Lecture 2 Propositional logic

syntax and semantics, the satisfiability problem, constraint problems

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

Agenda

2 Syntax and semantics of propositional logic

Encoding constraint problems into satisfiability problems

Propositional logic

- Formulas of propositional logic (aka propositions) are built of smaller formulas using *connectives* like *and*, *or*, *not*, *implies*, and others.
- The smallest formulas are *propositional variables*, aka *atomic propositions* or *atoms*, which can be instantiated with statements which are either true or false.
- A prime concern: given a compound formula, determine which truth values of its atoms make it true.

• Atomic propositions:

- Atoms Instance
 - *a* "Alice is an architect"
 - *b* "Bob is a builder"
 - c "Charlie is a cook"

- Atomic propositions:
 - Atoms Instance *a* "Alice is an architect"
 - h "Deb is a builder"
 - *b* "Bob is a builder"
 - c "Charlie is a cook"
- Compound formulas:
 - ¬c "Charlie is not a cook"
 - $a \lor b$ "Alice is an architect or Bob is a builder"
 - $b \rightarrow c$ "If Bob is a builder then Charlie is a cook"

- Atomic propositions:
 - Atoms Instance *a* "Alice is an architect" *b* "Bob is a builder"
 - c "Charlie is a cook"
- Compound formulas:
 - $\neg c$ "Charlie is not a cook"
 - $a \lor b$ "Alice is an architect or Bob is a builder"
 - $b \rightarrow c$ "If Bob is a builder then Charlie is a cook"
- These entail that Alice is an architect: if the above three propositions are all true then *a must* also be true $(\{\neg c, a \lor b, b \rightarrow c\} \models a)$.

- Atomic propositions:
 - AtomsInstancea"Alice is an architect"b"Bob is a builder"
 - c "Charlie is a cook"
- Compound formulas:
 - $\neg c$ "Charlie is not a cook" $a \lor b$ "Alice is an architect or Bob is a builder" $b \rightarrow c$ "If Bob is a builder then Charlie is a cook"
- These entail that Alice is an architect: if the above three propositions are all true then *a must* also be true $(\{\neg c, a \lor b, b \rightarrow c\} \models a)$.
- The correctness of this entailment is *independent* of the instantiation of the atomic propositions!

2 Syntax and semantics of propositional logic

Encoding constraint problems into satisfiability problems

Syntax of propositional logic

Definition (Syntax of propositional logic)

Let $X = \{x_1, x_2, x_3, ...\}$ be a countably infinite set of **propositional** variables. Formulas of propositional logic are inductively defined as follows:

- true and false are formulas.
- Every propositional variable x_i is a formula.
- If *F* is a formula, then $\neg F$ is a formula.
- Solution If F and G are formulas, then $(F \land G)$ and $(F \lor G)$ are formulas.

Additional notation

- We often write *x*, *y*, *z* or *p* to denote propositional variables.
- We call $\neg F$ the **negation** of *F*.
- Given formulas F and G, (F ∧ G) is the conjunction of F and G, and (F ∨ G) is the disjunction of F and G.
- We call \neg , \land and \lor logical connectives.
- We denote by $\mathcal{F}(X)$ the **set of all formulas** built from propositional variables in *X*.

Derived connectives

- Implication: $(F_1 \rightarrow F_2) := (\neg F_1 \lor F_2)$
- Bi-implication: $(F_1 \leftrightarrow F_2) := (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$
- Exclusive Or: $(F_1 \oplus F_2) := (F_1 \land \neg F_2) \lor (\neg F_1 \land F_2)$
- Indexed Conjunction: $\bigwedge_{i=1}^{n} F_i := (\cdots ((F_1 \land F_2) \land F_3) \land \cdots \land F_n)$
- Indexed Disjunction: $\bigvee_{i=1}^{n} F_i := (\cdots ((F_1 \lor F_2) \lor F_3) \lor \cdots \lor F_n)$
- Note on bracketing:
 - We usually drop outer brackets
 - Operator precedences: \leftrightarrow and \rightarrow bind weaker than \wedge and $\lor,$ which bind weaker than $\neg.$
 - Example: $\neg x \land y \rightarrow z$ means $((\neg x \land y) \rightarrow z)$

Syntax trees

- Every formula *F* can be represented by a *syntax tree* whose nodes are labelled either by connectives or by propositional variables.
- Subformulas of F correspond to all subtrees of F

Syntax trees

• Every formula *F* can be represented by a *syntax tree* whose nodes are labelled either by connectives or by propositional variables.

• Subformulas of F correspond to all subtrees of F

Example: syntax tree of $\neg((\neg x_4 \lor x_1) \land x_3)$:

Inductive definitions

Inductive definition of formulas allows us to define functions on formulas by **structural induction**, by defining the function

- For the base cases *true*, *false* and *x_i*, and
- For the induction steps $\neg F$, $F \land G$ and $F \lor G$.

Inductive definitions

Inductive definition of formulas allows us to define functions on formulas by **structural induction**, by defining the function

- For the base cases *true*, *false* and *x_i*, and
- For the induction steps $\neg F$, $F \land G$ and $F \lor G$.

Example

The function sub: $\mathcal{F}(X) \to 2^{\mathcal{F}(X)}$ returning the set of all subformulas of a given formula can be defined by:

• $sub(true) = \{true\}, sub(false) = \{false\}$

•
$$sub(x) = \{x\}$$
 for all $x \in X$

- $sub(\neg F) = \{\neg F\} \cup sub(F)$
- $sub(F \land G) = \{F \land G\} \cup sub(F) \cup sub(G)$
- $sub(F \lor G) = \{F \lor G\} \cup sub(F) \cup sub(G)$

The *syntax* tells us how we write something down, the *semantics* what it means:

- syntax: some formal language
- semantics: some mathematical object
- our syntax: propositional formulas
- our semantics: truth tables

Definition

An **assignment** is a function $\mathcal{A}: X \to \{0, 1\}$ that induces an assignment $\hat{\mathcal{A}}$: $\mathcal{F}(X) \to \{0, 1\}$ by structural induction as follows: $\widehat{\mathcal{A}}(false) = 0, \ \widehat{\mathcal{A}}(false) = 1$ 2 For every $x \in X$, $\hat{\mathcal{A}}(x) := \mathcal{A}(x)$ $\hat{\mathcal{A}}(\neg F) := \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 0 \\ 0 & \text{otherwise} \end{cases}$ $\hat{\mathbf{A}}((F \wedge G)) := \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ and } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases}$ $\hat{\mathcal{A}}((F \lor G)) := \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(F) = 1 \text{ or } \hat{\mathcal{A}}(G) = 1 \\ 0 & \text{otherwise} \end{cases}$

- The semantics of a formula *F* is the function that maps each assignment *A*: *X* → {0, 1} to the truth value Â(*F*).
- Let Y ⊆ X be the set of variables occurring in F.
 Â(F) is completely determined by the values assigned by A to the variables of Y.
- With a slight abuse of language, we also say that the semantics of *F* is the function that maps each restricted assignment *A*': Y → {0,1} to the truth value *Â*^{*i*}(*F*).
- Observe that X is infinite, but Y is finite. So there is an uncountable infinity of assignments, but only 2^{|Y|} restricted assignments.

Example

Let $F = (x \land \neg y) \lor z$ and A be an assignment such that A(x) = 1 and A(y) = A(z) = 0. Then *F* evaluates to true under *A*, since

$$\hat{\mathcal{A}}(F) = \begin{cases} 1 & \text{if } \hat{\mathcal{A}}((x \land \neg y)) = 1 \text{ or } \hat{\mathcal{A}}(z) = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}((x \land \neg y)) = 1 \text{ (since } \mathcal{A}(z) = 0) \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(x) = 1 \text{ and } \hat{\mathcal{A}}(\neg y) = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(y) = 0 \text{ (since } \mathcal{A}(x) = 1) \\ 0 & \text{otherwise} \end{cases}$$
$$= 1 \text{ (since } \mathcal{A}(y) = 0.$$

Example

Let $F = (x \land \neg y) \lor z$ and A be an assignment such that A(x) = 1 and A(y) = A(z) = 0. Then *F* evaluates to true under *A*, since

$$\hat{\mathcal{A}}(F) = \begin{cases} 1 & \text{if } \hat{\mathcal{A}}((x \land \neg y)) = 1 \text{ or } \hat{\mathcal{A}}(z) = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}((x \land \neg y)) = 1 \text{ (since } \mathcal{A}(z) = 0) \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(x) = 1 \text{ and } \hat{\mathcal{A}}(\neg y) = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} 1 & \text{if } \hat{\mathcal{A}}(y) = 0 \text{ (since } \mathcal{A}(x) = 1) \\ 0 & \text{otherwise} \end{cases}$$
$$= 1 \text{ (since } \mathcal{A}(y) = 0 \text{).}$$

Subsequently we will not write the hat on top of A.

The semantics of logical connectives via truth tables: $\mathcal{A}(F)$ $\mathcal{A}(G)$ $\mathcal{A}(F \land G)$ $\mathcal{A}(F)$ $\mathcal{A}(G)$ $\mathcal{A}(F \lor G)$ 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1	Example	•					
	The sen	nantics	of logical cor	nectives	via trut l	h tables:	
0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	
	1	0	0	1	0	1	
1 1 1 1 1 1	0	1	0	0	1	1	
	1	1	1	1	1	1	

The semantics of logical connectives via truth tables: $\mathcal{A}(F)$ $\mathcal{A}(G)$ $\mathcal{A}(F \land G)$ $\mathcal{A}(F)$ $\mathcal{A}(G)$ $\mathcal{A}(F \lor G)$ 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1	Example	•					
	The sen	nantics	of logical cor	nectives	via trut l	h tables:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1	0	0	0	0	0	0	
0 1 0 0 1 1 1 1 1 1 1 1	1	0	0	1	0	1	
	0	1	0	0	1	1	
	1	1	1	1	1	1	

Example	Э										
The ser	The semantics of logical connectives via truth tables:										
		$\mathcal{A}(\breve{F} \wedge G)$									
0	0	0	0	0	0						
1	0	0	1	0	1						
0	1	0	0	1	1						
1	1	1	1	1	1						
	'	'									
$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F ightarrow G)$	$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F\oplus G)$						
0	0	1	0	0	0						
1	0	0	1	0	1						
0	1	1	0	1	1						
1	1	1	1	1	0						

Example	е										
The ser	The semantics of logical connectives via truth tables:										
		$\mathcal{A}(\breve{F} \wedge G)$									
0	0	0	0	0	0						
1	0	0	1	0	1						
0	1	0	0	1	1						
1	1	1	1	1	1						
$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F ightarrow G)$	$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F\oplus G)$						
0	0	1	0	0	0						
1	0	0	1	0	1						
0	1	1	0	1	1						
1	1	1	1	1	0						

Formalising natural language: an example

A device consists of a thermostat, a pump, and a warning light. Suppose we are told the following four facts about the pump:

- The thermostat or the pump (or both) are broken.
- If the thermostat is broken then the pump is also broken.
- If the pump is broken and the warning light is on then the thermostat is not broken.
- The warning light is on.

Is it possible for all four to be true at the same time?

Formalising natural language: an example

A device consists of a thermostat, a pump, and a warning light. Suppose we are told the following four facts about the pump:

- The thermostat or the pump (or both) are broken.
- If the thermostat is broken then the pump is also broken.
- If the pump is broken and the warning light is on then the thermostat is not broken.
- The warning light is on.

Is it possible for all four to be true at the same time? In a propositional formula:

$$F := (t \lor p) \land (t \to p) \land ((p \land w) \to \neg t) \land w$$

Truth table

$$F := (t \lor p) \land (t \to p) \land ((p \land w) \to \neg t) \land w$$

$$\begin{array}{c|c} t & p & w & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{array}$$

Truth table

There is a unique assignment that makes F true. We can think of each assignment as describing a *possible world*, and there is only one world in which F is true.

Models, satisfiability and validity

Definition

Let $F \in \mathcal{F}(X)$ and $\mathcal{A} \colon X \to \{0, 1\}$ be an assignment.

- If A(F) = 1 then we write A ⊨ F ("F holds under A", or "A is a model of F".)
- If F has at least one model then F is satisfiable, otherwise F is unsatisfiable.
- If F holds under any assignment A: X → {0,1} then F is called valid or a tautology, written ⊨ F.

Models, satisfiability and validity

Definition

Let $F \in \mathcal{F}(X)$ and $\mathcal{A} \colon X \to \{0, 1\}$ be an assignment.

- If A(F) = 1 then we write A ⊨ F ("F holds under A", or "A is a model of F".)
- If F has at least one model then F is satisfiable, otherwise F is unsatisfiable.
- If F holds under any assignment A: X → {0,1} then F is called valid or a tautology, written ⊨ F.

Definition

Given $F \in \mathcal{F}(X)$, the **Boolean satisfiability problem (SAT)** is to decide whether *F* is satisfiable.

Models, satisfiability and validity

Example

The subsequent first two tautologies are known as the *distributive laws*, the last two as *De Morgan's laws*:

$$\models (F \lor (G \land H)) \leftrightarrow ((F \lor G) \land (F \lor H))$$
$$\models (F \land (G \lor H)) \leftrightarrow ((F \land G) \lor (F \land H))$$
$$\models \neg (F \land G) \leftrightarrow \neg F \lor \neg G$$
$$\models \neg (F \lor G) \leftrightarrow \neg F \land \neg G.$$

Entailment and equivalence

Definition (Entailment)

A formula *G* is a **consequence** of (or is **entailed** by) a set of formulas S if every assignment that satisfies each formula in S also satisfies *G*. In this case we write $S \models G$.

Entailment and equivalence

Definition (Entailment)

A formula *G* is a **consequence** of (or is **entailed** by) a set of formulas S if every assignment that satisfies each formula in S also satisfies *G*. In this case we write $S \models G$.

Definition (Equivalence)

Two formulas *F* and *G* are said to be **logically equivalent** if $\mathcal{A}(F) = \mathcal{A}(G)$ for every assignment \mathcal{A} . We write $F \equiv G$ to denote that *F* and *G* are equivalent.

2 Syntax and semantics of propositional logic

Encoding constraint problems into satisfiability problems

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

For each $i, j, k \in \{1, ..., 9\}$ we have a proposition $x_{i,j,k}$ expressing that *grid position* i, j *contains number* k. Build formula F as the conjunction of the following *constraints*:

For each $i, j, k \in \{1, ..., 9\}$ we have a proposition $x_{i,j,k}$ expressing that *grid position* i, j *contains number* k. Build formula F as the conjunction of the following *constraints*:

Each number appears in each row and in each column:

$$F_1 := \bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigvee_{j=1}^{9} x_{i,j,k} \qquad F_2 := \bigwedge_{j=1}^{9} \bigwedge_{k=1}^{9} \bigvee_{i=1}^{9} x_{i,j,k}$$

• Each number appears in each 3 × 3 block:

$$F_3 := \bigwedge_{k=1}^9 \bigwedge_{u=0}^2 \bigwedge_{v=0}^2 \bigvee_{i=1}^3 \bigvee_{j=1}^3 X_{3u+i,3v+j,k}$$

No square contains two numbers:

$$F_4 := \bigwedge_{i=1}^9 \bigwedge_{j=1}^9 \bigwedge_{1 \le k < k' \le 9} \neg (x_{i,j,k} \wedge x_{i,j,k'}).$$

• Certain numbers appear in certain positions: we assert

$$F_5 := x_{2,1,2} \wedge x_{1,2,8} \wedge x_{2,3,3} \wedge \ldots \wedge x_{8,9,6}.$$

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

 Missing constraints? What about: no number appears twice in the same row?

$$F_6 := \bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{1 \leq j < j' < 9} \neg (x_{i,j,k} \land x_{i,j',k})$$

 Entailed by the existing formulas: adding F₆ as an extra constraint would not change the set of satisfying assignments.

 Missing constraints? What about: no number appears twice in the same row?

$$F_6 := \bigwedge_{i=1}^9 \bigwedge_{k=1}^9 \bigwedge_{1 \le j < j' < 9} \neg (x_{i,j,k} \land x_{i,j',k})$$

- Entailed by the existing formulas: adding F₆ as an extra constraint would not change the set of satisfying assignments.
- But adding logically redundant constraints may help a computer search for a satisfying assignment.
- The number of variables $x_{i,j,k}$ is $9^3 = 729$. Thus a truth table for the corresponding formula would have $2^{729} > 10^{200}$ lines! Nevertheless a modern SAT-solver can find a satisfying assignment in milliseconds.

Hamiltonian path

Figure: Example of a Hamiltonian path in an undirected graph.

Hamiltonian path

Given an undirected graph G = (V, E) such that $E \subseteq V \times V$ is symmetric, for each vertex $i, j \in \{1, ..., n\}$ we have a proposition $x_{i,j}$ expressing that *vertex i is the jth vertex in the Hamiltonian path*. Build formula *F* as the conjunction of the following *constraints*:

Each vertex is visited precisely once:

$$F_1 := \bigwedge_{i=1}^n \bigvee_{j=1}^n x_{i,j} \qquad F_2 := \bigwedge_{i=1}^n \bigwedge_{1 \le j \ne k \le n} \neg (x_{i,j} \land x_{i,k}) \land \neg (x_{j,i} \land x_{k,i})$$

The path goes along edges:

$$F_4 := \bigwedge_{i=1}^n \bigwedge_{k=1}^n \bigwedge_{j=1}^{n-1} x_{i,j} \wedge x_{k,j+1} \to e_{i,k}$$

$$F_5 := \bigwedge_{(i,j) \in E} e_{i,j} \wedge \bigwedge_{(i,j) \notin E} \neg e_{i,j}$$

• Can solve SAT in time $O(2^n)$ (via truth tables).

- Can solve SAT in time $O(2^n)$ (via truth tables).
- No sub-exponential algorithm is known (e.g., $O(n^{1028})$, $n^{\log(n)}$, $2^{n/\log(n)}$,...)

- Can solve SAT in time $O(2^n)$ (via truth tables).
- No sub-exponential algorithm is known (e.g., O(n¹⁰²⁸), n^{log(n)}, 2^{n/log(n)},...)
- Can do better for special formula classes: Horn formulas, 2-CNF formulas, XOR-clauses, ...

- Can solve SAT in time $O(2^n)$ (via truth tables).
- No sub-exponential algorithm is known (e.g., O(n¹⁰²⁸), n^{log(n)}, 2^{n/log(n)},...)
- Can do better for special formula classes: Horn formulas, 2-CNF formulas, XOR-clauses, ...
- Reductions of combinatorial problems to SAT should run in polynomial-time!