Lecture 16 Definability in first-order logic

elementary equivalences, isomorphisms, separation of structures by games

Logic and Proof 5 June 2019

Dr Christoph Haase University of Oxford

Debt from last lecture

Theorem (Cantor)
Any two countable unbounded dense linear orders are isomorphic.

Figure: Georg Cantor (1845-1918)

Today: Expressiveness of first-order logic

- Definability in a fixed structure
- Axiomatisations of classes of structures
- Work with relational structures but results hold w.l.o.g. for arbitrary structures

Definability of relations in a structure

Want know whether a relation is definable in a structure:

- Can define " $<$ " in the stucture $(\mathbb{N}, 0,1,+,=)$:

$$
L(x, y) \equiv \exists z x+z=y \wedge \neg(z=0)
$$

Definability of relations in a structure

Want know whether a relation is definable in a structure:

- Can define " $<$ " in the stucture $(\mathbb{N}, 0,1,+,=)$:

$$
L(x, y) \equiv \exists z x+z=y \wedge \neg(z=0)
$$

- What if we consider $(\mathbb{Z}, 0,1,+,=)$?

Definability of relations in a structure

Want know whether a relation is definable in a structure:

- Can define " $<$ " in the stucture $(\mathbb{N}, 0,1,+,=)$:

$$
L(x, y) \equiv \exists z x+z=y \wedge \neg(z=0)
$$

- What if we consider $(\mathbb{Z}, 0,1,+,=)$?

Definition

Let \mathcal{A} be a σ-structure. Then $R \subseteq U_{\mathcal{A}}^{n}$ is elementary definable in \mathcal{A} if there is $F\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
R=\left\{\left(a_{1}, \ldots, a_{n}\right): \mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{n} \mapsto a_{n}\right]} \models F\right\}
$$

Isomorphisms between structures

Definition

Two relational σ-strucutres \mathcal{A}, \mathcal{B} are isomorphic if there exists a bijection $h: U_{\mathcal{A}} \rightarrow U_{\mathcal{B}}$ such that for every predicate symbol P

$$
\left(a_{1}, \ldots, a_{n}\right) \in P_{\mathcal{A}} \Leftrightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right) \in P_{\mathcal{B}}
$$

Isomorphisms between structures

Definition

Two relational σ-strucutres \mathcal{A}, \mathcal{B} are isomorphic if there exists a bijection $h: U_{\mathcal{A}} \rightarrow U_{\mathcal{B}}$ such that for every predicate symbol P

$$
\left(a_{1}, \ldots, a_{n}\right) \in P_{\mathcal{A}} \Leftrightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right) \in P_{\mathcal{B}}
$$

- Isomorphism $h: U_{\mathcal{A}} \rightarrow U_{\mathcal{A}}$ is an automorphism
- Automorphisms form a group
- Want that first-order logic cannot distinguish between isomorphic structures

The isomorphism lemma

Lemma

Let $h: U_{\mathcal{A}} \rightarrow U_{\mathcal{B}}$ be an isomporphism. Then for all σ-formulas $F\left(x_{1}, \ldots, x_{n}\right)$ and $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$, we have

$$
\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{n} \mapsto a_{n}\right]} \models F \quad \text { iff } \quad \mathcal{B}_{\left[x_{1} \mapsto h\left(a_{1}\right)\right] \cdots\left[x_{n} \mapsto h\left(a_{n}\right)\right]} \models F
$$

The isomorphism lemma

Lemma

Let $h: U_{\mathcal{A}} \rightarrow U_{\mathcal{B}}$ be an isomporphism. Then for all σ-formulas $F\left(x_{1}, \ldots, x_{n}\right)$ and $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$, we have

$$
\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{n} \mapsto a_{n}\right]} \models F \quad \text { iff } \quad \mathcal{B}_{\left[x_{1} \mapsto h\left(a_{1}\right)\right] \cdots\left[x_{n} \mapsto h\left(a_{n}\right)\right]} \models F
$$

Proof.

Structural induction on F.

Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in a given structure

Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in a given structure

Lemma

If $h: U_{\mathcal{A}} \rightarrow U_{\mathcal{A}}$ is an automorphism, then h is also an automorphism when adding a relation R to \mathcal{A} that is elementary definable in \mathcal{A}.

Proof.

Let $F\left(x_{1}, \ldots, x_{n}\right)$ define R, by the isomorphism lemma we have $\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[R\left[x_{n} \mapsto a_{n}\right]\right.} \models F$ iff $\mathcal{A}_{\left[x_{1} \mapsto h\left(a_{1}\right)\right] \cdots\left[x_{n} \mapsto h\left(a_{n}\right)\right]} \models F$. Hence $R=h(R)$.

Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in a given structure

Lemma

If $h: U_{\mathcal{A}} \rightarrow U_{\mathcal{A}}$ is an automorphism, then h is also an automorphism when adding a relation R to \mathcal{A} that is elementary definable in \mathcal{A}.

Proof.

Let $F\left(x_{1}, \ldots, x_{n}\right)$ define R, by the isomorphism lemma we have $\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[\left(x_{n} \mapsto a_{n}\right]\right.} \models F$ iff $\mathcal{A}_{\left[x_{1} \mapsto h\left(a_{1}\right)\right] \cdots\left[x_{n} \mapsto h\left(a_{n}\right)\right]} \models F$. Hence $R=h(R)$.

Example

Observe that $h: x \mapsto-x$ is an automorphism in $\mathcal{A}=(\mathbb{Z}, 0,1,+,=)$. Clearly, we do not have $x<y$ iff $-x<-y$. Hence, the order relation " $<$ " is not definable in \mathcal{A}.

Elementary equivalent structures

Definition

We call \mathcal{A} and \mathcal{B} elementary equivalent $(\mathcal{A} \equiv \mathcal{B})$ if for all sentences F we have

$$
\mathcal{A} \models F \Longleftrightarrow \mathcal{B} \models F
$$

Elementary equivalent structures

Definition

We call \mathcal{A} and \mathcal{B} elementary equivalent $(\mathcal{A} \equiv \mathcal{B})$ if for all sentences F we have

$$
\mathcal{A} \models F \Longleftrightarrow \mathcal{B} \models F
$$

Call \mathcal{A} and \mathcal{B} m-equivalent $\left(\mathcal{A} \equiv_{m} \mathcal{B}\right)$ if for all F with quantifier-depth at most m, we have

$$
\mathcal{A} \models F \Longleftrightarrow \mathcal{B} \models F
$$

Elementary equivalent structures

Definition

We call \mathcal{A} and \mathcal{B} elementary equivalent $(\mathcal{A} \equiv \mathcal{B})$ if for all sentences F we have

$$
\mathcal{A} \models F \Longleftrightarrow \mathcal{B} \models F
$$

Call \mathcal{A} and \mathcal{B} m-equivalent $\left(\mathcal{A} \equiv_{m} \mathcal{B}\right)$ if for all F with quantifier-depth at most m, we have

$$
\mathcal{A} \models F \Longleftrightarrow \mathcal{B} \models F
$$

Isomorphic structures are, in particular, elementary equivalent.

Cantor's theorem

Theorem (Cantor)
Any two countable unbounded dense linear orders are isomorphic.

Proof.

Since \mathcal{A} and \mathcal{B} are countable, enumerate their elements:

$$
a_{1} a_{2} a_{3} \cdots \text { and } b_{1} b_{2} b_{3} \cdots
$$

Inductively define new enumerations

$$
a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} \cdots \text { and } b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime} \cdots
$$

such that $a_{i}^{\prime}<a_{j}^{\prime}$ iff $b_{i}^{\prime}<b_{j}^{\prime}$. The isomorphism h is $h\left(a_{i}^{\prime}\right):=b_{i}^{\prime}$ for all $i>0$.

Cantor's theorem

Theorem (Cantor)
Any two countable unbounded dense linear orders are isomorphic.

Proof.

Since \mathcal{A} and \mathcal{B} are countable, enumerate their elements:

$$
a_{1} a_{2} a_{3} \cdots \text { and } b_{1} b_{2} b_{3} \cdots
$$

Inductively define new enumerations

$$
a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} \cdots \text { and } b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime} \cdots
$$

such that $a_{i}^{\prime}<a_{j}^{\prime}$ iff $b_{i}^{\prime}<b_{j}^{\prime}$. The isomorphism h is $h\left(a_{i}^{\prime}\right):=b_{i}^{\prime}$ for all $i>0$.
Suppose we defined $a_{1}^{\prime} \cdots a_{n}^{\prime}$ and $b_{1}^{\prime} \cdots b_{n}^{\prime}$.

Cantor's theorem

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Since \mathcal{A} and \mathcal{B} are countable, enumerate their elements:

$$
a_{1} a_{2} a_{3} \cdots \text { and } b_{1} b_{2} b_{3} \cdots
$$

Inductively define new enumerations

$$
a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} \cdots \text { and } b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime} \cdots
$$

such that $a_{i}^{\prime}<a_{j}^{\prime}$ iff $b_{i}^{\prime}<b_{j}^{\prime}$. The isomorphism h is $h\left(a_{i}^{\prime}\right):=b_{i}^{\prime}$ for all $i>0$.
Suppose we defined $a_{1}^{\prime} \cdots a_{n}^{\prime}$ and $b_{1}^{\prime} \cdots b_{n}^{\prime}$. If n even, let a_{n+1}^{\prime} be the first a_{i} in the enumeration that is different from all $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$. Define b_{n+1}^{\prime} such that $a_{i}^{\prime}<a_{n+1}^{\prime}$ iff $b_{i}^{\prime}<b_{n+1}^{\prime}$ for all $1 \leq i \leq n$. Such a b_{n+1}^{\prime} exists since \mathcal{B} is dense.

Cantor's theorem

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Since \mathcal{A} and \mathcal{B} are countable, enumerate their elements:

$$
a_{1} a_{2} a_{3} \cdots \text { and } b_{1} b_{2} b_{3} \cdots
$$

Inductively define new enumerations

$$
a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} \cdots \text { and } b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime} \cdots
$$

such that $a_{i}^{\prime}<a_{j}^{\prime}$ iff $b_{i}^{\prime}<b_{j}^{\prime}$. The isomorphism h is $h\left(a_{i}^{\prime}\right):=b_{i}^{\prime}$ for all $i>0$.
Suppose we defined $a_{1}^{\prime} \cdots a_{n}^{\prime}$ and $b_{1}^{\prime} \cdots b_{n}^{\prime}$. If n even, let a_{n+1}^{\prime} be the first a_{i} in the enumeration that is different from all $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$. Define b_{n+1}^{\prime} such that $a_{i}^{\prime}<a_{n+1}^{\prime}$ iff $b_{i}^{\prime}<b_{n+1}^{\prime}$ for all $1 \leq i \leq n$. Such a b_{n+1}^{\prime} exists since \mathcal{B} is dense. If n odd, proceed analogously, starting with b_{n+1}^{\prime}. Alternation guarantees we process all a_{i} and b_{i}.

Partial Isomorphisms

Definition

Let \mathcal{A}, \mathcal{B} be σ-structures. A partial isomorphism from \mathcal{A} to \mathcal{B} is an injective map $h: A \rightarrow U_{\mathcal{B}}$ where $A \subseteq U_{\mathcal{A}}$ such that for all P and $a_{1}, \ldots, a_{n} \in A$

$$
\left(a_{1}, \ldots, a_{n}\right) \in P_{\mathcal{A}} \Longleftrightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right) \in P_{\mathcal{B}}
$$

Ehrenfeucht-Fraïssé Games

Definition

Given structures \mathcal{A}, \mathcal{B} such that $U_{\mathcal{A}} \cap U_{\mathcal{B}}=\emptyset$. The Ehrenfeucht-Fraïssé game $G_{m}(\mathcal{A}, \mathcal{B})$ is played over m rounds by two players, Spoiler and Duplicator, according to the following rules:

- In round i, Spoiler chooses element $a_{i} \in U_{\mathcal{A}}$ or $b_{i} \in U_{\mathcal{B}}$
- Then Duplicator answers with an element b_{i} or a_{i} from the opposite structure
- After i round, obtain configuration $\left(a_{1}, b_{1}\right), \ldots,\left(a_{i}, b_{i}\right)$, giving a remaining game $G_{m-i}\left(\mathcal{A}, a_{1}, \ldots, a_{i}, \mathcal{B}, b_{1}, \ldots, b_{i}\right)$
- Duplicator wins after m rounds iff $h\left(a_{i}\right):=b_{i}$ for all $1 \leq i \leq m$ is a partial isomorphism

Winning strategies

Definition

A winning strategy for Spoiler maps a configuration
$\left(a_{1}, b_{1}\right), \ldots,\left(a_{i}, b_{i}\right)$ to an element $a_{i+1} \in U_{\mathcal{A}}$ or $b_{i+1} \in U_{\mathcal{B}}$ such that Spoiler is guaranteed to win after m rounds. A winning strategy for Duplicator is defined analogously.

Exercise: Show that either Spoiler or Duplictor has a winning strategy.

Winning strategies

Definition

A winning strategy for Spoiler maps a configuration
$\left(a_{1}, b_{1}\right), \ldots,\left(a_{i}, b_{i}\right)$ to an element $a_{i+1} \in U_{\mathcal{A}}$ or $b_{i+1} \in U_{\mathcal{B}}$ such that Spoiler is guaranteed to win after m rounds. A winning strategy for Duplicator is defined analogously.

Exercise: Show that either Spoiler or Duplictor has a winning strategy.

Example

Let $\mathcal{A}=(\mathbb{Z},<)$ and $\mathcal{B}=(\mathbb{R},<)$. Then Duplicator has a winning strategy for $G_{2}(\mathcal{A}, \mathcal{B})$ but Spoiler has a winning strategy for $G_{3}(\mathcal{A}, \mathcal{B})$.

Theorem of Ehrenfeucht and Fraïssé

Theorem (Ehrenfeucht, Fraïssé)
For all $m \in \mathbb{N}, \mathcal{A} \equiv_{m} \mathcal{B}$ iff Duplicator wins $G_{m}(\mathcal{A}, \mathcal{B})$.

Theorem of Ehrenfeucht and Fraïssé

Theorem (Ehrenfeucht, Fraïssé)

For all $m \in \mathbb{N}, \mathcal{A} \equiv_{m} \mathcal{B}$ iff Duplicator wins $G_{m}(\mathcal{A}, \mathcal{B})$.

Only show that if $\mathcal{A} \not \equiv{ }_{m} \mathcal{B}$ then Spoiler wins $G_{m}(\mathcal{A}, \mathcal{B})$:

Proposition

Spoiler has a winning strategy for a game $G_{m}\left(\mathcal{A}, a_{1}, \ldots, a_{r}, \mathcal{B}, b_{1}, \ldots, b_{r}\right)$ if there is a formula F with free variables x_{1}, \ldots, x_{r} and quantifier-depth m such that

$$
\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{r} \mapsto a_{r}\right]} \models F \text { and } \mathcal{B}_{\left[x_{1} \mapsto b_{1}\right] \cdots\left[x_{r} \mapsto b_{r}\right]} \models \neg F \text {. }
$$

An example

Example

Structures $\mathcal{A}=(\mathbb{Z},<)$ and $\mathcal{B}=(\mathbb{R},<)$ can be distinguished by a sentence of quantifier depth three:

$$
F=\exists x \exists y(x<y \wedge \forall z(\neg(x<z \wedge z<y))) .
$$

Winning strategy for Spoiler obtained from F :

- Spoiler first chooses $a_{1}, a_{2} \in U_{\mathcal{A}}$ with $a_{1}+1=a_{2}$
- Duplicator has to answer with $b_{1}, b_{2} \in U_{\mathcal{B}}$ such that $b_{1}<b_{2}$
- But now Spoiler plays some b_{3} such that $b_{1}<b_{3}<b_{2}$
- Any a_{3} the Duplicator chooses makes her lose

Theorem of Ehrenfeucht and Fraïssé

Proof.

By induction on m. If $m=0$, then $h\left(a_{i}\right):=b_{i}$ for all $1 \leq i \leq m$ is not a partial isomorphism.

Theorem of Ehrenfeucht and Fraïssé

Proof.

By induction on m. If $m=0$, then $h\left(a_{i}\right):=b_{i}$ for all $1 \leq i \leq m$ is not a partial isomorphism.
Suppose $m>0$ and $\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{r} \mapsto a_{r}\right]} \models F$ and $\mathcal{B}_{\left[x_{1} \mapsto b_{1}\right] \cdots\left[x_{r} \mapsto b_{r}\right]} \models \neg F$. Then, there is subformula in F of quantifier-depth less than m or of the form $\exists y H$ such that H has quantifier depth $m-1$ that distinguishes \mathcal{A} from \mathcal{B}.

Theorem of Ehrenfeucht and Fraïssé

Proof.

By induction on m. If $m=0$, then $h\left(a_{i}\right):=b_{i}$ for all $1 \leq i \leq m$ is not a partial isomorphism.
Suppose $m>0$ and $\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{r} \mapsto a_{r}\right]}=F$ and $\mathcal{B}_{\left[x_{1} \mapsto b_{1}\right] \cdots\left[x_{r} \mapsto b_{r}\right]} \models \neg F$. Then, there is subformula in F of quantifier-depth less than m or of the form $\exists y H$ such that H has quantifier depth $m-1$ that distinguishes \mathcal{A} from \mathcal{B}. In the former case, we obtain a winning strategy for Spoiler by the induction hypothesis.

Theorem of Ehrenfeucht and Fraïssé

Proof.

By induction on m. If $m=0$, then $h\left(a_{i}\right):=b_{i}$ for all $1 \leq i \leq m$ is not a partial isomorphism.
Suppose $m>0$ and $\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{r} \mapsto a_{r}\right]} \models F$ and $\mathcal{B}_{\left[x_{1} \mapsto b_{1}\right] \cdots\left[x_{r} \mapsto b_{r}\right]} \models \neg F$. Then, there is subformula in F of quantifier-depth less than m or of the form $\exists y H$ such that H has quantifier depth $m-1$ that distinguishes \mathcal{A} from \mathcal{B}. In the former case, we obtain a winning strategy for Spoiler by the induction hypothesis. Otherwise, we have either

$$
\text { (1) } \mathcal{A} \models \exists y H \text { and } \mathcal{B} \models \forall y \neg H \quad \text { or } \quad \text { (2) } \mathcal{A} \models \forall y \neg H \text { and } \mathcal{B} \models \exists y H
$$

Theorem of Ehrenfeucht and Fraïssé

Proof.

By induction on m. If $m=0$, then $h\left(a_{i}\right):=b_{i}$ for all $1 \leq i \leq m$ is not a partial isomorphism.
Suppose $m>0$ and $\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{r} \mapsto a_{r}\right]} \models F$ and $\mathcal{B}_{\left[x_{1} \mapsto b_{1}\right] \cdots\left[x_{r} \mapsto b_{r}\right]} \models \neg F$. Then, there is subformula in F of quantifier-depth less than m or of the form $\exists y H$ such that H has quantifier depth $m-1$ that distinguishes \mathcal{A} from \mathcal{B}. In the former case, we obtain a winning strategy for Spoiler by the induction hypothesis. Otherwise, we have either

$$
\text { (1) } \mathcal{A} \models \exists y H \text { and } \mathcal{B} \models \forall y \neg H \quad \text { or } \quad \text { (2) } \mathcal{A} \models \forall y \neg H \text { and } \mathcal{B} \models \exists y H
$$

In case (1), a winning strategy for Spoiler chooses $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[y \mapsto a]\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{r} \mapsto a_{r}\right]} \models H$, and hence for all $b \in U_{\mathcal{B}}$ we have $\mathcal{A}_{[y \mapsto b]\left[y_{1} \mapsto b_{1}\right] \cdots\left[y_{r} \mapsto b_{r}\right]} \models \neg H$. By IH, Spoiler has winning strategy for $G_{m-1}\left(\mathcal{A}, a_{1}, \ldots, a_{r}, a, \mathcal{B}, b_{1}, \ldots, b_{r}, b\right)$, yielding a winning strategy for G_{m}.

Theorem of Ehrenfeucht and Fraïssé

Proof.

By induction on m. If $m=0$, then $h\left(a_{i}\right):=b_{i}$ for all $1 \leq i \leq m$ is not a partial isomorphism.
Suppose $m>0$ and $\mathcal{A}_{\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{r} \mapsto a_{r}\right]} \models F$ and $\mathcal{B}_{\left[x_{1} \mapsto b_{1}\right] \cdots\left[x_{r} \mapsto b_{r}\right]} \models \neg F$. Then, there is subformula in F of quantifier-depth less than m or of the form $\exists y H$ such that H has quantifier depth $m-1$ that distinguishes \mathcal{A} from \mathcal{B}. In the former case, we obtain a winning strategy for Spoiler by the induction hypothesis. Otherwise, we have either

$$
\text { (1) } \mathcal{A} \models \exists y H \text { and } \mathcal{B} \models \forall y \neg H \quad \text { or } \quad \text { (2) } \mathcal{A} \models \forall y \neg H \text { and } \mathcal{B} \models \exists y H
$$

In case (1), a winning strategy for Spoiler chooses $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[y \mapsto a]\left[x_{1} \mapsto a_{1}\right] \cdots\left[x_{r} \mapsto a_{t}\right]} \models H$, and hence for all $b \in U_{\mathcal{B}}$ we have $\mathcal{A}_{[y \mapsto b]\left[y_{1} \mapsto b_{1}\right] \cdots\left[y_{r} \mapsto b_{r}\right]} \models \neg H$. By IH, Spoiler has winning strategy for $G_{m-1}\left(\mathcal{A}, a_{1}, \ldots, a_{r}, a, \mathcal{B}, b_{1}, \ldots, b_{r}, b\right)$, yielding a winning strategy for G_{m}. In case (2), Spoiler chooses $b \in U_{\mathcal{B}}$ and the proof proceeds symmetrically.

Applications of Ehrenfeucht and Fraïssé Games

- Concise proof that unbounded dense linear orders are isomorphic (Exercise: establish winning strategy for Duplicator)
- First-order logic cannot express graph connectivity
- The class of all infinite structures is not finitely axiomatisable
- ...and many more

