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14.2

Logical theories

Fix a (finite or infinite) signature σ. We implicitly assume that all
formulas are over σ. We call a closed formula a sentence.

A theory T is a set of sentences closed under semantic
entailment:

T |= F implies F ∈ T

Given a σ-structure A, the theory of A, denoted Th(A), is the
theory containing all sentences F such that A |= F .

The theory of a set S of sentences is the set of sentences
T = {F : S |= F}.

If T is the theory of S, then S is a set of axioms of T .
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14.3

Logical theories

A set F of formulas is decidable if there is an algorithm that decides
for every formula F whether F ∈ F holds.

A theory T is

consistent if for every sentence F , either F /∈ T or ¬F /∈ T
(or both).

complete if for every sentence F either F ∈ T or ¬F ∈ T
(or both).

decidable if T is decidable as a set of sentences.

(finitely) axiomatizable if it is the theory of a (finite) decidable
set of sentences.
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14.4

Logical theories

Some easy facts:
For every σ-structure A, the theory Th(A) is consistent and
complete.

The only inconsistent theory is the theory of all sentences.
Theory consistent but not complete: theory of all valid sentences.
For every theory T , the set T is a set of axioms of T .
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14.5

Examples of logical theories

Example

Linear arithmetic over the rationals is the structure-based theory

Th(Q,1, <,+, {c · }c∈Q)

It allows one to express
the system of linear inequalities Ax ≤ b has no solution
every solution of Ax ≤ b is also a solution of Cx ≤ d

Example

The theory TUDLO of unbounded dense linear orders is the set of
sentences entailed by the following set of axioms:

F1 ∀x ∀y (x < y → ¬(x = y ∨ y < x))
F2 ∀x ∀y ∀z (x < y ∧ y < z → x < z)
F3 ∀x ∀y (x < y ∨ y < x ∨ x = y)
F4 ∀x ∀y (x < y → ∃z (x < z ∧ z < y))
F5 ∀x ∃y ∃z (y < x < z) .
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14.6

Decidable theories

Quantifier-elimination is a technique to show decidability

A theory T admits quantifier-elimination if for any formula (not
necessarily a sentence!) ∃x F with F quantifier-free, there is a
quantifier-free formula G such that

T |= ∃x F ↔ G

A quantifier-elimination procedure for T is an algorithm that
on input ∃x F computes such a formula G.

If T has
a quantifier elimination procedure, and
a procedure for deciding F ∈ T for variable-free atomic formulas F ,

then T is decidable.
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14.7

Unbounded Dense Linear Orders

Theorem

The theory TUDLO of unbounded dense linear orders is decidable.

Proof.

Suffices to give quantifier-elimination procedure for ∃x F , where F is
conjunction of atomic formulas x = y , x < y or y < x for some
variable y .
Excluding trivial cases, we have

F =
m∧

i=1

li < x ∧
n∧

j=1

x < uj .

If m = 0 or n = 0 then TUDLO |= ∃F ↔ true. Otherwise

TUDLO |= ∃xF ↔
m∧

i=1

n∧
j=1

li < uj .

After eliminating all quantifiers, end up with Boolean combination of
true and false whose truth value can easily be computed.
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14.8

Presburger arithmetic

Figure: Mojzesz Presburger (1904 - 1943)

Th(N,0,1,+, <) is commonly known as Presburger arithmetic.

8 / 12



Decidable Theories

14.9

Simple number theory in Presburger arithmetic

Example

Every natural number is odd or even:

∀x ∃y (x = y + y ∨ x = y + y + 1) .

Example

Consider the Chicken McNugget problem: Given a1, . . . ,an ∈ N, is
there some c ∈ N such that all numbers greater than c can be
represented as a non-negative linear combination of a1, . . . ,an:

∃x ∀y (x < y → (∃z1 . . . ∃zn (y = a1 · z1 + · · ·+ an · zn)))
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14.10

Quantifier-elimination for Presburger arithmetic

Th(N,0,1,+, <) does not have quantifier elimination: y cannot
be eliminated from ∃y x = y + y

Solution: extend signature with unary divisibility relations c | · for
all c > 0 such that

c | n iff there is k ∈ N such that n = k · c

Th(N,0,1,+, <, {c | ·}c>0) has quantifier elimination
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14.11

Quantifier-elimination for Presburger arithmetic

Suffices to consider eliminating x from F = ∃x
∧

1≤i≤n Fi

Rearrange matrix of F so that x is isolated:

F ≡ ∃x
∧
i∈G

qi(~y) < ai · x ∧
∧
j∈L

aj · x < pj(~y)∧
∧
k∈D

ck | ak · x + rk (~y).

Let b = lcm{ai | i ∈ G ∪ L ∪ D}, then F is equi-satisfiable with

H = ∃x
∧
i∈G

b
ai
· qi(~y) < x ∧

∧
j∈L

x <
b
aj
· pj(~y)∧

∧
∧
k∈D

b
ak
· ck | x +

b
ak
· rk (~y) ∧ b | x .

Define c = lcm{b,b · ck/ak : k ∈ D}, then H is equivalent to{∨
0≤m<c H[m/x ] if G = ∅∨
j∈G

∨
1≤m≤c H[((b/aj) · qj(~y) + m)/x ] otherwise
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Quantifier-elimination for Presburger arithmetic

Theorem (Oppen)

Presburger arithmetic is decidable in time 222O(n)

.
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