Lecture 16 Definability in first-order logic

elementary equivalences, isomorphisms, separation of structures by games

Logic and Proof 5 June 2019

Dr Christoph Haase University of Oxford

Debt from last lecture

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Figure: Georg Cantor (1845 – 1918)

Today: Expressiveness of first-order logic

- Definability in a fixed structure
- Axiomatisations of classes of structures
- Work with relational structures but results hold w.l.o.g. for arbitrary structures

Definability of relations in a structure

Want know whether a relation is definable in a structure:

• Can define "<" in the stucture $(\mathbb{N}, 0, 1, +, =)$:

$$L(x, y) \equiv \exists z \, x + z = y \land \neg (z = 0).$$

Definability of relations in a structure

Want know whether a relation is definable in a structure:

• Can define "<" in the stucture $(\mathbb{N}, 0, 1, +, =)$:

$$L(x, y) \equiv \exists z \, x + z = y \land \neg (z = 0).$$

• What if we consider $(\mathbb{Z}, 0, 1, +, =)$?

Definability of relations in a structure

Want know whether a relation is definable in a structure:

• Can define "<" in the stucture $(\mathbb{N}, 0, 1, +, =)$:

$$L(x,y) \equiv \exists z \, x + z = y \land \neg (z = 0).$$

• What if we consider (Z, 0, 1, +, =)?

Definition

Let \mathcal{A} be a σ -structure. Then $R \subseteq U^n_{\mathcal{A}}$ is **elementary definable in** \mathcal{A} if there is $F(x_1, \ldots, x_n)$ such that

$$R = \{(a_1,\ldots,a_n) : \mathcal{A}_{[x_1\mapsto a_1]\cdots[x_n\mapsto a_n]} \models F\}$$

Isomorphisms between structures

Definition

Two relational σ -strucutres \mathcal{A}, \mathcal{B} are **isomorphic** if there exists a bijection $h: U_{\mathcal{A}} \to U_{\mathcal{B}}$ such that for every predicate symbol P

 $(a_1,\ldots,a_n)\in P_{\mathcal{A}}\Leftrightarrow (h(a_1),\ldots,h(a_n))\in P_{\mathcal{B}}$

Isomorphisms between structures

Definition

Two relational σ -strucutres \mathcal{A}, \mathcal{B} are **isomorphic** if there exists a bijection $h: U_{\mathcal{A}} \to U_{\mathcal{B}}$ such that for every predicate symbol P

 $(a_1,\ldots,a_n)\in P_{\mathcal{A}}\Leftrightarrow (h(a_1),\ldots,h(a_n))\in P_{\mathcal{B}}$

- Isomorphism $h: U_A \rightarrow U_A$ is an **automorphism**
- Automorphisms form a group
- Want that first-order logic cannot distinguish between isomorphic structures

The isomorphism lemma

Lemma

Let $h: U_A \to U_B$ be an isomporphism. Then for all σ -formulas $F(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in U_A$, we have

$$\mathcal{A}_{[x_1\mapsto a_1]\cdots [x_n\mapsto a_n]}\models F$$
 iff $\mathcal{B}_{[x_1\mapsto h(a_1)]\cdots [x_n\mapsto h(a_n)]}\models F$

The isomorphism lemma

Lemma

Let $h: U_A \to U_B$ be an isomporphism. Then for all σ -formulas $F(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in U_A$, we have

$$\mathcal{A}_{[x_1\mapsto a_1]\cdots [x_n\mapsto a_n]}\models F$$
 iff $\mathcal{B}_{[x_1\mapsto h(a_1)]\cdots [x_n\mapsto h(a_n)]}\models F$

Proof.

Structural induction on F.

Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in a given structure

Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in a given structure

Lemma

If $h: U_A \to U_A$ is an automorphism, then h is also an automorphism when adding a relation R to A that is elementary definable in A.

Proof.

Let $F(x_1, ..., x_n)$ define R, by the isomorphism lemma we have $\mathcal{A}_{[x_1 \mapsto a_1] \cdots [x_n \mapsto a_n]} \models F$ iff $\mathcal{A}_{[x_1 \mapsto h(a_1)] \cdots [x_n \mapsto h(a_n)]} \models F$. Hence R = h(R).

Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in a given structure

Lemma

If $h: U_A \to U_A$ is an automorphism, then h is also an automorphism when adding a relation R to A that is elementary definable in A.

Proof.

Let $F(x_1, ..., x_n)$ define R, by the isomorphism lemma we have $\mathcal{A}_{[x_1 \mapsto a_1] \cdots [x_n \mapsto a_n]} \models F$ iff $\mathcal{A}_{[x_1 \mapsto h(a_1)] \cdots [x_n \mapsto h(a_n)]} \models F$. Hence R = h(R).

Example

Observe that $h: x \mapsto -x$ is an automorphism in $\mathcal{A} = (\mathbb{Z}, 0, 1, +, =)$. Clearly, we do not have x < y iff -x < -y. Hence, the order relation "<" is not definable in \mathcal{A} .

Elementary equivalent structures

Definition

We call \mathcal{A} and \mathcal{B} elementary equivalent ($\mathcal{A} \equiv \mathcal{B}$) if for all sentences *F* we have

$$\mathcal{A} \models \mathsf{F} \iff \mathcal{B} \models \mathsf{F}.$$

Elementary equivalent structures

Definition

We call A and B elementary equivalent $(A \equiv B)$ if for all sentences F we have

$$A \models F \iff \mathcal{B} \models F.$$

Call A and B *m*-equivalent ($A \equiv_m B$) if for all *F* with quantifier-depth at most *m*, we have

$$\mathcal{A}\models \mathsf{F}\iff \mathcal{B}\models \mathsf{F}.$$

Elementary equivalent structures

Definition

We call A and B elementary equivalent $(A \equiv B)$ if for all sentences F we have

$$A \models F \iff \mathcal{B} \models F.$$

Call A and B *m*-equivalent ($A \equiv_m B$) if for all *F* with quantifier-depth at most *m*, we have

$$\mathcal{A} \models \mathcal{F} \iff \mathcal{B} \models \mathcal{F}.$$

Isomorphic structures are, in particular, elementary equivalent.

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Since A and B are countable, enumerate their elements:

$$a_1 a_2 a_3 \cdots$$
 and $b_1 b_2 b_3 \cdots$

Inductively define new enumerations

$$a_1' a_2' a_3' \cdots$$
 and $b_1' b_2' b_3' \cdots$

such that $a'_i < a'_j$ iff $b'_i < b'_j$. The isomorphism *h* is $h(a'_i) := b'_i$ for all i > 0.

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Since A and B are countable, enumerate their elements:

$$a_1 a_2 a_3 \cdots$$
 and $b_1 b_2 b_3 \cdots$

Inductively define new enumerations

$$a_1' a_2' a_3' \cdots$$
 and $b_1' b_2' b_3' \cdots$

such that $a'_i < a'_j$ iff $b'_i < b'_j$. The isomorphism h is $h(a'_i) := b'_i$ for all i > 0. Suppose we defined $a'_1 \cdots a'_n$ and $b'_1 \cdots b'_n$.

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Since A and B are countable, enumerate their elements:

$$a_1 a_2 a_3 \cdots$$
 and $b_1 b_2 b_3 \cdots$

Inductively define new enumerations

$$a_1' a_2' a_3' \cdots$$
 and $b_1' b_2' b_3' \cdots$

such that $a'_i < a'_j$ iff $b'_i < b'_j$. The isomorphism h is $h(a'_i) := b'_i$ for all i > 0. Suppose we defined $a'_1 \cdots a'_n$ and $b'_1 \cdots b'_n$. If n even, let a'_{n+1} be the first a_i in the enumeration that is different from all a'_1, \ldots, a'_n . Define b'_{n+1} such that $a'_i < a'_{n+1}$ iff $b'_i < b'_{n+1}$ for all $1 \le i \le n$. Such a b'_{n+1} exists since \mathcal{B} is dense.

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Since A and B are countable, enumerate their elements:

$$a_1 a_2 a_3 \cdots$$
 and $b_1 b_2 b_3 \cdots$

Inductively define new enumerations

$$a_1' a_2' a_3' \cdots$$
 and $b_1' b_2' b_3' \cdots$

such that $a'_i < a'_j$ iff $b'_i < b'_j$. The isomorphism h is $h(a'_i) := b'_i$ for all i > 0.

Suppose we defined $a'_1 \cdots a'_n$ and $b'_1 \cdots b'_n$.

If *n* even, let a'_{n+1} be the first a_i in the enumeration that is different from all a'_1, \ldots, a'_n . Define b'_{n+1} such that $a'_i < a'_{n+1}$ iff $b'_i < b'_{n+1}$ for all $1 \le i \le n$. Such a b'_{n+1} exists since \mathcal{B} is dense. If *n* odd, proceed analogously, starting with b'_{n+1} . Alternation guarantees we process all a_i and b_i .

Partial Isomorphisms

Definition

Let \mathcal{A}, \mathcal{B} be σ -structures. A partial isomorphism from \mathcal{A} to \mathcal{B} is an injective map $h : \mathcal{A} \to U_{\mathcal{B}}$ where $\mathcal{A} \subseteq U_{\mathcal{A}}$ such that for all P and $a_1, \ldots, a_n \in \mathcal{A}$

$$(a_1,\ldots,a_n)\in P_{\mathcal{A}}\iff (h(a_1),\ldots,h(a_n))\in P_{\mathcal{B}}.$$

Ehrenfeucht-Fraïssé Games

Definition

Given structures \mathcal{A}, \mathcal{B} such that $U_{\mathcal{A}} \cap U_{\mathcal{B}} = \emptyset$. The **Ehrenfeucht-Fra** issé game $G_m(\mathcal{A}, \mathcal{B})$ is played over *m* rounds by two players, Spoiler and Duplicator, according to the following rules:

- In round *i*, Spoiler chooses element $a_i \in U_A$ or $b_i \in U_B$
- Then Duplicator answers with an element *b_i* or *a_i* from the opposite structure
- After *i* round, obtain configuration $(a_1, b_1), \ldots, (a_i, b_i)$, giving a remaining game $G_{m-i}(A, a_1, \ldots, a_i, B, b_1, \ldots, b_i)$
- Duplicator wins after *m* rounds iff *h*(*a_i*) := *b_i* for all 1 ≤ *i* ≤ *m* is a partial isomorphism

Winning strategies

Definition

A **winning strategy** for Spoiler maps a configuration $(a_1, b_1), \ldots, (a_i, b_i)$ to an element $a_{i+1} \in U_A$ or $b_{i+1} \in U_B$ such that Spoiler is guaranteed to win after *m* rounds. A winning strategy for Duplicator is defined analogously.

Exercise: Show that either Spoiler or Duplictor has a winning strategy.

Winning strategies

Definition

A **winning strategy** for Spoiler maps a configuration $(a_1, b_1), \ldots, (a_i, b_i)$ to an element $a_{i+1} \in U_A$ or $b_{i+1} \in U_B$ such that Spoiler is guaranteed to win after *m* rounds. A winning strategy for Duplicator is defined analogously.

Exercise: Show that either Spoiler or Duplictor has a winning strategy.

Example

Let $\mathcal{A} = (\mathbb{Z}, <)$ and $\mathcal{B} = (\mathbb{R}, <)$. Then Duplicator has a winning strategy for $G_2(\mathcal{A}, \mathcal{B})$ but Spoiler has a winning strategy for $G_3(\mathcal{A}, \mathcal{B})$.

Theorem (Ehrenfeucht, Fraïssé)

For all $m \in \mathbb{N}$, $\mathcal{A} \equiv_m \mathcal{B}$ iff Duplicator wins $G_m(\mathcal{A}, \mathcal{B})$.

Theorem (Ehrenfeucht, Fraïssé)

For all $m \in \mathbb{N}$, $\mathcal{A} \equiv_m \mathcal{B}$ iff Duplicator wins $G_m(\mathcal{A}, \mathcal{B})$.

Only show that if $\mathcal{A} \not\equiv_m \mathcal{B}$ then Spoiler wins $G_m(\mathcal{A}, \mathcal{B})$:

Proposition

Spoiler has a winning strategy for a game $G_m(\mathcal{A}, a_1, \ldots, a_r, \mathcal{B}, b_1, \ldots, b_r)$ if there is a formula *F* with free variables x_1, \ldots, x_r and quantifier-depth *m* such that

$$\mathcal{A}_{[x_1\mapsto a_1]\cdots [x_r\mapsto a_r]}\models F$$
 and $\mathcal{B}_{[x_1\mapsto b_1]\cdots [x_r\mapsto b_r]}\models \neg F$.

An example

Example

Structures $\mathcal{A} = (\mathbb{Z}, <)$ and $\mathcal{B} = (\mathbb{R}, <)$ can be distinguished by a sentence of quantifier depth three:

$$F = \exists x \exists y (x < y \land \forall z (\neg (x < z \land z < y))).$$

Winning strategy for Spoiler obtained from F:

- Spoiler first chooses $a_1, a_2 \in U_A$ with $a_1 + 1 = a_2$
- Duplicator has to answer with $b_1, b_2 \in U_B$ such that $b_1 < b_2$
- But now Spoiler plays some b_3 such that $b_1 < b_3 < b_2$
- Any a₃ the Duplicator chooses makes her lose

Proof.

By induction on *m*. If m = 0, then $h(a_i) := b_i$ for all $1 \le i \le m$ is not a partial isomorphism.

Proof.

By induction on *m*. If m = 0, then $h(a_i) := b_i$ for all $1 \le i \le m$ is not a partial isomorphism. Suppose m > 0 and $\mathcal{A}_{[x_1 \mapsto a_1] \cdots [x_r \mapsto a_r]} \models F$ and $\mathcal{B}_{[x_1 \mapsto b_1] \cdots [x_r \mapsto b_r]} \models \neg F$. Then, there is subformula in *F* of quantifier-depth less than *m* or of the form $\exists y H$ such that *H* has quantifier depth m - 1 that distinguishes \mathcal{A} from \mathcal{B} .

Proof.

By induction on *m*. If m = 0, then $h(a_i) := b_i$ for all $1 \le i \le m$ is not a partial isomorphism.

Suppose m > 0 and $\mathcal{A}_{[x_1 \mapsto a_1] \cdots [x_r \mapsto a_r]} \models F$ and $\mathcal{B}_{[x_1 \mapsto b_1] \cdots [x_r \mapsto b_r]} \models \neg F$. Then, there is subformula in *F* of quantifier-depth less than *m* or of the form $\exists y H$ such that *H* has quantifier depth m - 1 that distinguishes \mathcal{A} from \mathcal{B} . In the former case, we obtain a winning strategy for Spoiler by the induction hypothesis.

Proof.

By induction on *m*. If m = 0, then $h(a_i) := b_i$ for all $1 \le i \le m$ is not a partial isomorphism.

Suppose m > 0 and $\mathcal{A}_{[x_1 \mapsto a_1] \cdots [x_r \mapsto a_r]} \models F$ and $\mathcal{B}_{[x_1 \mapsto b_1] \cdots [x_r \mapsto b_r]} \models \neg F$. Then, there is subformula in *F* of quantifier-depth less than *m* or of the form $\exists y H$ such that *H* has quantifier depth m - 1 that distinguishes \mathcal{A} from \mathcal{B} . In the former case, we obtain a winning strategy for Spoiler by the induction hypothesis. Otherwise, we have either

(1) $\mathcal{A} \models \exists y H$ and $\mathcal{B} \models \forall y \neg H$ or (2) $\mathcal{A} \models \forall y \neg H$ and $\mathcal{B} \models \exists y H$

Proof.

By induction on *m*. If m = 0, then $h(a_i) := b_i$ for all $1 \le i \le m$ is not a partial isomorphism.

Suppose m > 0 and $\mathcal{A}_{[x_1 \mapsto a_1] \cdots [x_r \mapsto a_r]} \models F$ and $\mathcal{B}_{[x_1 \mapsto b_1] \cdots [x_r \mapsto b_r]} \models \neg F$. Then, there is subformula in *F* of quantifier-depth less than *m* or of the form $\exists y H$ such that *H* has quantifier depth m - 1 that distinguishes \mathcal{A} from \mathcal{B} . In the former case, we obtain a winning strategy for Spoiler by the induction hypothesis. Otherwise, we have either

(1) $\mathcal{A} \models \exists y H$ and $\mathcal{B} \models \forall y \neg H$ or (2) $\mathcal{A} \models \forall y \neg H$ and $\mathcal{B} \models \exists y H$

In case (1), a winning strategy for Spoiler chooses $a \in U_A$ such that $\mathcal{A}_{[y \mapsto a][x_1 \mapsto a_1] \cdots [x_r \mapsto a_r]} \models H$, and hence for all $b \in U_B$ we have $\mathcal{A}_{[y \mapsto b][y_1 \mapsto b_1] \cdots [y_r \mapsto b_r]} \models \neg H$. By IH, Spoiler has winning strategy for $G_{m-1}(\mathcal{A}, a_1, \dots, a_r, a, \mathcal{B}, b_1, \dots, b_r, b)$, yielding a winning strategy for G_m .

Proof.

By induction on *m*. If m = 0, then $h(a_i) := b_i$ for all $1 \le i \le m$ is not a partial isomorphism.

Suppose m > 0 and $\mathcal{A}_{[x_1 \mapsto a_1] \cdots [x_r \mapsto a_r]} \models F$ and $\mathcal{B}_{[x_1 \mapsto b_1] \cdots [x_r \mapsto b_r]} \models \neg F$. Then, there is subformula in *F* of quantifier-depth less than *m* or of the form $\exists y H$ such that *H* has quantifier depth m - 1 that distinguishes \mathcal{A} from \mathcal{B} . In the former case, we obtain a winning strategy for Spoiler by the induction hypothesis. Otherwise, we have either

(1) $\mathcal{A} \models \exists y H$ and $\mathcal{B} \models \forall y \neg H$ or (2) $\mathcal{A} \models \forall y \neg H$ and $\mathcal{B} \models \exists y H$

In case (1), a winning strategy for Spoiler chooses $a \in U_A$ such that $\mathcal{A}_{[y \mapsto a][x_1 \mapsto a_1] \cdots [x_r \mapsto a_r]} \models H$, and hence for all $b \in U_B$ we have $\mathcal{A}_{[y \mapsto b][y_1 \mapsto b_1] \cdots [y_r \mapsto b_r]} \models \neg H$. By IH, Spoiler has winning strategy for $G_{m-1}(\mathcal{A}, a_1, \dots, a_r, a, \mathcal{B}, b_1, \dots, b_r, b)$, yielding a winning strategy for G_m . In case (2), Spoiler chooses $b \in U_B$ and the proof proceeds symmetrically.

Applications of Ehrenfeucht and Fraïssé Games

- Concise proof that unbounded dense linear orders are isomorphic (Exercise: establish winning strategy for Duplicator)
- First-order logic cannot express graph connectivity
- The class of all infinite structures is not finitely axiomatisable
- ...and many more