Lecture 15 Automatic Structures

Logic and Proof 3 June 2019

> Prof James Worrell University of Oxford

Overview

Today:

- Structures whose universe and relations are regular languages
- Gives automata-based decision procedures for the theory of those structures similar to quantifier elimination

Relational structures

Definition

A σ -structure \mathcal{A} is **relational** if σ only consists of relation symbols.

Relational structures

Definition

A σ -structure A is **relational** if σ only consists of relation symbols.

 Every structure A has relational variant obtained by replacing every f_A: U^k_A → U_A with relation

$$\mathcal{F}_{\mathcal{A}} = \{(a_1,\ldots,a_k,b) \in U_{\mathcal{A}}^{k+1} : f_{\mathcal{A}}(a_1,\ldots,a_k) = b\}$$

• Example: $+ \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is replaced by

$$\{(i,j,k)\in\mathbb{N}^3:i+j=k\}$$

- Constants are functions of arity zero, get replaced by singleton relation
- Only consider relational structures in this lecture

Want to represent relations by words over some alphabet Given alphabet Σ with $\# \notin \Sigma$, define $\Sigma_{\#} := \Sigma \cup \{\#\}$

Want to represent relations by words over some alphabet Given alphabet Σ with $\# \notin \Sigma$, define $\Sigma_{\#} := \Sigma \cup \{\#\}$ For words $w_1, w_2, \ldots, w_n \in \Sigma^*$,

- Let $w_i = a_{i,1}a_{i,2}\cdots a_{i,\ell_i}$, hence $|w_i| = \ell_i$
- Let $\ell = \max\{\ell_1, \ldots, \ell_n\}$
- Set $a_{i,j} := \#$ for all $\ell_i < j \le \ell$ and $1 \le i \le n$

Want to represent relations by words over some alphabet Given alphabet Σ with $\# \notin \Sigma$, define $\Sigma_{\#} := \Sigma \cup \{\#\}$ For words $w_1, w_2, \ldots, w_n \in \Sigma^*$,

- Let $w_i = a_{i,1}a_{i,2}\cdots a_{i,\ell_i}$, hence $|w_i| = \ell_i$
- Let $\ell = \max\{\ell_1, \ldots, \ell_n\}$
- Set $a_{i,j} := \#$ for all $\ell_i < j \le \ell$ and $1 \le i \le n$
- The convolution of w_1, \ldots, w_n is

$$w_1 \otimes w_2 \otimes \cdots \otimes w_n \in (\Sigma_{\#}^n)^*$$

:= $(a_{1,1}, \ldots, a_{n,1})(a_{1,2}, \ldots, a_{n,2}) \cdots (a_{1,\ell}, \ldots, a_{n,\ell})$

Want to represent relations by words over some alphabet Given alphabet Σ with $\# \notin \Sigma$, define $\Sigma_{\#} := \Sigma \cup \{\#\}$ For words $w_1, w_2, \ldots, w_n \in \Sigma^*$,

- Let $w_i = a_{i,1}a_{i,2}\cdots a_{i,\ell_i}$, hence $|w_i| = \ell_i$
- Let $\ell = \max\{\ell_1, \ldots, \ell_n\}$
- Set $a_{i,j} := \#$ for all $\ell_i < j \le \ell$ and $1 \le i \le n$
- The **convolution** of w_1, \ldots, w_n is

$$w_1 \otimes w_2 \otimes \cdots \otimes w_n \in (\Sigma_{\#}^n)^*$$

:= $(a_{1,1}, \ldots, a_{n,1})(a_{1,2}, \ldots, a_{n,2}) \cdots (a_{1,\ell}, \ldots, a_{n,\ell})$

Example

 $abba \otimes abaabba = \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} b \\ b \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} # \\ b \end{bmatrix} \begin{bmatrix} \# \\ a \end{bmatrix}$

Automatic relations

Definition

A relation $R \subseteq (\Sigma^*)^n$ is **automatic** if the language

$$L_{\boldsymbol{R}} := \{ \boldsymbol{w}_1 \otimes \boldsymbol{w}_2 \otimes \cdots \otimes \boldsymbol{w}_n : (\boldsymbol{w}_1, \dots, \boldsymbol{w}_n) \in \boldsymbol{R} \}$$

is regular.

Automatic relations

Definition

A relation $R \subseteq (\Sigma^*)^n$ is **automatic** if the language

$$L_{\boldsymbol{R}} := \{ \boldsymbol{w}_1 \otimes \boldsymbol{w}_2 \otimes \cdots \otimes \boldsymbol{w}_n : (\boldsymbol{w}_1, \dots, \boldsymbol{w}_n) \in \boldsymbol{R} \}$$

is regular.

Example

 $R = \{(u, v) \in (\Sigma^*)^2 : u \text{ is a prefix of } v\} \text{ with } \Sigma = \{a, b\} \text{ is automatic:}$

Automatic structures

Definition

A relational structure $\mathcal{A} = (U_{\mathcal{A}}, R_1, \dots, R_m)$ is **automatic** if there are a finite alphabet Σ and regular languages L, L_1, \dots, L_m such that

•
$$L = U_A$$

•
$$L_i = L_{R_i}$$
 for all $1 \le i \le m$

Automatic structures

Definition

A relational structure $\mathcal{A} = (U_{\mathcal{A}}, R_1, \dots, R_m)$ is **automatic** if there are a finite alphabet Σ and regular languages L, L_1, \dots, L_m such that

•
$$L = U_A$$

•
$$L_i = L_{R_i}$$
 for all $1 \le i \le m$

A structure \mathcal{A} has an **automatic presentation** if \mathcal{A} is isomorphic to an automatic structure.

Presburger arithmetic has an automatic presentation

Suffices to show that a structure isomorphic to $(\mathbb{N}, +)$ is automatic:

• Set
$$N := (\{0, 1\}^*1) \cup \{0\} \subseteq \{0, 1\}^*$$

• For $w = b_0 b_1 \cdots b_m \in N$, define val: $N \to \mathbb{N}$ by

$$\operatorname{val}(w) := \sum_{i=0}^m 2^i \cdot b_i$$

- Set $A := \left\{ (a, b, c) \in N^3 : \operatorname{val}(a) + \operatorname{val}(b) = \operatorname{val}(c) \right\} \subseteq N^3$
- Then (N, +) is isomorphic to (N, A) by mapping n ∈ N to its unique minimal binary expansion val⁻¹(n)

Proposition

The structure (N, A) is automatic.

A is automatic

N is obviously regular, and L_A is contained in the language of the following DFA:

A is automatic

N is obviously regular, and L_A is contained in the language of the following DFA:

Intersect with $\{a \otimes b \otimes c : a, b, c \in N\}$ to obtain NFA for L_A

Unbounded dense linear orders have automatic presentations

Theorem

Any structure A = (Q, <) that is a model of the unbounded dense linear order axioms has an automatic presentation.

Unbounded dense linear orders have automatic presentations

Theorem

Any structure A = (Q, <) that is a model of the unbounded dense linear order axioms has an automatic presentation.

Proof strategy:

- Show that unbounded dense linear orders are isomorphic
- Show statement for suitable structure that is a unbounded dense linear order

Unbounded dense linear orders have automatic presentations

Theorem

Any structure A = (Q, <) that is a model of the unbounded dense linear order axioms has an automatic presentation.

Proof strategy:

- Show that unbounded dense linear orders are isomorphic
- Show statement for suitable structure that is a unbounded dense linear order

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Wait until tomorrow...

An automatic unbounded dense linear order

Let
$$L = \{0, 1\}^* \cdot 1$$
 and $<$ such that $x < y$ iff either

•
$$y = xu$$
 for some $u \in \{0, 1\}^*$, or

•
$$x = z0u$$
 and $y = z1v$ for some $u, v, z \in \{0, 1\}^*$

Clearly, (L, <) is automatic. Remains to show that (L, <) is UDLO:

- No smallest element: for $u1 \in L$, have u01 < u1
- No largest element: for $u1 \in L$, have u1 < u11

• Density: Let
$$x, y \in L$$
 such that $x < y$:
Case $x = u1, y = u1v1$: then $x < u10^{|v|+1}1 < y$
Case $x = u0v1, y = u1w$: then $x < u01^{|v|+2} < y$

Proposition

The structure (L, <) is an automatic unbounded dense linear order.

Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

 $\mathrm{Th}(\mathcal{A})$ is decidable for every structure \mathcal{A} with an automatic presentation.

Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

 $\mathrm{Th}(\mathcal{A})$ is decidable for every structure \mathcal{A} with an automatic presentation.

Not every decidable theory is automatic, for instance:

- $(\mathbb{R}, +)$ (since \mathbb{R} is uncountable)
- $\bullet\,$ structures with undecidable theories such as $(\mathbb{N},+,\cdot)$
- (\mathbb{N}, \cdot) , $(\mathbb{N}, |)$ and $(\mathbb{Q}, +)$

Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

 $\mathrm{Th}(\mathcal{A})$ is decidable for every structure \mathcal{A} with an automatic presentation.

Not every decidable theory is automatic, for instance:

- $(\mathbb{R}, +)$ (since \mathbb{R} is uncountable)
- structures with undecidable theories such as $(\mathbb{N}, +, \cdot)$
- (\mathbb{N}, \cdot), ($\mathbb{N}, |$) and ($\mathbb{Q}, +$)

Proposition

Let $\mathcal{A} = (L, R_1, ..., R_m)$ be an automatic σ -structure and let F be a σ -formula with at most free variables $x_1, ..., x_n$. There is an effectively constructible regular language $L_F \subseteq (\Sigma_{\#}^*)^n$ such that

$$L_{\mathcal{F}} = \left\{ w_1 \otimes \cdots \otimes w_n : \mathcal{A}_{[x_1 \mapsto w_1] \cdots [x_n \mapsto w_n]} \models \mathcal{F} \right\}.$$

Case $F = R_i(x_{i_1}, ..., x_{i_k})$ with $1 \le i_1, ..., i_k \le n$:

• Define homomorphism $h: (\Sigma_{\#}^{n})^{*} \to (\Sigma_{\#}^{k})^{*}$ such that for $a_{1}, \ldots, a_{n} \in \Sigma_{\#}$:

$$h(a_1,\ldots,a_n) = \begin{cases} \epsilon & \text{if } a_1 = \cdots = a_n = \# \\ (a_{i_1},\ldots,a_{i_k}) & \text{otherwise} \end{cases}$$

By assumption L_{R_i} ⊆ (Σ^k_#)* regular, using closure under inverse homomorphisms, obtain

$$L_F = h^{-1}(L_{R_i}) \cap \{w_1 \otimes \cdots \otimes w_n : w_1, \ldots, w_n \in L\}$$

Case $F = R_i(x_{i_1}, ..., x_{i_k})$ with $1 \le i_1, ..., i_k \le n$:

• Define homomorphism $h: (\Sigma_{\#}^{n})^{*} \to (\Sigma_{\#}^{k})^{*}$ such that for $a_{1}, \ldots, a_{n} \in \Sigma_{\#}$:

$$h(a_1,\ldots,a_n) = \begin{cases} \epsilon & \text{if } a_1 = \cdots = a_n = \#\\ (a_{i_1},\ldots,a_{i_k}) & \text{otherwise} \end{cases}$$

By assumption L_{R_i} ⊆ (Σ^k_#)* regular, using closure under inverse homomorphisms, obtain

$$L_F = h^{-1}(L_{R_i}) \cap \{ w_1 \otimes \cdots \otimes w_n : w_1, \ldots, w_n \in L \}$$

Case $F = G \land H$, $F = G \lor H$, or $F = \neg G$:

- Induction hypothesis yields regular languages L_G, L_H ⊆ (Σⁿ_#)*
- Statement follows from closure of regular languages under intersection, union and complement
- Example: for $F = \neg G$ get

$$L_F = \{w_1 \otimes \cdots \otimes w_n : w_1, \dots, w_n \in L\} \setminus L_G$$

Case $F = \exists x_{n+1} G$ with $x_1, \ldots, x_n, x_{n+1}$ free in G:

- Induction hypothesis yields regular languages L_G for G
- Define homomorphism $h: (\Sigma_{\#}^{n+1})^* \to (\Sigma_{\#}^n)^*$ such that for $a_1, \ldots, a_n \in \Sigma_{\#}$

$$h(a_1,\ldots,a_n,a_{n+1}) = \begin{cases} \epsilon & \text{if } a_1 = \cdots = a_n = \#\\ (a_1,\ldots,a_n) & \text{otherwise} \end{cases}$$

• Get $L_F = h(L_G)$

Case $F = \exists x_{n+1} G$ with $x_1, \ldots, x_n, x_{n+1}$ free in G:

- Induction hypothesis yields regular languages L_G for G
- Define homomorphism $h: (\Sigma_{\#}^{n+1})^* \to (\Sigma_{\#}^n)^*$ such that for $a_1, \ldots, a_n \in \Sigma_{\#}$

$$h(a_1,\ldots,a_n,a_{n+1}) = \begin{cases} \epsilon & \text{if } a_1 = \cdots = a_n = \#\\ (a_1,\ldots,a_n) & \text{otherwise} \end{cases}$$

• Get
$$L_F = h(L_G)$$

For sentences *F*, wlog. have $F = \exists x G$. Then

$$\mathcal{A} \models F \iff L_G \neq \emptyset$$

Intractability

Theorem

There exists an automatic structure \mathcal{A} with non-elementary complexity, i.e., no algorithm decides $F \in Th(\mathcal{A})$ in time $2^{2^{\cdots 2^n}}$.

Proof.

This can be shown for the structure $\mathcal{A} = (\{0, 1\}^*, S_1, S_2, \leq)$, where

•
$$S_0 = \{(w, w0) : w \in \{0, 1\}^*\}$$

•
$$S_1 = \{(w, w1) : w \in \{0, 1\}^*\}$$

●
$$\leq = \{(w, u) : w, u \in \{0, 1\}^*\}.$$

Proving Lagrange-style theorems automatically

Theorem (Lagrange, 1770)

Every natural number can be written as the sum of four integer squares.

Proving Lagrange-style theorems automatically

Theorem (Lagrange, 1770)

Every natural number can be written as the sum of four integer squares.

Call $n \in \mathbb{N}$ a binary palindrome if the string representing its binary presentation is a palindrome, e.g.,

27 = val(11011)

Proving Lagrange-style theorems automatically

Theorem (Lagrange, 1770)

Every natural number can be written as the sum of four integer squares.

Call $n \in \mathbb{N}$ a binary palindrome if the string representing its binary presentation is a palindrome, e.g.,

 $27 = \operatorname{val}(11011)$

Theorem (Rajasekaran, Shallit, Smith, 2017)

Every natural number can be written as the sum of four binary palindromes.

Proof idea.

Translate statement into a suitably constructed nested-word automaton accepting all numbers that are the sum of four binary palindromes, and check the automaton for universality.