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The compactness theorem

Theorem

Let S be a countably infinite set of first-order formulas. Then S is
satisfiable if and only if every finite subset of S is satisfiable.

Proof.

Let T be obtained from skolemising S, and let E be the Herbrand
expansion of T . Then

(1) all finite subsets of S are satisfiable
(2) ⇒ all finite subsets of T are satisfiable
(3) ⇒ all finite subsets of E are satisfiable
(4) ⇒ E is satisfiable
(5) ⇒ T is satisfiable
(6) ⇒ S is satisfiable.
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Justification of individual proof steps

Not immediate how to construct T , since S could use up all
function symbols f1, f2, . . .

Rename fi to f2i to ensure there are infinitely many unused
function symbols f2i+1, i ≥ 0 available

(1)⇒ (2) since skolemisation preserves satisfiability

(2)⇒ (3) cf. ground resolution

(3)⇒ (4) since propositional logic is compact

(4)⇒ (5) a propositional model A for E induces a Herbrand
model in which in particular

(t1, . . . , tk ) ∈ PH ⇐⇒ A |= P(t1, . . . , tk )

(5)⇒ (6) analogue to proof that skolemisation preserves
satisfiability
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Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of
first-order formulas.

Example

Let F be a σ-sentence over some signature σ such that F has a
model An with |UAn | = n for every n > 1. Then F has a model with an
infinite universe.

Proof.

Introduce fresh binary predicate R , and for n > 1 define
Gn = ∀x¬R(x , x) ∧ ∃x1 . . . ∃xn

∧
1≤i<j≤n R(xi , xj). In particular,

B |= Gn implies |UB| ≥ n.

Moreover, Fn = F ∧Gn is satisfiable for every n > 1. Now define
S :=

⋃
n>1{Fn}. Every finite subset of S is satisfiable, hence S has

model B. If |UB| were equal to some n ∈ N then B 6|= Fn+1. Hence
|UB| is infinite, and B induces model A of F with an infinite
universe.
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Peano axioms

Let σ = 〈0, s,+, ·,=〉 be the signature of arithmetic. Can we find a
possibly infinite set of σ-formulas whose only model up to
isomorphism is the classical arithmetic?

Figure: Giuseppe Peano (1858 - 1932)
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Peano axioms

Let σ = 〈0, s,+, ·,=〉. Peano axioms axiomatise elementary facts
about arithmetic in first-order logic with equality:

∀x ¬(s(x) = 0) ∀x∀y x + s(y) = s(x + y)
∀x∀y (s(x) = s(y)→ x = y) ∀x x · 0 = 0
∀x x + 0 = x ∀x∀y (x · s(y) = (x · y) + x)

Induction over natural numbers:

∀Y (0 ∈ Y ∧ ∀x(x ∈ Y → s(x) ∈ Y ))→ ∀x x ∈ Y .

Problem: Cannot quantify over sets in first-order logic, instead resort
to induction scheme for all formulas φ(x , y1, . . . , yK ):

∀y1 . . . yk (φ(0) ∧ ∀x(φ(x)→ φ(s(x))))→ ∀xφ(x).

Let SPA be the union of all formulas above, then “classical arithmetic”
is a model of SPA.
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Non-standard models of arithmetic

Theorem (without proof)

First-order logic with equality is compact.

To obtain a non-standard model arithmetic:

Introduce new constant symbol c and set

C = {¬(c = si(0)) : i ∈ N}.

Every finite subset of SPA ∪ C is satisfiable, hence SPA ∪ C has
model A

But cA 6= si
A(0A) for all i ∈ N

Hence A is not isomorphic to the standard “classical” model of
arithmetic
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The Löwenheim-Skolem theorems

Theorem (Upward Löwenheim-Skolem theorem)

If S has an infinite model A then for any cardinal κ it has a model B
with a universe of cardinality κ that extends A.

Theorem (Downward Löwenheim-Skolem theorem)

If S has an infinite model A then it has a model B with a countable
universe which is a substructure of A.

Corollary

Classical arithmetic is not first-order axiomatisable.
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