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The compactness theorem

Theorem

Let S be a countably infinite set of first-order formulas. Then S is
satisfiable if and only if every finite subset of S is satisfiable.




The compactness theorem

Theorem

Let S be a countably infinite set of first-order formulas. Then S is
satisfiable if and only if every finite subset of S is satisfiable.

Proof.

Let 7 be obtained from skolemising S, and let £ be the Herbrand
expansion of 7. Then
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all finite subsets of S are satisfiable
= all finite subsets of 7 are satisfiable
= all finite subsets of £ are satisfiable
= £ is satisfiable
= T is satisfiable
= S is satisfiable.
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Justification of individual proof steps

@ Not immediate how to construct 7, since S could use up all
function symbols fi, f, . ..

@ Rename f to f; to ensure there are infinitely many unused
function symbols f;1, i > 0 available



Justification of individual proof steps

@ Not immediate how to construct 7, since S could use up all
function symbols fi, f, . ..

@ Rename f to f; to ensure there are infinitely many unused
function symbols f;1, i > 0 available

@ (1) = (2) since skolemisation preserves satisfiability

@ (2) = (3) cf. ground resolution

@ (3) = (4) since propositional logic is compact

@ (4) = (5) a propositional model A for £ induces a Herbrand

model in which in particular
(..., ) e Py <= AEP(,..., &)

@ (5) = (6) analogue to proof that skolemisation preserves
satisfiability



Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of
first-order formulas.



Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of
first-order formulas.

Example

Let F be a o-sentence over some signature o such that F has a
model A, with [U4,| = nfor every n > 1. Then F has a model with an
infinite universe.




Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of
first-order formulas.

Example

Let F be a o-sentence over some signature o such that F has a
model A, with [U4,| = nfor every n > 1. Then F has a model with an
infinite universe.

Proof.

Introduce fresh binary predicate R, and for n > 1 define
Gn = Vx=R(x,x) A3x1 ... 39Xy Ni<icj<n R(Xi, X). In particular,

B = Gp, implies |Ug| > n.




Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of
first-order formulas.

Example

Let F be a o-sentence over some signature o such that F has a
model A, with [U4,| = nfor every n > 1. Then F has a model with an
infinite universe.

Proof.

Introduce fresh binary predicate R, and for n > 1 define
Gn = Vx=R(x,x) A3x1 ... 39Xy Ni<icj<n R(Xi, X). In particular,

B = Gp, implies |Ug| > n.

Moreover, F, = F A G, is satisfiable for every n > 1.




Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of
first-order formulas.

Example

Let F be a o-sentence over some signature o such that F has a
model A, with [U4,| = nfor every n > 1. Then F has a model with an
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Introduce fresh binary predicate R, and for n > 1 define
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Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of
first-order formulas.

Example

Let F be a o-sentence over some signature o such that F has a
model A, with [U4,| = nfor every n > 1. Then F has a model with an
infinite universe.

Proof.

Introduce fresh binary predicate R, and for n > 1 define
Gn = Vx=R(x,x) A3x1 ... 39Xy Ni<icj<n R(Xi, X). In particular,

B = Gp, implies |Ug| > n.

Moreover, F, = F A G, is satisfiable for every n > 1. Now define

S = U,>1{Fn}. Every finite subset of S is satisfiable, hence S has
model B. If |Ug| were equal to some n € N then B [~ F,.1. Hence
|Ug| is infinite, and B induces model A of F with an infinite

universe. O




Peano axioms

Let o = (0, s, +, -, =) be the signature of arithmetic. Can we find a
possibly infinite set of o-formulas whose only model up to
isomorphism is the classical arithmetic?
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Peano axioms

Let o = (0, s, +, -, =) be the signature of arithmetic. Can we find a
possibly infinite set of o-formulas whose only model up to
isomorphism is the classical arithmetic?

Figure: Giuseppe Peano (1858 - 1932)



Peano axioms

Leto = (0, s, +, -, =). Peano axioms axiomatise elementary facts
about arithmetic in first-order logic with equality:

Vx =(s(x) =0) VxVy x +s(y) =s(x +y)
VxVy (s(x) =s(y) = x=Y) Vxx-0=0
Vxx+0=x VxVy (x-s(y)=(x-y)+x)



Peano axioms

Leto = (0, s, +, -, =). Peano axioms axiomatise elementary facts
about arithmetic in first-order logic with equality:

Vx =(s(x) =0) VxVy x +s(y) =s(x +y)
VxVy (s(x) =s(y) = x=Y) Vxx-0=0
Vxx+0=x VxVy (x-s(y)=(x-y)+x)

Induction over natural numbers:

VY(0e YAVX(xeY =s(x)eY))=VxxeY.



Peano axioms

Leto = (0, s, +, -, =). Peano axioms axiomatise elementary facts
about arithmetic in first-order logic with equality:

Vx =(s(x) =0) VxVy x +s(y) =s(x +y)
VxVy (s(x) =s(y) = x=Y) Vxx-0=0
Vxx+0=x VxVy (x-s(y)=(x-y)+x)

Induction over natural numbers:
VY(0e YAVX(xeY =s(x)eY))=VxxeY.

Problem: Cannot quantify over sets in first-order logic, instead resort
to induction scheme for all formulas ¢(x, y1, ..., ¥k):

Iy Yk (@(0) AVX(6(X) = ¢(8(X)))) = VXp(X).



Peano axioms

Leto = (0, s, +, -, =). Peano axioms axiomatise elementary facts
about arithmetic in first-order logic with equality:

Vx =(s(x) =0) VxVy x +s(y) =s(x +y)
VxVy (s(x) =s(y) = x=Y) Vxx-0=0
Vxx+0=x VxVy (x-s(y)=(x-y)+x)

Induction over natural numbers:
VY(0e YAVX(xeY =s(x)eY))=VxxeY.

Problem: Cannot quantify over sets in first-order logic, instead resort
to induction scheme for all formulas ¢(x, y1, ..., ¥k):

Iy Yk (@(0) AVX(6(X) = ¢(8(X)))) = VXp(X).

Let Spa be the union of all formulas above, then “classical arithmetic”
is a model of Spa.



Non-standard models of arithmetic

Theorem (without proof)
First-order logic with equality is compact.




Non-standard models of arithmetic

Theorem (without proof)
First-order logic with equality is compact.

To obtain a non-standard model arithmetic:
@ Introduce new constant symbol ¢ and set

C={-(c=¢5(0):ieN}.

@ Every finite subset of Spa U C is satisfiable, hence Spa U C has
model A
@ Butcy # s (04) forallie N

@ Hence A is not isomorphic to the standard “classical” model of
arithmetic



The Lowenheim-Skolem theorems

Theorem (Upward Léwenheim-Skolem theorem)

If S has an infinite model A then for any cardinal x it has a model B
with a universe of cardinality x that extends A.

Theorem (Downward Léwenheim-Skolem theorem)

If S has an infinite model A then it has a model B with a countable
universe which is a substructure of A.




The Lowenheim-Skolem theorems

Theorem (Upward Lowenheim-Skolem theorem)

If S has an infinite model A then for any cardinal x it has a model B
with a universe of cardinality x that extends A.

Theorem (Downward Léwenheim-Skolem theorem)

If S has an infinite model A then it has a model B with a countable
universe which is a substructure of A.

Corollary
Classical arithmetic is not first-order axiomatisable. J




