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Debt from last lecture

Theorem (Cantor)
Any two countable unbounded dense linear orders are isomorphic.

J

Figure: Georg Cantor (1845 — 1918)
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Today: Expressiveness of first-order logic

@ Definability in a fixed structure
@ Axiomatisations of classes of structures

@ Work with relational structures but results hold w.l.0.g. for
arbitrary structures
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Definability of relations in a structure

Want know whether a relation is definable in a structure:

@ Can define “<” in the stucture (N, 0,1, +,=):

Lix,y)=3zx+z=yA=(z=0).
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Definability of relations in a structure

Want know whether a relation is definable in a structure:
@ Can define “<” in the stucture (N,0,1,+, =):
Lix,y)=3zx+z=yA=(z=0).

@ What if we consider (Z,0,1,+4,=)?

Definition
Let A be a o-structure. Then R C U’} is elementary definable in A if
there is F(x1, ..., Xp) such that

R = {(a1 geocy an) : -A[X1l—>a1]"'[xn’—>an] ): F}




Isomorphisms between structures

Definition
Two relational o-strucutres A, B are isomorphic if there exists a
bijection h: U4 — U such that for every predicate symbol P

(at,...,an) € P4 < (h(a1),...,h(an)) € Ps
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Isomorphisms between structures

Definition
Two relational o-strucutres A, B are isomorphic if there exists a
bijection h: U4 — U such that for every predicate symbol P

(at,...,an) € P4 < (h(a1),...,h(an)) € Ps

@ Isomorphism h: U4 — U4 is an automorphism
@ Automorphisms form a group

@ Want that first-order logic cannot distinguish between isomorphic
structures



The isomorphism lemma

Lemma
Let h: U4 — Ug be an isomporphism. Then for all o-formulas
F(x1,...,Xp) and a, ..., an € Uy, we have

Ay an)--prmoal) E F iff Bixosh(an )] xa—h(an)] E F
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The isomorphism lemma

Lemma
Let h: U4 — Ug be an isomporphism. Then for all o-formulas
F(x1,...,Xp) and a, ..., an € Uy, we have

Apqsar)--[xo—san] FF iff Bixy i h(ay)]--- x> h(an)] =F

Proof.
Structural induction on F.
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Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in
a given structure
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Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in
a given structure

Lemma

Ifh: Uy — Uy is an automorphism, then h is also an automorphism
when adding a relation R to A that is elementary definable in A.

Proof.

Let F(x1,...,X,) define R, by the isomorphism lemma we have
Apgsay]-pmsan F F I Apgsh(a)-- xa—h(an)) = F- Hence

R = h(R). O

16



Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in
a given structure

Lemma

Ifh: Uy — Uy is an automorphism, then h is also an automorphism
when adding a relation R to A that is elementary definable in A.

Proof.

Let F(x1,...,X,) define R, by the isomorphism lemma we have
Apqay)-xoan) = F I Apesngan)-xh(a) | F. Hence

R = h(R). O]
Example

Observe that h: x — —x is an automorphism in A = (Z,0,1,+,=).
Clearly, we do not have x < y iff —x < —y. Hence, the order relation

<” is not definable in A.




Elementary equivalent structures

Definition
We call A and B elementary equivalent (A = B) if for all sentences

F we have
AEF < BEF.
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Elementary equivalent structures

Definition
We call A and B elementary equivalent (A = B) if for all sentences

F we have
AEF < BEF.

Call A and B m-equivalent (A =, B) if for all F with quantifier-depth
at most m, we have
AEF < BEF.
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Elementary equivalent structures

Definition
We call A and B elementary equivalent (A = B) if for all sentences

F we have
AEF < BEF.

Call A and B m-equivalent (A =, B) if for all F with quantifier-depth
at most m, we have
A=F < BEF.

Isomorphic structures are, in particular, elementary equivalent.
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Cantor’s theorem
Theorem (Cantor)
Any two countable unbounded dense linear orders are isomorphic.

Proof.
Since A and B are countable, enumerate their elements:

aqds as - andb1 b2b3
Inductively define new enumerations
aya,ay ---and by by by ---

such that a; < a; iff b; < b. The isomorphism h'is h(a;) := b; for all
i>0.
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Theorem (Cantor)
Any two countable unbounded dense linear orders are isomorphic.

Proof.
Since A and B are countable, enumerate their elements:

aqds as - andb1 b2b3
Inductively define new enumerations
aya,ay ---and by by by ---

such that a; < a; iff b; < b. The isomorphism h'is h(a;) := b; for all
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Cantor’s theorem
Theorem (Cantor)
Any two countable unbounded dense linear orders are isomorphic.

Proof.
Since A and B are countable, enumerate their elements:

aqds as - andb1 b2b3
Inductively define new enumerations
aya,ay ---and by by by ---

such that a; < a; iff b; < b. The isomorphism h'is h(a;) := b; for all
i>0.

Suppose we defined &, --- a, and b - - - b},.

If neven, let anJr1 be the first a; in the enumeration that is different
from all &,,. .., a),. Define b],, , such that a; < a,_, iff b < b],_; for all
1<i<n. Such a by, , exists since B is dense

If n odd, proceed analogously, starting with b/, ;. Alternation
guarantees we process all a; and b;. O

n-+1




Partial Isomorphisms

Definition
Let A, B be o-structures. A partial isomorphism from A to B is an

injective map h: A — Ug where A C U4 such that for all P and
ai,...,an €A

(a1,...,an) € P4 <= (h(a1),...,h(an)) € Pgs.
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Ehrenfeucht-Fraissé Games

Definition
Given structures A, B such that U4 N Ug = 0. The

Ehrenfeucht-Fraissé game G, (A, B) is played over m rounds by
two players, Spoiler and Duplicator, according to the following rules:

@ In round i, Spoiler chooses element a; € U4 or b; € Up

@ Then Duplicator answers with an element b; or a; from the
opposite structure

@ After i round, obtain configuration (a1, b1), ..., (a;, b;), giving a
remaining game Gp,_i(A, ai,...,a;, B, bi,...,b;)

@ Duplicator wins after m rounds iff h(a;) := b; forall 1 <i < mis
a partial isomorphism




Winning strategies

Definition

A winning strategy for Spoiler maps a configuration
(a1,b1),...,(ai, bi) to an element a;1 € U4 or bi;1 € Up such that
Spoiler is guaranteed to win after m rounds. A winning strategy for
Duplicator is defined analogously.

Exercise: Show that either Spoiler or Duplictor has a winning strategy.
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Winning strategies

Definition
A winning strategy for Spoiler maps a configuration
(a1,b1),...,(ai, bi) to an element a;1 € U4 or bi;1 € Up such that

Spoiler is guaranteed to win after m rounds. A winning strategy for
Duplicator is defined analogously.

Exercise: Show that either Spoiler or Duplictor has a winning strategy.

Example

Let A = (Z,<) and B = (R, <). Then Duplicator has a winning
strategy for Go(.A, B) but Spoiler has a winning strategy for Gs(A, B).
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Theorem of Ehrenfeucht and Fraissé

Theorem (Ehrenfeucht, Fraissé)
For allm € N, A =5, B iff Duplicator wins Gm(A, B). J
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Theorem of Ehrenfeucht and Fraissé

Theorem (Ehrenfeucht, Fraissé)
For allm € N, A =5, B iff Duplicator wins Gm(A, B). J

Only show that if A #,, B then Spoiler wins Gn,( A, B):

Proposition

Spoiler has a winning strategy for a game
Gm(A,ai,...,ar,B,by,..., b if there is a formula F with free
variables x1, ..., x, and quantifier-depth m such that

Apgsa)-poa] = F and Bigosp) b | F.

13/16



An example

Example

Structures A = (Z,<) and B = (R, <) can be distinguished by a
sentence of quantifier depth three:

F=3ax3y(x <y AVz(=(x < zANz < Y))).
Winning strategy for Spoiler obtained from F:
@ Spoiler first chooses a;, a, € Uy with a; +1 = a
@ Duplicator has to answer with by, b, € Up such that by < b,
@ But now Spoiler plays some bs such that by < by < b,

@ Any as the Duplicator chooses makes her lose
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Theorem of Ehrenfeucht and Fraissé

Proof.

By induction on m. If m = 0, then h(a;) := b;forall 1 </ < mis not a
partial isomorphism.
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Theorem of Ehrenfeucht and Fraissé

Proof.

By induction on m. If m = 0, then h(a;) := b; forall1 <i < mis nota
partial isomorphism.

Suppose m > 0 and Ajy, s a,].--[x—a] F F and B, b, [x—b] F ~F-
Then, there is subformula in F of quantifier-depth less than m or of
the form Jy H such that H has quantifier depth m — 1 that
distinguishes A from 5.
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strategy for Spoiler by the induction hypothesis.
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Proof.

By induction on m. If m = 0, then h(a;) := b; forall1 <i < mis nota
partial isomorphism.

Suppose m > 0 and Ajy, s a,].--[x—a] F F and B, b, [x—b] F ~F-
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Al alx—ai--[x—a] = H, and hence for all b € Us we have
Alysbllys—bi--[y—b] = ~H- By IH, Spoiler has winning strategy for
Gm-1(A,a1,...,ar,a B,b,...,b,b),yielding a winning strategy for
G-




Theorem of Ehrenfeucht and Fraissé

Proof.

By induction on m. If m = 0, then h(a;) := b; forall1 <i < mis nota
partial isomorphism.

Suppose m > 0 and Ajy, s a,].--[x—a] F F and B, b, [x—b] F ~F-
Then, there is subformula in F of quantifier-depth less than m or of
the form Jy H such that H has quantifier depth m — 1 that
distinguishes A from B. In the former case, we obtain a winning
strategy for Spoiler by the induction hypothesis. Otherwise, we have
either

(1VAE3yHand B=Vy—-H or (2) AEVy-HandBE3dyH

In case (1), a winning strategy for Spoiler chooses a € U4 such that
Al alx—ai--[x—a] = H, and hence for all b € Us we have
Alysbllys—bi--[y—b] = ~H- By IH, Spoiler has winning strategy for
Gm-1(A,a1,...,ar,a B,b,...,b,b),yielding a winning strategy for
Gn. In case (2), Spoiler chooses b € Ui and the proof proceeds
symmetrically. O




Applications of Ehrenfeucht and Fraissé Games

@ Concise proof that unbounded dense linear orders are
isomorphic (Exercise: establish winning strategy for Duplicator)

@ First-order logic cannot express graph connectivity
@ The class of all infinite structures is not finitely axiomatisable

@ ...and many more

16/16



