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Automatic Structures

15.2

Overview

Today:

Structures whose universe and relations are regular languages

Gives automata-based decision procedures for the theory of
those structures similar to quantifier elimination
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Automatic Structures

15.3

Relational structures

Definition

A σ-structure A is relational if σ only consists of relation symbols.

Every structure A has relational variant obtained by replacing
every fA : Uk

A → UA with relation

FA = {(a1, . . . ,ak ,b) ∈ Uk+1
A : fA(a1, . . . ,ak ) = b}

Example: +: N× N→ N is replaced by

{(i , j , k) ∈ N3 : i + j = k}

Constants are functions of arity zero, get replaced by singleton
relation

Only consider relational structures in this lecture
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Automatic Structures

15.4

Word convolutions

Want to represent relations by words over some alphabet

Given alphabet Σ with # 6∈ Σ, define Σ# := Σ ∪ {#}

For words w1,w2, . . . ,wn ∈ Σ∗,
Let wi = ai,1ai,2 · · · ai,`i , hence |wi | = `i

Let ` = max{`1, . . . , `n}
Set ai,j := # for all `i < j ≤ ` and 1 ≤ i ≤ n

The convolution of w1, . . . ,wn is

w1 ⊗ w2 ⊗ · · · ⊗ wn ∈ (Σn
#)∗

:= (a1,1, . . . ,an,1)(a1,2, . . . ,an,2) · · · (a1,`, . . . ,an,`)

Example

abba⊗ abaabba = [ a
a ]
[

b
b

]
[ b

a ] [ a
a ]
[
#
b

] [
#
b

] [
#
a

]
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Automatic Structures

15.5

Automatic relations

Definition

A relation R ⊆ (Σ∗)n is automatic if the language

LR := {w1 ⊗ w2 ⊗ · · · ⊗ wn : (w1, . . . ,wn) ∈ R}

is regular.

Example

R = {(u, v) ∈ (Σ∗)2 : u is a prefix of v} with Σ = {a,b} is automatic:

p q

[
#
a

]
,
[
#
b

]

[ a
a ] ,
[

b
b

] [
#
a

]
,
[
#
b

]
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Automatic Structures

15.6

Automatic structures

Definition

A relational structure A = (UA,R1, . . . ,Rm) is automatic if there are
a finite alphabet Σ and regular languages L,L1, . . . ,Lm such that

L = UA
Li = LRi for all 1 ≤ i ≤ m

A structure A has an automatic presentation if A is isomorphic to
an automatic structure.

6 / 15



Automatic Structures

15.6

Automatic structures

Definition

A relational structure A = (UA,R1, . . . ,Rm) is automatic if there are
a finite alphabet Σ and regular languages L,L1, . . . ,Lm such that

L = UA
Li = LRi for all 1 ≤ i ≤ m

A structure A has an automatic presentation if A is isomorphic to
an automatic structure.

6 / 15



Automatic Structures

15.7

Presburger arithmetic has an automatic presentation

Suffices to show that a structure isomorphic to (N,+) is automatic:

Set N := ({0,1}∗1) ∪ {0} ⊆ {0,1}∗

For w = b0b1 · · · bm ∈ N, define val : N → N by

val(w) :=
m∑

i=0

2i · bi

Set A :=
{

(a,b, c) ∈ N3 : val(a) + val(b) = val(c)
}
⊆ N3

Then (N,+) is isomorphic to (N,A) by mapping n ∈ N to its
unique minimal binary expansion val−1(n)

Proposition

The structure (N,A) is automatic.
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Automatic Structures

15.8

A is automatic

N is obviously regular, and LA is contained in the language of the
following DFA:

qstart r

[
1
1
0

]

[
0
0
1

]
,
[
#
0
1

]
,
[ 0
#
1

]

[
0
0
0

]
,
[

0
1
1

]
,
[

1
0
1

]
,
[
#
0
0

]
,
[ 0
#
0

]
,
[
#
1
1

]
,
[ 1
#
1

] [
1
0
0

]
,
[

0
1
0

]
,
[

1
1
1

]
,
[
#
1
0

]
,
[ 1
#
0

]

Intersect with {a⊗ b ⊗ c : a,b, c ∈ N} to obtain NFA for LA
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Automatic Structures

15.9

Unbounded dense linear orders have automatic presentations

Theorem

Any structure A = (Q, <) that is a model of the unbounded dense
linear order axioms has an automatic presentation.

Proof strategy:

Show that unbounded dense linear orders are isomorphic

Show statement for suitable structure that is a unbounded dense
linear order

Theorem (Cantor)

Any two countable unbounded dense linear orders are isomorphic.

Proof.

Wait until tomorrow...
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Automatic Structures

15.10

An automatic unbounded dense linear order

Let L = {0,1}∗ · 1 and < such that x < y iff either

y = xu for some u ∈ {0,1}∗, or

x = z0u and y = z1v for some u, v , z ∈ {0,1}∗

Clearly, (L, <) is automatic. Remains to show that (L, <) is UDLO:

No smallest element: for u1 ∈ L, have u01 < u1

No largest element: for u1 ∈ L, have u1 < u11

Density: Let x , y ∈ L such that x < y :
Case x = u1, y = u1v1: then x < u10|v|+11 < y

Case x = u0v1, y = u1w : then x < u01|v|+2 < y

Proposition

The structure (L, <) is an automatic unbounded dense linear order.
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Automatic Structures

15.11

Structures with automatic presentations are decidable

Theorem (Khoussainov, Nerode)

Th(A) is decidable for every structure A with an automatic
presentation.

Not every decidable theory is automatic, for instance:

(R,+) (since R is uncountable)
structures with undecidable theories such as (N,+, ·)
(N, ·), (N, |) and (Q,+)

Proposition

Let A = (L,R1, . . . ,Rm) be an automatic σ-structure and let F be a
σ-formula with at most free variables x1, . . . , xn. There is an effectively
constructible regular language LF ⊆ (Σ∗#)n such that

LF =
{

w1 ⊗ · · · ⊗ wn : A[x1 7→w1]···[xn 7→wn] |= F
}
.
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Automatic Structures

15.12

Proof of the proposition
Case F = Ri (xi1 , . . . , xik ) with 1 ≤ i1, . . . , ik ≤ n:

Define homomorphism h : (Σn
#)∗ → (Σk

#)∗ such that for
a1, . . . ,an ∈ Σ#:

h(a1, . . . ,an) =

{
ε if a1 = · · · = an = #

(ai1 , . . . ,aik ) otherwise

By assumption LRi ⊆ (Σk
#)∗ regular, using closure under inverse

homomorphisms, obtain

LF = h−1(LRi ) ∩ {w1 ⊗ · · · ⊗ wn : w1, . . . ,wn ∈ L}

Case F = G ∧ H, F = G ∨ H, or F = ¬G:

Induction hypothesis yields regular languages LG,LH ⊆ (Σn
#)∗

Statement follows from closure of regular languages under
intersection, union and complement

Example: for F = ¬G get

LF = {w1 ⊗ · · · ⊗ wn : w1, . . . ,wn ∈ L} \ LG
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Automatic Structures

15.13

Proof of the proposition

Case F = ∃xn+1 G with x1, . . . , xn, xn+1 free in G:

Induction hypothesis yields regular languages LG for G

Define homomorphism h : (Σn+1
# )∗ → (Σn

#)∗ such that for
a1, . . . ,an ∈ Σ#

h(a1, . . . ,an,an+1) =

{
ε if a1 = · · · = an = #

(a1, . . . ,an) otherwise

Get LF = h(LG)

For sentences F , wlog. have F = ∃x G. Then

A |= F ⇐⇒ LG 6= ∅
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Automatic Structures

15.14

Intractability

Theorem

There exists an automatic structure A with non-elementary
complexity, i.e., no algorithm decides F ∈ Th(A) in time 22···2n

.

Proof.

This can be shown for the structure A = ({0,1}∗,S1,S2,≤), where

S0 = {(w ,w0) : w ∈ {0,1}∗}
S1 = {(w ,w1) : w ∈ {0,1}∗}
≤ = {(w ,u) : w ,u ∈ {0,1}∗}.
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15.15

Proving Lagrange-style theorems automatically

Theorem (Lagrange, 1770)

Every natural number can be written as the sum of four integer
squares.

Call n ∈ N a binary palindrome if the string representing its binary
presentation is a palindrome, e.g.,

27 = val(11011)

Theorem (Rajasekaran, Shallit, Smith, 2017)

Every natural number can be written as the sum of four binary
palindromes.

Proof idea.

Translate statement into a suitably constructed nested-word
automaton accepting all numbers that are the sum of four binary
palindromes, and check the automaton for universality.
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