Lecture 17

Gödel's Theorems

Completeness and Incompleteness Theorems

Javier Esparza TUM

Source

G.S. Boolos, J.P. Burgess, R.C Jeffrey: Computability and Logic. Cambridge University Press 2002.

Figure: Kurt Gödel (1906 - 1978)

A Hilbert Calculus for first-order logic

We take eight axiom schemes or axioms, with F, G as place-holders for formulas:

- $(F \rightarrow (G \rightarrow H)) \rightarrow ((F \rightarrow G) \rightarrow (F \rightarrow H))$

- **③** $\forall x \ F \rightarrow F[t/x]$ for every term t.
- **3** $F \rightarrow \forall x \ F$ if x does not occur free in F.

Derivations

An **instance** of an axiom is the result of substituting the place-holders of the axiom by formulas.

Easy to see: all instances are valid formulas.

Example: Instance of (4) with $\neg A \rightarrow B$ and $\neg C$ for F and G:

$$(\neg A \to B) \to (\neg (\neg A \to B) \to \neg C)$$

Let S be a (possibly empty) set of formulas - also called **hypothesis** - and let F be a formula.

We write $S \vdash F$ and say that F is a **syntactic consequence of** S if one of these conditions holds:

Axiom: F is an instance of an axiom

Hypothesis: $F \in S$

Modus Ponens: $S \vdash G \rightarrow F$ and $S \vdash G$, i.e. both $G \rightarrow F$

and G are syntactic consequences of S.

Gödel's Completeness Theorem

Theorem (Gödel's Completeness Theorem)

Let S be a (possibly empty) set of hypothesis, and let F be a formula. F is a syntactic consequence of S iff it is a consequence of S.

Corollary

A formula is valid iff it is a syntactic consequence of the empty set of formulas.

A corollary of the theorem

Lemma

If a theory T is axiomatizable and complete, then T is decidable.

Proof.

If T inconsistent then T contains all closed formulas, and the algorithm that answers " $F \in T$ " for every input F decides T. If T consistent, let A be the set of axioms of T (not the axioms of the Hilbert Calculus). We consider the following algorithm:

- Input: F
 Enumerate all syntactic consequences of A, and for each new syntactic consequence G do:
 - If G = F, then halt with " $F \in T$ "
 - If $G = \neg F$, then halt with " $F \notin T$ "

Observe: the syntactic consequences of S can be enumerated. We prove this algorithm is correct.

Proof.

(Continued.)

- If the algorithm answers " $F \in T$ ", then $F \in T$. If the algorithm answers " $F \in T$ ", then F is a syntactic consequence of S, and so a consequence of A. Since T is a theory, $F \in T$.
- If algorithm answers "F ∉ T", then F ∉ T.
 If the algorithm answers "F ∈ T", then ¬F is a consequence of A and so ¬F ∈ T. By consistency, F ∉ T.
- The algorithm terminates.
 Since T is complete, either F ∈ T or ¬F ∈ T.
 Assume w.l.o.g. F ∈ T.
 Since T is axiomatizable, F is a consequence of A.
 So F is a syntactic consequence of A.
 So eventually G := F and the algorithm terminates.

The signature of arithmetic

The signature σ_A of arithmetic contains:

- a constant 0,
- a unary function symbol s,
- two binary function symbols + and ⋅, and
- a binary predicate symbol <.

ARITH is the theory containing the set of closed formulas over σ_A that are true in the canonical structure.

ARITH contains "all the theorems of calculus".

More consequences

_							
т	h	۵	n	r	۵	m	1

ARITH is undecidable.

Proof.

By reduction from the halting problem, similar to undecidability proof for validity of predicate logic.

Theorem

ARITH is not axiomatizable.

Proof.

Since ARITH is undecidable, consistent, and complete, it is not axiomatizable (see Lemma).

Gödel's first incompleteness theorem

Theorem (Gödel's first incompleteness theorem)

Let $\mathcal X$ be any decidable set of formulas such that $\mathcal X\subseteq \mathsf{ARITH}$. Then the theory $\mathsf T_\mathcal X$ (the theory of all formulas entailed by $\mathcal X$) is incomplete.

Proof.

Since ARITH is not axiomatizable, there is a formula $F \in ARITH$ such that $\mathcal{X} \not\models F$ and so $F \notin T_{\mathcal{X}}$.

Assume now $\neg F \in T_{\mathcal{X}}$. Then $\mathcal{X} \models \neg F$ and since $\mathcal{X} \subseteq \mathsf{ARITH}$ we get $\neg F \in \mathsf{ARITH}$, contradicting $F \in \mathsf{ARITH}$.

So $F \notin T_{\mathcal{X}}$ and $\neg F \notin T_{\mathcal{X}}$, which proves that $T_{\mathcal{X}}$ is incomplete.

Gödel's first incompleteness theorem

Observe: for every set $\mathcal X$ of axioms there is a fomula $F \in \mathsf{ARITH}$, i.e., F is true in the canonical structure, but F is not a syntactic consequence of $\mathcal X$ (unless some axiom of $\mathcal X$ is itself not true!)

In other words: for every set of true axioms, there are true formulas that cannot be deduced from the axioms.

But we have no idea how such formulas look like . . .

Goal: given a set of axioms $\mathcal{X} \subseteq \mathsf{ARITH}$, construct a formula $F \in \mathsf{ARITH}$ such that $F \notin \mathcal{T}_{\mathcal{X}}$

Minimal arithmetic

Minimal arithmetic Q is the axiom-based theory over σ_A having the following axioms:

(Q1)
$$\forall x \quad \neg (0 = s(x))$$

(Q2) $\forall x \forall y \quad s(x) = s(y) \rightarrow x = y$
(Q3) $\forall x \quad x + 0 = x$
(Q4) $\forall x \forall y \quad x + s(y) = s(x + y)$
(Q5) $\forall x \quad x \cdot 0 = 0$
(Q6) $\forall x \forall y \quad x \cdot s(y) = (x \cdot y) + x$
(Q7) $\forall x \quad \neg (x < 0)$
(Q8) $\forall x \forall y \quad x < s(y) \leftrightarrow (x < y \lor x = y)$
(Q9) $\forall x \forall y \quad x < y \lor x = y \lor y < x$

Peano arithmetic

Peano arithmetic P is the axiom-based theory over σ_A having Q1-Q9 as axioms plus all closed formulas of the form

(I)
$$\forall y \ F(0,y) \land \forall x \ (F(x,y) \rightarrow F(s(x),y)) \rightarrow \forall x \ F(x,y)$$

where
$$y = (y_1, ... y_n)$$
.

Observe: I is an axiom scheme; the set of axioms of P is infinite but decidable.

Some theorems of Q (and P)

$$\neg(0 = s^{n}(0)) \text{ for every } n \ge 1$$

$$\neg(s^{n}(0) = s^{m}(0)) \text{ for every } n, m \ge 1, n \ne m$$

$$\forall x \ x < 1 \leftrightarrow x = 0$$

$$\forall x \ x < s^{n+1}(0) \leftrightarrow (x = 0 \lor x = s(0) \lor \dots \lor x = s^{n}(0))$$

$$s^{n}(0) + s^{m}(0) = s^{l}(0) \text{ for every } n, m, l \ge 1 \text{ such that } n + m = l$$

$$s^{n}(0) \cdot s^{m}(0) = s^{l}(0) \text{ for every } n, m, l \ge 1 \text{ such that } n \cdot m = l$$

Gödel encodings

A **Gödel encoding** is an injective function that maps every formula over σ_A to a natural number called its **Gödel number**.

Simple Gödel encoding:

- assign to each symbol of the formula its ASCII code, and
- assign to a formula the concatenation of the ASCII codes of its symbols.

Gödel encodings

Example (Wikipedia): the formula

$$x = y \rightarrow y = x$$

written in ASCII as

$$x=y \Rightarrow y=x$$

corresponds to the sequence

of ASCII codes, and so it is assigned the number

120061121032061062032121061120

Gödel's Gödel encoding

Let p_n denote the *n*-th prime number.

Gödel's encoding assigns to each symbol λ a number $g(\lambda)$, and to a sequence $\lambda_1 \cdots \lambda_n$ of symbols the number

$$2^{g(\lambda_1)} \cdot 3^{g(\lambda_2)} \cdot 5^{g(\lambda_3)} \cdot \ldots \cdot p_n^{g(\lambda_n)}$$

What are Gödel encodings good for?

A formula F(x) over σ_A with a free variable x defines a **property of numbers**: the property satisfied exactly by the numbers n such that $F(s^n(0))$ is true in the canonical structure.

```
We can easily construct formulas Even(x), Prime(x), Power\_of\_two(x)...
```

Via the encoding formulas "are" numbers, and so a formula also defines a property of formulas!

```
numbers 
ightarrow formulas formula F(x) 
ightarrow set of numbers 
ightarrow set of formulas
```

Going further ...

We can (less easily) construct formulas like

- First_symbol_is_ \forall (x)
- At_least_ten_symbols(x)
- Closed(x)
- ...

that are true in the canonical structure for $x \mapsto s^n(0)$ iff the number n encodes a formula and the formula satisfies the corresponding property.

And even further ...

We can construct (even less easily) a formula

that is true in the canonical structure with $x \mapsto s^n(0)$ iff the number n encodes a closed formula F such that $F \in \mathbb{Q}$.

The reason is

$$F \in Q$$
 iff $Q1, ..., Q9 \models F$ iff $Q1, ..., Q9 \vdash F$

and the derivation procedure amounts to symbol manipulation.

Same for any other set \mathcal{X} of axioms.

Diagonal Lemma

Recall our goal: Given a set of axioms $\mathcal{X} \subseteq \mathsf{ARITH}$, construct a formula $F \in \mathsf{ARITH}$ such that $F \notin T_{\mathcal{X}}$

Let \underline{F} denote the term $s^n(0)$ where n is the Gödel encoding of the formula F.

Intuition: F is a "name" we give to F

Lemma (Diagonal Lemma)

Let \mathcal{X} be any set of axioms containing Q1, ... Q9. For every formula B(y) there is a closed formula G such that $G \leftrightarrow B(\underline{G}) \in T_{\mathcal{X}}$.

We call G the Gödel formula of B(x).

We have: G true i.t.c.s if and only if G has property B

Intuition: G asserts that G has property B (true or false in the canonical structure!)

Reaching the goal

Theorem

Let \mathcal{X} be any set of axioms containing Q1, ... Q9. Let $G_{\mathcal{X}}$ be the Gödel formula of $\neg In_T_{\mathcal{X}}(x)$. Then $G_{\mathcal{X}} \in \mathsf{ARITH} \setminus T_{\mathcal{X}}$.

Proof.

(Idea.) By definition, G_{χ} is true i.t.c.s iff $G_{\chi} \notin T_{\chi}$.

If $G_{\mathcal{X}}$ is false i.t.c.s. then $G_{\mathcal{X}} \in T_{\mathcal{X}}$.

Since $\mathcal{X} \subseteq \mathsf{ARITH}$, we have $\mathsf{G}_{\mathcal{X}} \in \mathsf{ARITH}$.

But then, by definition of ARITH, G_{χ} is true i.t.c.s.

Contradiction!

So G_{χ} is true i.t.c.s., i.e., $G_{\chi} \in ARITH$.

But then $G_{\mathcal{X}} \notin T_{\mathcal{X}}$, and so $G_{\mathcal{X}} \in \mathsf{ARITH} \setminus T_{\mathcal{X}}$. Done!

Gödel's second incompleteness theorem

For any set of axioms \mathcal{X} containing Q1 we have $0 = s(0) \notin T_{\mathcal{X}}$, and so $T_{\mathcal{X}}$ is consistent iff $0 = s(0) \notin T_{\mathcal{X}}$.

The **consistency formula** for \mathcal{X} is the formula $\neg In_T_{\mathcal{X}}(0=s(0))$

Intuition: The consistency formula for \mathcal{X} states that $\mathcal{T}_{\mathcal{X}}$ is consistent.

Theorem (Gödel's second incompleteness theorem)

Let \mathcal{X} be any set of axioms containing P. Then the consistency formula for \mathcal{X} does not belong to $T_{\mathcal{X}}$.

Intuition: the consistency of a theory cannot be derived from the axioms of the theory.

Proving the Diagonal Lemma: Diagonalization

Let F(x) be a formula with a free variable x.

The **diagonalization** of *F* is the closed formula

$$DiagF := \exists x \ x = \underline{F} \land F(x)$$

Intuition: DiagF asserts that F has property F

Observe: DiagF and $F(\underline{F})$ are logically equivalent, but they have different Gödel numbers.

The representation theorem

Theorem

There is a formula Diag(x, y) such that for every formula F

$$\forall y \; \textit{Diag}(\underline{F}, y) \leftrightarrow y = \underline{\textit{DiagF}}$$

can be derived in Q (and so in P).

Observe: the theorem does not hold for every set of axioms. For instance, it does not hold for the system Q1-Q4, since in that system we cannot infer anything about the product function.

Proof of the Diagonal Lemma

Lemma

Let $\mathcal X$ be any set of axioms containing Q1, ... Q9. For every formula $\mathcal B(y)$ there is a closed formula $\mathcal G$ such that $\mathcal G \leftrightarrow \mathcal B(\underline{\mathcal G}) \in \mathcal T_{\mathcal X}$.

Proof.

Let $A(x) := \exists y \ (Diag(x, y) \land B(y))$ and let G := DiagA.

Intuition: *G* asserts that the diagonalization of *A* (the formula asserting that *A* satisfies *A*) satisfies *B*.

Explicitely:

$$G:=\exists x\ (x=\underline{A}\wedge A(x)):=\exists x\ (x=\underline{A}\wedge \exists y\ (Diag(x,y)\wedge B(y)))$$

(To be continued)

Proof of the Diagonal Lemma

Continued.

The formula $G \leftrightarrow \exists y \ (Diag(\underline{A}, y) \land B(y))$ is valid, and so, since valid formulas belong to every theory, we have

$$G \leftrightarrow \exists y \ (Diag(\underline{A}, y) \land B(y)) \in T_{\mathcal{X}}$$

Since G := DiagA, we have by the representation theorem:

$$\forall y \ (\textit{Diag}(\underline{A}, y) \leftrightarrow y = \underline{G}) \in T_{\mathcal{X}}$$

And so, since $T_{\mathcal{X}}$ is closed under consequence, we get

$$G \leftrightarrow \exists y \ (y = \underline{G} \land B(y)) \in T_{\mathcal{X}}$$

and for the same reason

$$G \leftrightarrow B(\underline{G}) \in T_{\mathcal{X}}$$

