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Agenda

1 Propositional Logic

2 Syntax and semantics of propositional logic

3 Encoding constraint problems into satisfiability problems
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Propositional logic

Formulas of propositional logic (aka propositions) are built of
smaller formulas using connectives like and, or, not, implies, and
others.

The smallest formulas are propositional variables, aka atomic
propositions or atoms, which can be instantiated with statements
which are either true or false.

A prime concern: given a compound formula, determine which
truth values of its atoms make it true.
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An example

Atomic propositions:
Atoms Instance

a “Alice is an architect”
b “Bob is a builder”
c “Charlie is a cook”

Compound formulas:
¬c “Charlie is not a cook”

a ∨ b “Alice is an architect or Bob is a builder”
b → c “If Bob is a builder then Charlie is a cook”

These entail that Alice is an architect: if the above three
propositions are all true then a must also be true
({¬c, a ∨ b, b → c} � a ).

The correctness of this entailment is independent of the
instantiation of the atomic propositions!
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Syntax of propositional logic

Definition (Syntax of propositional logic)

Let X = {x1, x2, x3, . . .} be a countably infinite set of propositional
variables. Formulas of propositional logic are inductively defined as
follows:

1 true and false are formulas.
2 Every propositional variable xi is a formula.
3 If F is a formula, then ¬F is a formula.
4 If F and G are formulas, then (F ∧G) and (F ∨G) are formulas.
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Additional notation

We often write x , y , z or p to denote propositional variables.

We call ¬F the negation of F .

Given formulas F and G, (F ∧G) is the conjunction of F and G,
and (F ∨G) is the disjunction of F and G.

We call ¬,∧ and ∨ logical connectives.

We denote by F(X ) the set of all formulas built from
propositional variables in X .
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Derived connectives

Implication: (F1 → F2 ) := (¬F1 ∨ F2)

Bi-implication: (F1 ↔ F2) := (F1 → F2) ∧ (F2 → F1)

Exclusive Or: (F1 ⊕ F2) := (F1 ∧ ¬F2) ∨ (¬F1 ∧ F2)

Indexed Conjunction:
∧n

i=1 Fi := (· · · ((F1 ∧ F2) ∧ F3) ∧ · · · ∧ Fn)

Indexed Disjunction:
∨n

i=1 Fi := (· · · ((F1 ∨ F2) ∨ F3) ∨ · · · ∨ Fn)

Note on bracketing:
We usually drop outer brackets

Operator precedences: ↔ and→ bind weaker than ∧ and ∨, which
bind weaker than ¬.

Example: ¬x ∧ y → z means ((¬x ∧ y)→ z)
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Syntax trees

Every formula F can be represented by a syntax tree whose
nodes are labelled either by connectives or by propositional
variables.

Subformulas of F correspond to all subtrees of F

Example: syntax tree of ¬((¬x4 ∨ x1) ∧ x3):

¬

∧

∨ x3

¬ x1

x4
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Inductive definitions

Inductive definition of formulas allows us to define functions on
formulas by structural induction, by defining the function

For the base cases true, false and xi , and
For the induction steps ¬F , F ∧G and F ∨G.

Example

The function sub : F(X )→ 2F(X) returning the set of all subformulas
of a given formula can be defined by:

sub(true) = {true}, sub(false) = {false}

sub(x) = {x} for all x ∈ X

sub(¬F ) = {¬F} ∪ sub(F )

sub(F ∧G) = {F ∧G} ∪ sub(F ) ∪ sub(G)

sub(F ∨G) = {F ∨G} ∪ sub(F ) ∪ sub(G)
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Syntax vs semantics

The syntax tells us how we write something down, the semantics
what it means:

syntax: some formal language

semantics: some mathematical object

our syntax: propositional formulas

our semantics: truth tables
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Semantics of propositional logic

Definition

An assignment is a function A : X → {0,1} that induces an
assignment Â : F(X )→ {0,1} by structural induction as follows:

1 Â(false) = 0, Â(true) = 1
2 For every x ∈ X , Â(x) := A(x)

3 Â(¬F ) :=

{
1 if Â(F ) = 0
0 otherwise

4 Â((F ∧G)) :=

{
1 if Â(F ) = 1 and Â(G) = 1
0 otherwise

5 Â((F ∨G)) :=

{
1 if Â(F ) = 1 or Â(G) = 1
0 otherwise



Propositional logic

2.13

Semantics of propositional logic

The semantics of a formula F is the function that maps each
assignment A : X → {0,1} to the truth value Â(F ).
Let Y ⊆ X be the set of variables occurring in F .
Â(F ) is completely determined by the values assigned by A to
the variables of Y .
With a slight abuse of language, we also say that the semantics
of F is the function that maps each restricted assignment
A′ : Y → {0,1} to the truth value Â′(F ).
Observe that X is infinite, but Y is finite. So there is an
uncountable infinity of assignments, but only 2|Y | restricted
assignments.
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Semantics of propositional logic

Example

Let F = (x ∧¬y)∨ z and A be an assignment such that A(x) = 1 and
A(y) = A(z) = 0. Then F evaluates to true under A, since

Â(F ) =

{
1 if Â((x ∧ ¬y)) = 1 or Â(z) = 1
0 otherwise

=

{
1 if Â((x ∧ ¬y)) = 1 (since A(z) = 0)
0 otherwise

=

{
1 if Â(x) = 1 and Â(¬y) = 1
0 otherwise

=

{
1 if Â(y) = 0 (since A(x) = 1)
0 otherwise

= 1 (since A(y) = 0).

Subsequently we will not write the hat on top of A.
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Semantics via truth tables

Example

The semantics of logical connectives via truth tables:
A(F ) A(G) A(F ∧G)

0 0 0
1 0 0
0 1 0
1 1 1

A(F ) A(G) A(F ∨G)

0 0 0
1 0 1
0 1 1
1 1 1

A(F ) A(G) A(F → G)

0 0 1
1 0 0
0 1 1
1 1 1

A(F ) A(G) A(F ⊕G)

0 0 0
1 0 1
0 1 1
1 1 0
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Formalising natural language: an example

A device consists of a thermostat, a pump, and a warning light.
Suppose we are told the following four facts about the pump:

The thermostat or the pump (or both) are broken.

If the thermostat is broken then the pump is also broken.

If the pump is broken and the warning light is on then the
thermostat is not broken.

The warning light is on.

Is it possible for all four to be true at the same time?

In a propositional formula:

F := (t ∨ p) ∧ (t → p) ∧ ((p ∧ w)→ ¬t) ∧ w
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Truth table

F := (t ∨ p) ∧ (t → p) ∧ ((p ∧ w)→ ¬t) ∧ w

t p w f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

There is a unique assignment that makes F true. We can think of
each assignment as describing a possible world, and there is only
one world in which F is true.
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Models, satisfiability and validity

Definition

Let F ∈ F(X ) and A : X → {0,1} be an assignment.
1 If A(F ) = 1 then we write A |= F (“F holds under A”, or “A is a

model of F ”. )
2 If F has at least one model then F is satisfiable, otherwise F is

unsatisfiable.
3 If F holds under any assignment A : X → {0,1} then F is called

valid or a tautology, written |= F .

Definition

Given F ∈ F(X ), the Boolean satisfiability problem (SAT) is to
decide whether F is satisfiable.
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Models, satisfiability and validity

Example

The subsequent first two tautologies are known as the distributive
laws, the last two as De Morgan’s laws:

|= (F ∨ (G ∧ H))↔ ((F ∨G) ∧ (F ∨ H))

|= (F ∧ (G ∨ H))↔ ((F ∧G) ∨ (F ∧ H))

|= ¬(F ∧G)↔ ¬F ∨ ¬G
|= ¬(F ∨G)↔ ¬F ∧ ¬G.
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Entailment and equivalence

Definition (Entailment)

A formula G is a consequence of (or is entailed by) a set of formulas
S if every assignment that satisfies each formula in S also satisfies G.
In this case we write S |= G.

Definition (Equivalence)

Two formulas F and G are said to be logically equivalent if
A(F ) = A(G) for every assignment A. We write F ≡ G to denote that
F and G are equivalent.
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Sudoku

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6
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Sudoku

For each i , j , k ∈ {1, . . . ,9} we have a proposition xi,j,k expressing
that grid position i , j contains number k . Build formula F as the
conjunction of the following constraints:

Each number appears in each row and in each column:

F1 :=
9∧

i=1

9∧
k=1

9∨
j=1

xi,j,k F2 :=
9∧

j=1

9∧
k=1

9∨
i=1

xi,j,k

Each number appears in each 3× 3 block:

F3 :=
9∧

k=1

2∧
u=0

2∧
v=0

3∨
i=1

3∨
j=1

x3u+i,3v+j,k

No square contains two numbers:

F4 :=
9∧

i=1

9∧
j=1

∧
1≤k<k ′≤9

¬(xi,j,k ∧ xi,j,k ′) .
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Sudoku

Certain numbers appear in certain positions: we assert

F5 := x2,1,2 ∧ x1,2,8 ∧ x2,3,3 ∧ . . . ∧ x8,9,6 .

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6
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Sudoku

Missing constraints? What about: no number appears twice in
the same row?

F6 :=
9∧

i=1

9∧
k=1

∧
1≤j<j′<9

¬(xi,j,k ∧ xi,j′,k )

Entailed by the existing formulas: adding F6 as an extra
constraint would not change the set of satisfying assignments.

But adding logically redundant constraints may help a computer
search for a satisfying assignment.

The number of variables xi,j,k is 93 = 729. Thus a truth table for
the corresponding formula would have 2729 > 10200 lines!
Nevertheless a modern SAT-solver can find a satisfying
assignment in milliseconds.
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Hamiltonian path

Figure: Example of a Hamiltonian path in an undirected graph.
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Hamiltonian path

Given an undirected graph G = (V ,E) such that E ⊆ V × V is
symmetric, for each vertex i , j ∈ {1, . . . ,n} we have a proposition xi,j
expressing that vertex i is the jth vertex in the Hamiltonian path. Build
formula F as the conjunction of the following constraints:

Each vertex is visited precisely once:

F1 :=
n∧

i=1

n∨
j=1

xi,j F2 :=
n∧

i=1

∧
1≤j 6=k≤n

¬(xi,j ∧ xi,k ) ∧ ¬(xj,i ∧ xk,i)

The path goes along edges:

F4 :=
n∧

i=1

n∧
k=1

n−1∧
j=1

xi,j ∧ xk,j+1 → ei,k

F5 :=
∧

(i,j)∈E

ei,j ∧
∧

(i,j)6∈E

¬ei,j
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Polynomial-time vs exponential-time

Can solve SAT in time O(2n) (via truth tables).

No sub-exponential algorithm is known (e.g., O(n1028), nlog(n),
2n/log(n),. . . )

Can do better for special formula classes: Horn formulas, 2-CNF
formulas, XOR-clauses, . . .

Reductions of combinatorial problems to SAT should run in
polynomial-time!
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