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Overview

Today:
@ Structures whose universe and relations are regular languages

@ Gives automata-based decision procedures for the theory of
those structures similar to quantifier elimination
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Relational structures

Definition
A o-structure A is relational if o only consists of relation symbols.

J
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Relational structures

Definition
A o-structure A is relational if o only consists of relation symbols.

@ Every structure A has relational variant obtained by replacing
every fs: UK — U, with relation

Fi={(a,...,akb) € U - fa(ay,...,a) = b}
@ Example: +: N x N — N is replaced by
{(i,j,k) eN®:i+j=k}

@ Constants are functions of arity zero, get replaced by singleton
relation

@ Only consider relational structures in this lecture

15



Word convolutions

Want to represent relations by words over some alphabet
Given alphabet X with # ¢ ¥, define X4 := ¥ U {#}
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Word convolutions

Want to represent relations by words over some alphabet
Given alphabet X with # ¢ ¥, define X4 := ¥ U {#}
For words wy, wo, ... . w, € ¥,

o Letw;=aiq1ai2---aiy,, hence |w;| = ¢;

@ Let/ =max{¢y,...,¢n}

@ Setg;j:=#forall(;<j<land1<i<n

@ The convolution of wy, ..., w,is

Wi @We® - @ Wy € (X4)*

= (a1’1,...,a,,71)(a1,2,...,a,,,g)--~(a1,g,...
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Word convolutions

Want to represent relations by words over some alphabet
Given alphabet X with # ¢ ¥, define X4 := ¥ U {#}
For words wy, wo, ... . w, € ¥,

o Letw;=aiq1ai2---aiy,, hence |w;| = ¢;

@ Let/ =max{¢y,...,¢n}

@ Setg;j:=#forall(;<j<land1<i<n

@ The convolution of wy, ..., w,is

Wi @We® - @ Wy € (X4)*

= (a1,1,...,a,,71)(a1,2,...,a,,,g)--~(a1,g,...

Example

abba ® abaabba = [3] [9] (51121 [ %] [%] [ %]

) an,é)
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Automatic relations

Definition
A relation R C (X*)" is automatic if the language

Lr={w1@wWo®- - @Wy: (W,...,w,) € R}

is regular.
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Automatic relations

Definition
A relation R C (X*)" is automatic if the language

Lri={W @We® - ® Wy : (Wy,...,W,) € R}

is regular.

Example

R = {(u,v) € (£*)?: uis a prefix of v} with ¥ = {a, b} is automatic:

q@ 41, %]

(a1, %] [4].1%]
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Automatic structures

Definition
A relational structure A = (U4, Ry, . .., Ry) is automatic if there are
a finite alphabet X and regular languages L, Ly, ..., Ly such that

0 L=Uy

@ [i=Lgforalll <i<m




Automatic structures

Definition
A relational structure A = (U4, Ry, - .., Ry) is automatic if there are
a finite alphabet X and regular languages L, Ly, ..., Ly such that

0 L=Uy

@ [i=Lgforalll <i<m

A structure A has an automatic presentation if A is isomorphic to
an automatic structure.
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Presburger arithmetic has an automatic presentation

Suffices to show that a structure isomorphic to (N, +) is automatic:
@ Set N:=({0,1}*1)uU {0} € {0,1}*

@ For w = bgb; --- by, € N, define val: N — N by
m .
val(w) := 22’ - b
i=0

@ SetA:= {(a,b,c) € N®: val(a) + val(b) = val(c)} C N®

@ Then (N, +) is isomorphic to (N, A) by mapping n € N to its
unique minimal binary expansion val~"'(n)

Proposition
The structure (N, A) is automatic. J




Ais automatic

N is obviously regular, and L4 is contained in the language of the
following DFA:

o%o

#
1
1

_.4&_.

1
O
0

0 0 1 #
0 1 0 0
0 1 1 0
sar H

0
0
1

o—to

1
1
1

o—t:ﬁ:
o#t—n

—no#t
A#o
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Ais automatic

N is obviously regular, and L4 is contained in the language of the
following DFA:

o%o

#
1
1

_.4&_.

1
O
0

0 0 1 #
0 1 0 0
0 1 1 0
start H

0
0
1

o—to

1
1
1

o—t:ﬁ:
o#t—n

—no#t
A#o

Intersect with {a®@ b® ¢ : a, b, c € N} to obtain NFA for L4



Unbounded dense linear orders have automatic presentations

Theorem

Any structure A = (Q, <) that is a model of the unbounded dense
linear order axioms has an automatic presentation.
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Theorem

Any structure A = (Q, <) that is a model of the unbounded dense
linear order axioms has an automatic presentation.

Proof strategy:
@ Show that unbounded dense linear orders are isomorphic

@ Show statement for suitable structure that is a unbounded dense
linear order



Unbounded dense linear orders have automatic presentations

Theorem

Any structure A = (Q, <) that is a model of the unbounded dense
linear order axioms has an automatic presentation.

Proof strategy:
@ Show that unbounded dense linear orders are isomorphic

@ Show statement for suitable structure that is a unbounded dense
linear order

Theorem (Cantor)
Any two countable unbounded dense linear orders are isomorphic. l

Proof.
Wait until tomorrow... DJ
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An automatic unbounded dense linear order
Let L ={0,1}*-1 and < such that x < y iff either
@ y = xu for some u € {0,1}*, or

@ x =2z0u and y = z1v for some u,v,z € {0,1}*

Clearly, (L, <) is automatic. Remains to show that (L, <) is UDLO:
@ No smallest element: for u1 € L, have u01 < ut
@ No largest element: for u1 € L, have u1 < ui1

@ Density: Let x,y € L such that x < y:
Case x = ul,y = ulvi: then x < u10l"*'1 <

Case x = u0Ov1,y = ulw: then x < u01"*2 < y

Proposition
The structure (L, <) is an automatic unbounded dense linear order.
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Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

Th(.A) is decidable for every structure A with an automatic
presentation.
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Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

Th(.A) is decidable for every structure A with an automatic
presentation.

Not every decidable theory is automatic, for instance:

@ (R, +) (since R is uncountable)
@ structures with undecidable theories such as (N, +, -)
° (N7 ')! (N7 |) and (Qa +)
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Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

Th(.A) is decidable for every structure A with an automatic
presentation.

Not every decidable theory is automatic, for instance:

@ (R, +) (since R is uncountable)
@ structures with undecidable theories such as (N, +, -)
° (N7 ')! (N7 |) and (Qa +)

Proposition
Let A = (L, Ry, ..., Ry) be an automatic o-structure and let F be a
o-formula with at most free variables x1, ..., x,. There is an effectively

constructible regular language Lr C (X7)" such that

Le={w1 ® - ®Wn: Apsmppsw) E FJ
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Proof of the proposition

Case F = R,’(X,’1,...7X,‘k) with 1 < I'1,...7I.k <n
@ Define homomorphism h: (£7,)* — (£X)* such that for
ai,...,8n € Xy
ifai=---=a,=
h(a1,...,a,,): ¢ ! . n =%
(a,...,a,) otherwise

@ By assumption Lg, C (Z;)* regular, using closure under inverse
homomorphisms, obtain

Le=h"(Le)N{m @ @Wp:Wi,..., Wy €L}

12/15



Proof of the proposition

Case F = R,’(X,’1,...7X,‘k) with 1 < i1,...,fk <n
@ Define homomorphism h: (£7,)* — (£X)* such that for
ai,...,8n € Xy
ifa=--.—a,—=
h(ay,...,an) = ¢ e . = #
(a,...,a,) otherwise

@ By assumption Lg, C (Z;)* regular, using closure under inverse
homomorphisms, obtain

Le=h"(Le)N{m @ @Wp:Wi,..., Wy €L}

Case F=GAH,F=GVH,or F=-G:
@ Induction hypothesis yields regular languages Lg, Ly C (X},)*

@ Statement follows from closure of regular languages under
intersection, union and complement

@ Example: for F = -G get
LF:{W1®-~~®W,72W1,...,Wn€L}\LG
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Proof of the proposition

Case F = Axp1 Gwith xq,..., Xp, X1 freein G:
@ Induction hypothesis yields regular languages Lg for G

@ Define homomorphism h: (Zgj‘)* — (£7,)* such that for
ai,...,an € Xy

€ ifag=---=a,=#
h(ay,...,an a = .
(& m an+1) {(a1,...,a,,) otherwise

e Get Lr = h(Lg)
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Proof of the proposition

Case F = Axp1 Gwith xq,..., Xp, X1 freein G:
@ Induction hypothesis yields regular languages Lg for G

@ Define homomorphism h: (Zgj‘)* — (£7,)* such that for
ai,...,an € Xy

€ ifag=---=a,=#
h(ay,...,an a = .
(& m an+1) {(a1,...,a,,) otherwise

e Get Lr = h(Lg)

For sentences F, wlog. have F = 3x G. Then

AEF = Lg#0
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Intractability

Theorem
There exists an automatic structure A with non-elementary
complexity, i.e., no algorithm decides F € Th(A) in time 22 * .

Proof.
This can be shown for the structure A = ({0, 1}*, Sy, Sp, <), where

@ Sp={(w,w0):we{0,1}*}
@ S ={(w,wl):we{0,1}*}
o < ={(w,u): w,uec{0,1}*}. =
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Proving Lagrange-style theorems automatically

Theorem (Lagrange, 1770)

Every natural number can be written as the sum of four integer
squares.
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Proving Lagrange-style theorems automatically
Theorem (Lagrange, 1770)

Every natural number can be written as the sum of four integer
squares.

Call n € N a binary palindrome if the string representing its binary
presentation is a palindrome, e.g.,

27 = val(11011)
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Proving Lagrange-style theorems automatically

Theorem (Lagrange, 1770)

Every natural number can be written as the sum of four integer
squares.

Call n € N a binary palindrome if the string representing its binary
presentation is a palindrome, e.g.,

27 = val(11011)

Theorem (Rajasekaran, Shallit, Smith, 2017)

Every natural number can be written as the sum of four binary
palindromes.

Proof idea.

Translate statement into a suitably constructed nested-word
automaton accepting all numbers that are the sum of four binary
palindromes, and check the automaton for universality. O
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