Lecture 15
 Automatic Structures

Logic and Proof 3 June 2019

Prof James Worrell University of Oxford

Overview

Today:

- Structures whose universe and relations are regular languages
- Gives automata-based decision procedures for the theory of those structures similar to quantifier elimination

Relational structures

Definition
A σ-structure \mathcal{A} is relational if σ only consists of relation symbols.

Relational structures

Definition

A σ-structure \mathcal{A} is relational if σ only consists of relation symbols.

- Every structure \mathcal{A} has relational variant obtained by replacing every $f_{\mathcal{A}}: U_{\mathcal{A}}^{k} \rightarrow U_{\mathcal{A}}$ with relation

$$
F_{\mathcal{A}}=\left\{\left(a_{1}, \ldots, a_{k}, b\right) \in U_{\mathcal{A}}^{k+1}: f_{\mathcal{A}}\left(a_{1}, \ldots, a_{k}\right)=b\right\}
$$

- Example: $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is replaced by

$$
\left\{(i, j, k) \in \mathbb{N}^{3}: i+j=k\right\}
$$

- Constants are functions of arity zero, get replaced by singleton relation
- Only consider relational structures in this lecture

Word convolutions

Want to represent relations by words over some alphabet
Given alphabet Σ with $\# \notin \Sigma$, define $\Sigma_{\#}:=\Sigma \cup\{\#\}$

Word convolutions

Want to represent relations by words over some alphabet
Given alphabet Σ with $\# \notin \Sigma$, define $\Sigma_{\#}:=\Sigma \cup\{\#\}$
For words $w_{1}, w_{2}, \ldots, w_{n} \in \Sigma^{*}$,

- Let $w_{i}=a_{i, 1} a_{i, 2} \cdots a_{i, \ell_{i}}$, hence $\left|w_{i}\right|=\ell_{i}$
- Let $\ell=\max \left\{\ell_{1}, \ldots, \ell_{n}\right\}$
- Set $a_{i, j}:=\#$ for all $\ell_{i}<j \leq \ell$ and $1 \leq i \leq n$

Word convolutions

Want to represent relations by words over some alphabet
Given alphabet Σ with $\# \notin \Sigma$, define $\Sigma_{\#}:=\Sigma \cup\{\#\}$
For words $w_{1}, w_{2}, \ldots, w_{n} \in \Sigma^{*}$,

- Let $w_{i}=a_{i, 1} a_{i, 2} \cdots a_{i, \ell_{i}}$, hence $\left|w_{i}\right|=\ell_{i}$
- Let $\ell=\max \left\{\ell_{1}, \ldots, \ell_{n}\right\}$
- Set $a_{i, j}:=\#$ for all $\ell_{i}<j \leq \ell$ and $1 \leq i \leq n$
- The convolution of w_{1}, \ldots, w_{n} is

$$
\begin{aligned}
w_{1} \otimes w_{2} \otimes & \cdots \otimes w_{n} \in\left(\Sigma_{\#}^{n}\right)^{*} \\
& :=\left(a_{1,1}, \ldots, a_{n, 1}\right)\left(a_{1,2}, \ldots, a_{n, 2}\right) \cdots\left(a_{1, \ell}, \ldots, a_{n, \ell}\right)
\end{aligned}
$$

Word convolutions

Want to represent relations by words over some alphabet
Given alphabet Σ with $\# \notin \Sigma$, define $\Sigma_{\#}:=\Sigma \cup\{\#\}$
For words $w_{1}, w_{2}, \ldots, w_{n} \in \Sigma^{*}$,

- Let $w_{i}=a_{i, 1} a_{i, 2} \cdots a_{i, \ell_{i}}$, hence $\left|w_{i}\right|=\ell_{i}$
- Let $\ell=\max \left\{\ell_{1}, \ldots, \ell_{n}\right\}$
- Set $a_{i, j}:=\#$ for all $\ell_{i}<j \leq \ell$ and $1 \leq i \leq n$
- The convolution of w_{1}, \ldots, w_{n} is

$$
\begin{aligned}
w_{1} \otimes w_{2} \otimes & \cdots \otimes w_{n} \in\left(\Sigma_{\#}^{n}\right)^{*} \\
& :=\left(a_{1,1}, \ldots, a_{n, 1}\right)\left(a_{1,2}, \ldots, a_{n, 2}\right) \cdots\left(a_{1, \ell}, \ldots, a_{n, \ell}\right)
\end{aligned}
$$

Example

$$
a b b a \otimes a b a a b b a=\left[\begin{array}{l}
a \\
a
\end{array}\right]\left[\begin{array}{c}
b \\
b
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]\left[\begin{array}{l}
a \\
a
\end{array}\right]\left[\begin{array}{c}
\# \\
b
\end{array}\right]\left[\begin{array}{c}
\# \\
b
\end{array}\right]\left[\begin{array}{c}
\# \\
a
\end{array}\right]
$$

Automatic relations

Definition

A relation $R \subseteq\left(\Sigma^{*}\right)^{n}$ is automatic if the language

$$
L_{R}:=\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}:\left(w_{1}, \ldots, w_{n}\right) \in R\right\}
$$

is regular.

Automatic relations

Definition

A relation $R \subseteq\left(\Sigma^{*}\right)^{n}$ is automatic if the language

$$
L_{R}:=\left\{w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}:\left(w_{1}, \ldots, w_{n}\right) \in R\right\}
$$

is regular.

Example

$R=\left\{(u, v) \in\left(\Sigma^{*}\right)^{2}: u\right.$ is a prefix of $\left.v\right\}$ with $\Sigma=\{a, b\}$ is automatic:

Automatic structures

Definition

A relational structure $\mathcal{A}=\left(U_{\mathcal{A}}, R_{1}, \ldots, R_{m}\right)$ is automatic if there are a finite alphabet Σ and regular languages L, L_{1}, \ldots, L_{m} such that

- $L=U_{\mathcal{A}}$
- $L_{i}=L_{R_{i}}$ for all $1 \leq i \leq m$

Automatic structures

Definition

A relational structure $\mathcal{A}=\left(U_{\mathcal{A}}, R_{1}, \ldots, R_{m}\right)$ is automatic if there are a finite alphabet Σ and regular languages L, L_{1}, \ldots, L_{m} such that

- $L=U_{\mathcal{A}}$
- $L_{i}=L_{R_{i}}$ for all $1 \leq i \leq m$

A structure \mathcal{A} has an automatic presentation if \mathcal{A} is isomorphic to an automatic structure.

Presburger arithmetic has an automatic presentation

Suffices to show that a structure isomorphic to $(\mathbb{N},+)$ is automatic:

- Set $N:=\left(\{0,1\}^{*} 1\right) \cup\{0\} \subseteq\{0,1\}^{*}$
- For $w=b_{0} b_{1} \cdots b_{m} \in N$, define val: $N \rightarrow \mathbb{N}$ by

$$
\operatorname{val}(w):=\sum_{i=0}^{m} 2^{i} \cdot b_{i}
$$

- Set $A:=\left\{(a, b, c) \in N^{3}: \operatorname{val}(a)+\operatorname{val}(b)=\operatorname{val}(c)\right\} \subseteq N^{3}$
- Then $(\mathbb{N},+)$ is isomorphic to (N, A) by mapping $n \in \mathbb{N}$ to its unique minimal binary expansion $\operatorname{val}^{-1}(n)$

Proposition

The structure (N, A) is automatic.

A is automatic

N is obviously regular, and L_{A} is contained in the language of the following DFA:

A is automatic

N is obviously regular, and L_{A} is contained in the language of the following DFA:

Intersect with $\{a \otimes b \otimes c: a, b, c \in N\}$ to obtain NFA for L_{A}

Unbounded dense linear orders have automatic presentations

Theorem

Any structure $\mathcal{A}=(Q,<)$ that is a model of the unbounded dense linear order axioms has an automatic presentation.

Unbounded dense linear orders have automatic presentations

Theorem

Any structure $\mathcal{A}=(Q,<)$ that is a model of the unbounded dense linear order axioms has an automatic presentation.

Proof strategy:

- Show that unbounded dense linear orders are isomorphic
- Show statement for suitable structure that is a unbounded dense linear order

Unbounded dense linear orders have automatic presentations

Theorem

Any structure $\mathcal{A}=(Q,<)$ that is a model of the unbounded dense linear order axioms has an automatic presentation.

Proof strategy:

- Show that unbounded dense linear orders are isomorphic
- Show statement for suitable structure that is a unbounded dense linear order

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Wait until tomorrow...

An automatic unbounded dense linear order

Let $L=\{0,1\}^{*} \cdot 1$ and $<$ such that $x<y$ iff either

- $y=x u$ for some $u \in\{0,1\}^{*}$, or
- $x=z 0 u$ and $y=z 1 v$ for some $u, v, z \in\{0,1\}^{*}$

Clearly, $(L,<)$ is automatic. Remains to show that $(L,<)$ is UDLO:

- No smallest element: for $u 1 \in L$, have $u 01<u 1$
- No largest element: for $u 1 \in L$, have $u 1<u 11$
- Density: Let $x, y \in L$ such that $x<y$:

$$
\begin{aligned}
& \text { Case } x=u 1, y=u 1 v 1 \text { : then } x<u 10^{|v|+1} 1<y \\
& \text { Case } x=u 0 v 1, y=u 1 w \text { : then } x<u 01^{|v|+2}<y
\end{aligned}
$$

Proposition

The structure $(L,<)$ is an automatic unbounded dense linear order.

Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

$\operatorname{Th}(\mathcal{A})$ is decidable for every structure \mathcal{A} with an automatic presentation.

Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

$\operatorname{Th}(\mathcal{A})$ is decidable for every structure \mathcal{A} with an automatic presentation.

Not every decidable theory is automatic, for instance:

- $(\mathbb{R},+)$ (since \mathbb{R} is uncountable)
- structures with undecidable theories such as ($\mathbb{N},+, \cdot)$
- ($\mathbb{N}, \cdot),(\mathbb{N}, \mid)$ and $(\mathbb{Q},+)$

Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

$\operatorname{Th}(\mathcal{A})$ is decidable for every structure \mathcal{A} with an automatic presentation.

Not every decidable theory is automatic, for instance:

- $(\mathbb{R},+)$ (since \mathbb{R} is uncountable)
- structures with undecidable theories such as $(\mathbb{N},+, \cdot)$
- ($\mathbb{N}, \cdot),(\mathbb{N}, \mid)$ and $(\mathbb{Q},+)$

Proposition

Let $\mathcal{A}=\left(L, R_{1}, \ldots, R_{m}\right)$ be an automatic σ-structure and let F be a σ-formula with at most free variables x_{1}, \ldots, x_{n}. There is an effectively constructible regular language $L_{F} \subseteq\left(\Sigma_{\#}^{*}\right)^{n}$ such that

$$
L_{F}=\left\{w_{1} \otimes \cdots \otimes w_{n}: \mathcal{A}_{\left[x_{1} \mapsto w_{1}\right] \cdots\left[x_{n} \mapsto w_{n}\right]}=F\right\} .
$$

Proof of the proposition

Case $F=R_{i}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ with $1 \leq i_{1}, \ldots, i_{k} \leq n:$

- Define homomorphism $h:\left(\Sigma_{\#}^{n}\right)^{*} \rightarrow\left(\Sigma_{\#}^{k}\right)^{*}$ such that for $a_{1}, \ldots, a_{n} \in \Sigma_{\#}:$

$$
h\left(a_{1}, \ldots, a_{n}\right)= \begin{cases}\epsilon & \text { if } a_{1}=\cdots=a_{n}=\# \\ \left(a_{i_{1}}, \ldots, a_{i_{k}}\right) & \text { otherwise }\end{cases}
$$

- By assumption $L_{R_{i}} \subseteq\left(\Sigma_{\#}^{k}\right)^{*}$ regular, using closure under inverse homomorphisms, obtain

$$
L_{F}=h^{-1}\left(L_{R_{i}}\right) \cap\left\{w_{1} \otimes \cdots \otimes w_{n}: w_{1}, \ldots, w_{n} \in L\right\}
$$

Proof of the proposition

Case $F=R_{i}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ with $1 \leq i_{1}, \ldots, i_{k} \leq n:$

- Define homomorphism $h:\left(\Sigma_{\#}^{n}\right)^{*} \rightarrow\left(\Sigma_{\#}^{k}\right)^{*}$ such that for

$$
a_{1}, \ldots, a_{n} \in \Sigma_{\#}:
$$

$$
h\left(a_{1}, \ldots, a_{n}\right)= \begin{cases}\epsilon & \text { if } a_{1}=\cdots=a_{n}=\# \\ \left(a_{i_{1}}, \ldots, a_{i_{k}}\right) & \text { otherwise }\end{cases}
$$

- By assumption $L_{R_{i}} \subseteq\left(\Sigma_{\#}^{k}\right)^{*}$ regular, using closure under inverse homomorphisms, obtain

$$
L_{F}=h^{-1}\left(L_{R_{i}}\right) \cap\left\{w_{1} \otimes \cdots \otimes w_{n}: w_{1}, \ldots, w_{n} \in L\right\}
$$

Case $F=G \wedge H, F=G \vee H$, or $F=\neg G$:

- Induction hypothesis yields regular languages $L_{G}, L_{H} \subseteq\left(\Sigma_{\#}^{n}\right)^{*}$
- Statement follows from closure of regular languages under intersection, union and complement
- Example: for $F=\neg G$ get

$$
L_{F}=\left\{w_{1} \otimes \cdots \otimes w_{n}: w_{1}, \ldots, w_{n} \in L\right\} \backslash L_{G}
$$

Proof of the proposition

Case $F=\exists x_{n+1} G$ with $x_{1}, \ldots, x_{n}, x_{n+1}$ free in G :

- Induction hypothesis yields regular languages L_{G} for G
- Define homomorphism $h:\left(\Sigma_{\#}^{n+1}\right)^{*} \rightarrow\left(\Sigma_{\#}^{n}\right)^{*}$ such that for $a_{1}, \ldots, a_{n} \in \Sigma_{\#}$

$$
h\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)= \begin{cases}\epsilon & \text { if } a_{1}=\cdots=a_{n}=\# \\ \left(a_{1}, \ldots, a_{n}\right) & \text { otherwise }\end{cases}
$$

- Get $L_{F}=h\left(L_{G}\right)$

Proof of the proposition

Case $F=\exists x_{n+1} G$ with $x_{1}, \ldots, x_{n}, x_{n+1}$ free in G :

- Induction hypothesis yields regular languages L_{G} for G
- Define homomorphism $h:\left(\Sigma_{\#}^{n+1}\right)^{*} \rightarrow\left(\Sigma_{\#}^{n}\right)^{*}$ such that for $a_{1}, \ldots, a_{n} \in \Sigma_{\#}$

$$
h\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)= \begin{cases}\epsilon & \text { if } a_{1}=\cdots=a_{n}=\# \\ \left(a_{1}, \ldots, a_{n}\right) & \text { otherwise }\end{cases}
$$

- Get $L_{F}=h\left(L_{G}\right)$

For sentences F, wlog. have $F=\exists x G$. Then

$$
\mathcal{A} \models F \Longleftrightarrow L_{G} \neq \emptyset
$$

Intractability

Theorem

There exists an automatic structure \mathcal{A} with non-elementary complexity, i.e., no algorithm decides $F \in \operatorname{Th}(\mathcal{A})$ in time $2^{2^{\cdots 2^{n}}}$.

Proof.

This can be shown for the structure $\mathcal{A}=\left(\{0,1\}^{*}, S_{1}, S_{2}, \leq\right)$, where

- $S_{0}=\left\{(w, w 0): w \in\{0,1\}^{*}\right\}$
- $S_{1}=\left\{(w, w 1): w \in\{0,1\}^{*}\right\}$
- $\leq=\left\{(w, u): w, u \in\{0,1\}^{*}\right\}$.

Proving Lagrange-style theorems automatically

Theorem (Lagrange, 1770)
Every natural number can be written as the sum of four integer squares.

Proving Lagrange-style theorems automatically

Theorem (Lagrange, 1770)
Every natural number can be written as the sum of four integer squares.

Call $n \in \mathbb{N}$ a binary palindrome if the string representing its binary presentation is a palindrome, e.g.,

$$
27=\operatorname{val}(11011)
$$

Proving Lagrange-style theorems automatically

Theorem (Lagrange, 1770)
Every natural number can be written as the sum of four integer squares.

Call $n \in \mathbb{N}$ a binary palindrome if the string representing its binary presentation is a palindrome, e.g.,

$$
27=\operatorname{val}(11011)
$$

Theorem (Rajasekaran, Shallit, Smith, 2017)

Every natural number can be written as the sum of four binary palindromes.

Proof idea.

Translate statement into a suitably constructed nested-word automaton accepting all numbers that are the sum of four binary palindromes, and check the automaton for universality.

