Alice is an architect"
b	"Bob is a builder"
c	"Charlie is a cook"

- Compound formulas:
$\neg C \quad$ "Charlie is not a cook"
$a \vee b \quad$ "Alice is an architect or Bob is a builder"
$b \rightarrow c \quad$ "If Bob is a builder then Charlie is a cook"
- These entail that Alice is an architect: if the above three propositions are all true then a must also be true $(\{\neg c, a \vee b, b \rightarrow c\} \vDash a)$.
- The correctness of this entailment is independent of the instantiation of the atomic propositions!

(1) Propositional Logic

(2) Syntax and semantics of propositional logic

3 Encoding constraint problems into satisfiability problems

Syntax of propositional logic

Definition (Syntax of propositional logic)

Let $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ be a countably infinite set of propositional variables. Formulas of propositional logic are inductively defined as follows:
(1) true and false are formulas.
(2) Every propositional variable x_{i} is a formula.
(3) If F is a formula, then $\neg F$ is a formula.
(9) If F and G are formulas, then $(F \wedge G)$ and $(F \vee G)$ are formulas.

Additional notation

- We often write x, y, z or p to denote propositional variables.
- We call $\neg F$ the negation of F.
- Given formulas F and $G,(F \wedge G)$ is the conjunction of F and G, and $(F \vee G)$ is the disjunction of F and G.
- We call \neg, \wedge and \vee logical connectives.
- We denote by $\mathcal{F}(X)$ the set of all formulas built from propositional variables in X.

Derived connectives

- Implication: $\left(F_{1} \rightarrow F_{2}\right):=\left(\neg F_{1} \vee F_{2}\right)$
- Bi-implication: $\left(F_{1} \leftrightarrow F_{2}\right):=\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)$
- Exclusive Or: $\left(F_{1} \oplus F_{2}\right):=\left(F_{1} \wedge \neg F_{2}\right) \vee\left(\neg F_{1} \wedge F_{2}\right)$
- Indexed Conjunction: $\bigwedge_{i=1}^{n} F_{i}:=\left(\cdots\left(\left(F_{1} \wedge F_{2}\right) \wedge F_{3}\right) \wedge \cdots \wedge F_{n}\right)$
- Indexed Disjunction: $\bigvee_{i=1}^{n} F_{i}:=\left(\cdots\left(\left(F_{1} \vee F_{2}\right) \vee F_{3}\right) \vee \cdots \vee F_{n}\right)$
- Note on bracketing:
- We usually drop outer brackets
- Operator precedences: \leftrightarrow and \rightarrow bind weaker than \wedge and \vee, which bind weaker than \neg.
- Example: $\neg x \wedge y \rightarrow z$ means $((\neg x \wedge y) \rightarrow z)$

Syntax trees

- Every formula F can be represented by a syntax tree whose nodes are labelled either by connectives or by propositional variables.
- Subformulas of F correspond to all subtrees of F

Syntax trees

- Every formula F can be represented by a syntax tree whose nodes are labelled either by connectives or by propositional variables.
- Subformulas of F correspond to all subtrees of F

Example: syntax tree of $\neg\left(\left(\neg x_{4} \vee x_{1}\right) \wedge x_{3}\right)$:

Inductive definitions

Inductive definition of formulas allows us to define functions on formulas by structural induction, by defining the function

- For the base cases true, false and x_{i}, and
- For the induction steps $\neg F, F \wedge G$ and $F \vee G$.

Inductive definitions

Inductive definition of formulas allows us to define functions on formulas by structural induction, by defining the function

- For the base cases true, false and x_{i}, and
- For the induction steps $\neg F, F \wedge G$ and $F \vee G$.

Example

The function sub: $\mathcal{F}(X) \rightarrow 2^{\mathcal{F}(X)}$ returning the set of all subformulas of a given formula can be defined by:

- sub $($ true $)=\{$ true $\}$, sub (false $)=\{$ false $\}$
- $\operatorname{sub}(x)=\{x\}$ for all $x \in X$
- $\operatorname{sub}(\neg F)=\{\neg F\} \cup \operatorname{sub}(F)$
- $\operatorname{sub}(F \wedge G)=\{F \wedge G\} \cup \operatorname{sub}(F) \cup \operatorname{sub}(G)$
- $\operatorname{sub}(F \vee G)=\{F \vee G\} \cup \operatorname{sub}(F) \cup \operatorname{sub}(G)$

Syntax vs semantics

The syntax tells us how we write something down, the semantics what it means:

- syntax: some formal language
- semantics: some mathematical object
- our syntax: propositional formulas
- our semantics: truth tables

Semantics of propositional logic

Definition

An assignment is a function $\mathcal{A}: X \rightarrow\{0,1\}$ that induces an assignment $\hat{\mathcal{A}}: \mathcal{F}(X) \rightarrow\{0,1\}$ by structural induction as follows:
(1) $\hat{\mathcal{A}}($ false $)=0, \hat{\mathcal{A}}($ true $)=1$
(2) For every $x \in X, \hat{\mathcal{A}}(x):=\mathcal{A}(x)$
(3) $\hat{\mathcal{A}}(\neg F):= \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=0 \\ 0 & \text { otherwise }\end{cases}$
(9) $\hat{\mathcal{A}}((F \wedge G)):= \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=1 \text { and } \hat{\mathcal{A}}(G)=1 \\ 0 & \text { otherwise }\end{cases}$
(6) $\hat{\mathcal{A}}((F \vee G)):= \begin{cases}1 & \text { if } \hat{\mathcal{A}}(F)=1 \text { or } \hat{\mathcal{A}}(G)=1 \\ 0 & \text { otherwise }\end{cases}$

Semantics of propositional logic

- The semantics of a formula F is the function that maps each assignment $\mathcal{A}: X \rightarrow\{0,1\}$ to the truth value $\hat{\mathcal{A}}(F)$.
- Let $Y \subseteq X$ be the set of variables occurring in F.
$\hat{\mathcal{A}}(F)$ is completely determined by the values assigned by \mathcal{A} to the variables of Y.
- With a slight abuse of language, we also say that the semantics of F is the function that maps each restricted assignment $\mathcal{A}^{\prime}: Y \rightarrow\{0,1\}$ to the truth value $\widehat{\mathcal{A}^{\prime}}(F)$.
- Observe that X is infinite, but Y is finite. So there is an uncountable infinity of assignments, but only $2^{|Y|}$ restricted assignments.

Semantics of propositional logic

Example

Let $F=(x \wedge \neg y) \vee z$ and \mathcal{A} be an assignment such that $\mathcal{A}(x)=1$ and $\mathcal{A}(y)=\mathcal{A}(z)=0$. Then F evaluates to true under \mathcal{A}, since

$$
\begin{aligned}
\hat{\mathcal{A}}(F) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}((x \wedge \neg y))=1 \text { or } \hat{\mathcal{A}}(z)=1 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } \hat{\mathcal{A}}((x \wedge \neg y))=1(\text { since } \mathcal{A}(z)=0) \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(x)=1 \text { and } \hat{\mathcal{A}}(\neg y)=1 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(y)=0(\text { since } \mathcal{A}(x)=1) \\
0 & \text { otherwise }\end{cases} \\
& =1(\operatorname{since} \mathcal{A}(y)=0) .
\end{aligned}
$$

Semantics of propositional logic

Example

Let $F=(x \wedge \neg y) \vee z$ and \mathcal{A} be an assignment such that $\mathcal{A}(x)=1$ and $\mathcal{A}(y)=\mathcal{A}(z)=0$. Then F evaluates to true under \mathcal{A}, since

$$
\begin{aligned}
\hat{\mathcal{A}}(F) & = \begin{cases}1 & \text { if } \hat{\mathcal{A}}((x \wedge \neg y))=1 \text { or } \hat{\mathcal{A}}(z)=1 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } \hat{\mathcal{A}}((x \wedge \neg y))=1(\text { since } \mathcal{A}(z)=0) \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(x)=1 \text { and } \hat{\mathcal{A}}(\neg y)=1 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } \hat{\mathcal{A}}(y)=0(\text { since } \mathcal{A}(x)=1) \\
0 & \text { otherwise }\end{cases} \\
& =1(\operatorname{since} \mathcal{A}(y)=0) .
\end{aligned}
$$

Subsequently we will not write the hat on top of \mathcal{A}.

Semantics via truth tables

Example

The semantics of logical connectives via truth tables:

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \wedge G)$		$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \vee G)$
0	0	0		0	0	0
1	0	0		1	0	1
0	1	0		0	1	1
1	1	1		1	1	1

Semantics via truth tables

Example

The semantics of logical connectives via truth tables:

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \wedge G)$		$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \vee G)$
0	0	0		0	0	0
1	0	0		1	0	1
0	1	0		0	1	1
1	1	1		1	1	1

Semantics via truth tables

Example

The semantics of logical connectives via truth tables:

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \wedge G)$		$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \vee G)$
0	0	0		0	0	0
1	0	0		1	0	1
0	1	0		0	1	1
1	1	1		1	1	1

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \rightarrow G)$		$\mathcal{A}(F)$	$\mathcal{A}(G)$
	0	1		$\mathcal{A}(F \oplus G)$	
1	0	0		1	0
0	1	1		0	1
1	1	1		1	1

Semantics via truth tables

Example

The semantics of logical connectives via truth tables:

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \wedge G)$		$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \vee G)$
0	0	0		0	0	0
1	0	0		1	0	1
0	1	0		0	1	1
1	1	1		1	1	1

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \rightarrow G)$		$\mathcal{A}(F)$	$\mathcal{A}(G)$
	0	1		$\mathcal{A}(F \oplus G)$	
1	0	0		1	0
0	1	1		0	1
1	1	1		1	1

Formalising natural language: an example

A device consists of a thermostat, a pump, and a warning light. Suppose we are told the following four facts about the pump:

- The thermostat or the pump (or both) are broken.
- If the thermostat is broken then the pump is also broken.
- If the pump is broken and the warning light is on then the thermostat is not broken.
- The warning light is on.

Is it possible for all four to be true at the same time?

Formalising natural language: an example

A device consists of a thermostat, a pump, and a warning light. Suppose we are told the following four facts about the pump:

- The thermostat or the pump (or both) are broken.
- If the thermostat is broken then the pump is also broken.
- If the pump is broken and the warning light is on then the thermostat is not broken.
- The warning light is on.

Is it possible for all four to be true at the same time?
In a propositional formula:

$$
F:=(t \vee p) \wedge(t \rightarrow p) \wedge((p \wedge w) \rightarrow \neg t) \wedge w
$$

Truth table

$$
\begin{gathered}
F:=(t \vee p) \wedge(t \rightarrow p) \wedge((p \wedge w) \rightarrow \neg t) \wedge w \\
\begin{array}{ccc|c}
\mathrm{t} & \mathrm{p} & w & f \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}
\end{gathered}
$$

Truth table

$$
F:=(t \vee p) \wedge(t \rightarrow p) \wedge((p \wedge w) \rightarrow \neg t) \wedge w
$$

t	p	w	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

There is a unique assignment that makes F true. We can think of each assignment as describing a possible world, and there is only one world in which F is true.

Models, satisfiability and validity

Definition

Let $F \in \mathcal{F}(X)$ and $\mathcal{A}: X \rightarrow\{0,1\}$ be an assignment.
(1) If $\mathcal{A}(F)=1$ then we write $\mathcal{A} \models F$ (" F holds under \mathcal{A} ", or " \mathcal{A} is a model of $F^{\prime \prime}$.)
(2) If F has at least one model then F is satisfiable, otherwise F is unsatisfiable.
(3) If F holds under any assignment $\mathcal{A}: X \rightarrow\{0,1\}$ then F is called valid or a tautology, written $\models F$.

Models, satisfiability and validity

Definition

Let $F \in \mathcal{F}(X)$ and $\mathcal{A}: X \rightarrow\{0,1\}$ be an assignment.
(1) If $\mathcal{A}(F)=1$ then we write $\mathcal{A} \models F$ (" F holds under \mathcal{A} ", or " \mathcal{A} is a model of $F^{\prime \prime}$.)
(2) If F has at least one model then F is satisfiable, otherwise F is unsatisfiable.
(3) If F holds under any assignment $\mathcal{A}: X \rightarrow\{0,1\}$ then F is called valid or a tautology, written $\models F$.

Definition

Given $F \in \mathcal{F}(X)$, the Boolean satisfiability problem (SAT) is to decide whether F is satisfiable.

Models, satisfiability and validity

Example

The subsequent first two tautologies are known as the distributive laws, the last two as De Morgan's laws:

$$
\begin{aligned}
& \vDash(F \vee(G \wedge H)) \leftrightarrow((F \vee G) \wedge(F \vee H)) \\
& \vDash(F \wedge(G \vee H)) \leftrightarrow((F \wedge G) \vee(F \wedge H)) \\
& \quad=\neg(F \wedge G) \leftrightarrow \neg F \vee \neg G \\
& \quad \mid \neg \neg(F \vee G) \leftrightarrow \neg F \wedge \neg G .
\end{aligned}
$$

Entailment and equivalence

Definition (Entailment)
A formula G is a consequence of (or is entailed by) a set of formulas \mathcal{S} if every assignment that satisfies each formula in \mathcal{S} also satisfies G. In this case we write $\mathcal{S} \models G$.

Entailment and equivalence

Definition (Entailment)

A formula G is a consequence of (or is entailed by) a set of formulas \mathcal{S} if every assignment that satisfies each formula in \mathcal{S} also satisfies G. In this case we write $\mathcal{S} \vDash G$.

Definition (Equivalence)

Two formulas F and G are said to be logically equivalent if $\mathcal{A}(F)=\mathcal{A}(G)$ for every assignment \mathcal{A}. We write $F \equiv G$ to denote that F and G are equivalent.

(1) Propositional Logic

2 Syntax and semantics of propositional logic

3) Encoding constraint problems into satisfiability problems

Sudoku

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Sudoku

For each $i, j, k \in\{1, \ldots, 9\}$ we have a proposition $x_{i, j, k}$ expressing that grid position i, j contains number k. Build formula F as the conjunction of the following constraints:

Sudoku

For each $i, j, k \in\{1, \ldots, 9\}$ we have a proposition $x_{i, j, k}$ expressing that grid position i, j contains number k. Build formula F as the conjunction of the following constraints:

- Each number appears in each row and in each column:

$$
F_{1}:=\bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigvee_{j=1}^{9} x_{i, j, k} \quad F_{2}:=\bigwedge_{j=1}^{9} \bigwedge_{k=1}^{9} \bigvee_{i=1}^{9} x_{i, j, k}
$$

- Each number appears in each 3×3 block:

$$
F_{3}:=\bigwedge_{k=1}^{9} \bigwedge_{u=0}^{2} \bigwedge_{v=0}^{2} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} x_{3 u+i, 3 v+j, k}
$$

- No square contains two numbers:

$$
F_{4}:=\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{1 \leq k<k^{\prime} \leq 9} \neg\left(x_{i, j, k} \wedge x_{i, j, k^{\prime}}\right)
$$

Sudoku

- Certain numbers appear in certain positions: we assert

$$
F_{5}:=x_{2,1,2} \wedge x_{1,2,8} \wedge x_{2,3,3} \wedge \ldots \wedge x_{8,9,6}
$$

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

Sudoku

- Missing constraints? What about: no number appears twice in the same row?

$$
F_{6}:=\bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{1 \leq j<j^{\prime}<9} \neg\left(x_{i, j, k} \wedge x_{i, j^{\prime}, k}\right)
$$

- Entailed by the existing formulas: adding F_{6} as an extra constraint would not change the set of satisfying assignments.

Sudoku

- Missing constraints? What about: no number appears twice in the same row?

$$
F_{6}:=\bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{1 \leq j<j^{\prime}<9} \neg\left(x_{i, j, k} \wedge x_{i, j^{\prime}, k}\right)
$$

- Entailed by the existing formulas: adding F_{6} as an extra constraint would not change the set of satisfying assignments.
- But adding logically redundant constraints may help a computer search for a satisfying assignment.
- The number of variables $x_{i, j, k}$ is $9^{3}=729$. Thus a truth table for the corresponding formula would have $2^{729}>10^{200}$ lines! Nevertheless a modern SAT-solver can find a satisfying assignment in milliseconds.

Hamiltonian path

Figure: Example of a Hamiltonian path in an undirected graph.

Hamiltonian path

Given an undirected graph $G=(V, E)$ such that $E \subseteq V \times V$ is symmetric, for each vertex $i, j \in\{1, \ldots, n\}$ we have a proposition $x_{i, j}$ expressing that vertex i is the j th vertex in the Hamiltonian path. Build formula F as the conjunction of the following constraints:

- Each vertex is visited precisely once:

$$
F_{1}:=\bigwedge_{i=1}^{n} \bigvee_{j=1}^{n} x_{i, j} \quad F_{2}:=\bigwedge_{i=1}^{n} \bigwedge_{1 \leq j \neq k \leq n} \neg\left(x_{i, j} \wedge x_{i, k}\right) \wedge \neg\left(x_{j, i} \wedge x_{k, i}\right)
$$

- The path goes along edges:

$$
\begin{aligned}
& F_{4}:=\bigwedge_{i=1}^{n} \bigwedge_{k=1}^{n} \bigwedge_{j=1}^{n-1} x_{i, j} \wedge x_{k, j+1} \rightarrow e_{i, k} \\
& F_{5}:=\bigwedge_{(i, j) \in E} e_{i, j} \wedge \bigwedge_{(i, j) \notin E} \neg e_{i, j}
\end{aligned}
$$

Polynomial-time vs exponential-time

Polynomial-time vs exponential-time

- Can solve SAT in time $O\left(2^{n}\right)$ (via truth tables).

Polynomial-time vs exponential-time

- Can solve SAT in time $O\left(2^{n}\right)$ (via truth tables).
- No sub-exponential algorithm is known (e.g., $O\left(n^{1028}\right)$, $n^{\log (n)}$, $2^{n / \log (n)}, \ldots$)

Polynomial-time vs exponential-time

- Can solve SAT in time $O\left(2^{n}\right)$ (via truth tables).
- No sub-exponential algorithm is known (e.g., $O\left(n^{1028}\right)$, $n^{\log (n)}$, $2^{n / \log (n)}, \ldots$)
- Can do better for special formula classes: Horn formulas, 2-CNF formulas, XOR-clauses, ...

Polynomial-time vs exponential-time

- Can solve SAT in time $O\left(2^{n}\right)$ (via truth tables).
- No sub-exponential algorithm is known (e.g., $O\left(n^{1028}\right)$, $n^{\log (n)}$, $2^{n / \log (n)}, \ldots$)
- Can do better for special formula classes: Horn formulas, 2-CNF formulas, XOR-clauses, ...
- Reductions of combinatorial problems to SAT should run in polynomial-time!

