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Debt from last lecture

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Figure: Georg Cantor (1845 – 1918)
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Today: Expressiveness of first-order logic

Definability in a fixed structure

Axiomatisations of classes of structures

Work with relational structures but results hold w.l.o.g. for
arbitrary structures
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16.4

Definability of relations in a structure

Want know whether a relation is definable in a structure:

Can define “<” in the stucture (N,0,1,+,=):

L(x , y) ≡ ∃z x + z = y ∧ ¬(z = 0).

What if we consider (Z,0,1,+,=)?

Definition

Let A be a σ-structure. Then R ⊆ Un
A is elementary definable in A if

there is F (x1, . . . , xn) such that

R =
{
(a1, . . . ,an) : A[x1 7→a1]···[xn 7→an] |= F

}
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Isomorphisms between structures

Definition

Two relational σ-strucutres A,B are isomorphic if there exists a
bijection h : UA → UB such that for every predicate symbol P

(a1, . . . ,an) ∈ PA ⇔ (h(a1), . . . ,h(an)) ∈ PB

Isomorphism h : UA → UA is an automorphism

Automorphisms form a group

Want that first-order logic cannot distinguish between isomorphic
structures
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The isomorphism lemma

Lemma

Let h : UA → UB be an isomporphism. Then for all σ-formulas
F (x1, . . . , xn) and a1, . . . ,an ∈ UA, we have

A[x1 7→a1]···[xn 7→an] |= F iff B[x1 7→h(a1)]···[xn 7→h(an)] |= F

Proof.

Structural induction on F .
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Proving non-definability of a relation

Can use isomoprhism lemma to show that relation is not definable in
a given structure

Lemma

If h : UA → UA is an automorphism, then h is also an automorphism
when adding a relation R to A that is elementary definable in A.

Proof.

Let F (x1, . . . , xn) define R, by the isomorphism lemma we have
A[x1 7→a1]···[xn 7→an] |= F iff A[x1 7→h(a1)]···[xn 7→h(an)] |= F . Hence
R = h(R).

Example

Observe that h : x 7→ −x is an automorphism in A = (Z,0,1,+,=).
Clearly, we do not have x < y iff −x < −y . Hence, the order relation
“<” is not definable in A.
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Elementary equivalent structures

Definition

We call A and B elementary equivalent (A ≡ B) if for all sentences
F we have

A |= F ⇐⇒ B |= F .

Call A and B m-equivalent (A ≡m B) if for all F with quantifier-depth
at most m, we have

A |= F ⇐⇒ B |= F .

Isomorphic structures are, in particular, elementary equivalent.
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Cantor’s theorem

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Since A and B are countable, enumerate their elements:

a1 a2 a3 · · · and b1 b2 b3 · · ·

Inductively define new enumerations

a′1 a′2 a′3 · · · and b′1 b′2 b′3 · · ·

such that a′i < a′j iff b′i < b′j . The isomorphism h is h(a′i ) := b′i for all
i > 0.

Suppose we defined a′1 · · · a′n and b′1 · · · b′n.
If n even, let a′n+1 be the first ai in the enumeration that is different
from all a′1, . . . ,a

′
n. Define b′n+1 such that a′i < a′n+1 iff b′i < b′n+1 for all

1 ≤ i ≤ n. Such a b′n+1 exists since B is dense.
If n odd, proceed analogously, starting with b′n+1. Alternation
guarantees we process all ai and bi .
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Partial Isomorphisms

Definition

Let A,B be σ-structures. A partial isomorphism from A to B is an
injective map h : A→ UB where A ⊆ UA such that for all P and
a1, . . . ,an ∈ A

(a1, . . . ,an) ∈ PA ⇐⇒ (h(a1), . . . ,h(an)) ∈ PB .
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Ehrenfeucht-Fraïssé Games

Definition

Given structures A,B such that UA ∩ UB = ∅. The
Ehrenfeucht-Fraïssé game Gm(A,B) is played over m rounds by
two players, Spoiler and Duplicator, according to the following rules:

In round i , Spoiler chooses element ai ∈ UA or bi ∈ UB

Then Duplicator answers with an element bi or ai from the
opposite structure

After i round, obtain configuration (a1,b1), . . . , (ai ,bi), giving a
remaining game Gm−i(A,a1, . . . ,ai ,B,b1, . . . ,bi)

Duplicator wins after m rounds iff h(ai) := bi for all 1 ≤ i ≤ m is
a partial isomorphism
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Winning strategies

Definition

A winning strategy for Spoiler maps a configuration
(a1,b1), . . . , (ai ,bi) to an element ai+1 ∈ UA or bi+1 ∈ UB such that
Spoiler is guaranteed to win after m rounds. A winning strategy for
Duplicator is defined analogously.

Exercise: Show that either Spoiler or Duplictor has a winning strategy.

Example

Let A = (Z, <) and B = (R, <). Then Duplicator has a winning
strategy for G2(A,B) but Spoiler has a winning strategy for G3(A,B).
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Theorem of Ehrenfeucht and Fraïssé

Theorem (Ehrenfeucht, Fraïssé)

For all m ∈ N, A ≡m B iff Duplicator wins Gm(A,B).

Only show that if A 6≡m B then Spoiler wins Gm(A,B):

Proposition

Spoiler has a winning strategy for a game
Gm(A,a1, . . . ,ar ,B,b1, . . . ,br ) if there is a formula F with free
variables x1, . . . , xr and quantifier-depth m such that

A[x1 7→a1]···[xr 7→ar ] |= F and B[x1 7→b1]···[xr 7→br ] |= ¬F .
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An example

Example

Structures A = (Z, <) and B = (R, <) can be distinguished by a
sentence of quantifier depth three:

F = ∃x∃y(x < y ∧ ∀z(¬(x < z ∧ z < y))).

Winning strategy for Spoiler obtained from F :

Spoiler first chooses a1,a2 ∈ UA with a1 + 1 = a2

Duplicator has to answer with b1,b2 ∈ UB such that b1 < b2

But now Spoiler plays some b3 such that b1 < b3 < b2

Any a3 the Duplicator chooses makes her lose
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Theorem of Ehrenfeucht and Fraïssé

Proof.

By induction on m. If m = 0, then h(ai) := bi for all 1 ≤ i ≤ m is not a
partial isomorphism.

Suppose m > 0 and A[x1 7→a1]···[xr 7→ar ] |= F and B[x1 7→b1]···[xr 7→br ] |= ¬F .
Then, there is subformula in F of quantifier-depth less than m or of
the form ∃y H such that H has quantifier depth m − 1 that
distinguishes A from B. In the former case, we obtain a winning
strategy for Spoiler by the induction hypothesis. Otherwise, we have
either

(1) A |= ∃y H and B |= ∀y¬H or (2) A |= ∀y¬H and B |= ∃y H

In case (1), a winning strategy for Spoiler chooses a ∈ UA such that
A[y 7→a][x1 7→a1]···[xr 7→ar ] |= H, and hence for all b ∈ UB we have
A[y 7→b][y1 7→b1]···[yr 7→br ] |= ¬H. By IH, Spoiler has winning strategy for
Gm−1(A,a1, . . . ,ar ,a,B,b1, . . . ,br ,b), yielding a winning strategy for
Gm. In case (2), Spoiler chooses b ∈ UB and the proof proceeds
symmetrically.
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Applications of Ehrenfeucht and Fraïssé Games

Concise proof that unbounded dense linear orders are
isomorphic (Exercise: establish winning strategy for Duplicator)

First-order logic cannot express graph connectivity

The class of all infinite structures is not finitely axiomatisable

...and many more
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