Lecture 13

Compactness for predicate logic
The compactness theorem, non-standard models of arithmetic

Dr Christoph Haase
University of Oxford
(with small changes by Javier Esparza)
The compactness theorem

Theorem

Let S be a countably infinite set of first-order formulas. Then S is satisfiable if and only if every finite subset of S is satisfiable.
The compactness theorem

Theorem

Let \(S \) be a countably infinite set of first-order formulas. Then \(S \) is satisfiable if and only if every finite subset of \(S \) is satisfiable.

Proof.

Let \(\mathcal{T} \) be obtained from skolemising \(S \), and let \(\mathcal{E} \) be the Herbrand expansion of \(\mathcal{T} \). Then

1. all finite subsets of \(S \) are satisfiable
2. \(\Rightarrow \) all finite subsets of \(\mathcal{T} \) are satisfiable
3. \(\Rightarrow \) all finite subsets of \(\mathcal{E} \) are satisfiable
4. \(\Rightarrow \mathcal{E} \) is satisfiable
5. \(\Rightarrow \mathcal{T} \) is satisfiable
6. \(\Rightarrow S \) is satisfiable.
Justification of individual proof steps

- Not immediate how to construct \mathcal{T}, since S could use up all function symbols f_1, f_2, \ldots
- Rename f_i to f_{2i} to ensure there are infinitely many unused function symbols $f_{2i+1}, i \geq 0$ available
Justification of individual proof steps

- Not immediate how to construct \mathcal{T}, since S could use up all function symbols f_1, f_2, \ldots

- Rename f_i to f_{2i} to ensure there are infinitely many unused function symbols $f_{2i+1}, i \geq 0$ available

- $(1) \Rightarrow (2)$ since skolemisation preserves satisfiability

- $(2) \Rightarrow (3)$ cf. ground resolution

- $(3) \Rightarrow (4)$ since propositional logic is compact

- $(4) \Rightarrow (5)$ a propositional model \mathcal{A} for \mathcal{E} induces a Herbrand model in which in particular

 $$(t_1, \ldots, t_k) \in P_\mathcal{H} \iff \mathcal{A} \models P(t_1, \ldots, t_k)$$

- $(5) \Rightarrow (6)$ analogue to proof that skolemisation preserves satisfiability
Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of first-order formulas.
Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of first-order formulas.

Example
Let F be a σ-sentence over some signature σ such that F has a model A_n with $|U_{A_n}| = n$ for every $n > 1$. Then F has a model with an infinite universe.
Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of first-order formulas.

Example

Let F be a σ-sentence over some signature σ such that F has a model \mathcal{A}_n with $|U_{\mathcal{A}_n}| = n$ for every $n > 1$. Then F has a model with an infinite universe.

Proof.

Introduce fresh binary predicate R, and for $n > 1$ define

$G_n = \forall x \neg R(x, x) \land \exists x_1 \ldots \exists x_n \bigwedge_{1 \leq i < j \leq n} R(x_i, x_j)$. In particular,

$B \models G_n$ implies $|U_B| \geq n$.

Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of first-order formulas.

Example

Let F be a σ-sentence over some signature σ such that F has a model \mathcal{A}_n with $|U_{\mathcal{A}_n}| = n$ for every $n > 1$. Then F has a model with an infinite universe.

Proof.

Introduce fresh binary predicate R, and for $n > 1$ define $G_n = \forall x \neg R(x, x) \land \exists x_1 \ldots \exists x_n \bigwedge_{1 \leq i < j \leq n} R(x_i, x_j)$. In particular,

$$\mathcal{B} \models G_n \text{ implies } |U_{\mathcal{B}}| \geq n.$$

Moreover, $F_n = F \land G_n$ is satisfiable for every $n > 1$.
Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of first-order formulas.

Example

Let F be a σ-sentence over some signature σ such that F has a model \mathcal{A}_n with $|U_{\mathcal{A}_n}| = n$ for every $n > 1$. Then F has a model with an infinite universe.

Proof.

Introduce fresh binary predicate R, and for $n > 1$ define

$$G_n = \forall x \neg R(x, x) \land \exists x_1 \ldots \exists x_n \land_{1 \leq i < j \leq n} R(x_i, x_j).$$

In particular,

$$\mathcal{B} \models G_n \text{ implies } |U_\mathcal{B}| \geq n.$$

Moreover, $F_n = F \land G_n$ is satisfiable for every $n > 1$. Now define $S := \bigcup_{n>1} \{F_n\}$. Every finite subset of S is satisfiable, hence S has model \mathcal{B}. If $|U_\mathcal{B}|$ were equal to some $n \in \mathbb{N}$ then $\mathcal{B} \not\models F_{n+1}$.
Applications of the compactness theorem

Compactness theorem puts limits to the expressive power of first-order formulas.

Example

Let F be a σ-sentence over some signature σ such that F has a model \mathcal{A}_n with $|U_{\mathcal{A}_n}| = n$ for every $n > 1$. Then F has a model with an infinite universe.

Proof.

Introduce fresh binary predicate R, and for $n > 1$ define

$G_n = \forall x \neg R(x, x) \land \exists x_1 \ldots \exists x_n \bigwedge_{1 \leq i < j \leq n} R(x_i, x_j)$. In particular,

$\mathcal{B} \models G_n$ implies $|U_{\mathcal{B}}| \geq n$.

Moreover, $F_n = F \land G_n$ is satisfiable for every $n > 1$. Now define $S := \bigcup_{n>1} \{F_n\}$. Every finite subset of S is satisfiable, hence S has model \mathcal{B}. If $|U_{\mathcal{B}}|$ were equal to some $n \in \mathbb{N}$ then $\mathcal{B} \not\models F_{n+1}$. Hence $|U_{\mathcal{B}}|$ is infinite, and \mathcal{B} induces model \mathcal{A} of F with an infinite universe.
Peano axioms

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$ be the signature of arithmetic. Can we find a possibly infinite set of σ-formulas whose only model up to isomorphism is the classical arithmetic?
Peano axioms

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$ be the signature of arithmetic. Can we find a possibly infinite set of σ-formulas whose only model up to isomorphism is the classical arithmetic?

Figure: Giuseppe Peano (1858 - 1932)
Peano axioms

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$. Peano axioms axiomatise elementary facts about arithmetic in first-order logic with equality:

\[
\begin{align*}
\forall x \neg (s(x) = 0) \\
\forall x \forall y (s(x) = s(y) \rightarrow x = y) \\
\forall x x + 0 = x \\
\forall x \forall y x + s(y) = s(x + y) \\
\forall x \forall y (s(x) = s(y) \rightarrow x = y) \\
\forall x x \cdot 0 = 0 \\
\forall x \forall y (x \cdot s(y) = (x \cdot y) + x)
\end{align*}
\]
Peano axioms

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$. Peano axioms axiomatise elementary facts about arithmetic in first-order logic with equality:

\[
\begin{align*}
\forall x \neg(s(x) = 0) & \quad \forall x \forall y (s(x) = s(y) \implies x = y) \\
\forall x x + 0 = x & \quad \forall x x \cdot 0 = 0 \\
& \quad \forall x \forall y (x \cdot s(y) = (x \cdot y) + x)
\end{align*}
\]

Induction over natural numbers:

\[
\forall Y (0 \in Y \land \forall x(x \in Y \implies s(x) \in Y)) \implies \forall x x \in Y.
\]
Peano axioms

Let \(\sigma = \langle 0, s, +, \cdot, = \rangle \). Peano axioms axiomatise elementary facts about arithmetic in first-order logic with equality:

\[
\begin{align*}
\forall x \neg(s(x) = 0) & \quad \forall x \forall y (s(x) = s(y) \rightarrow x = y) \\
\forall x x + 0 &= x & \forall x x \cdot 0 &= 0 \\
\forall x x + s(y) &= s(x + y) & \forall x \forall y (x \cdot s(y) &= (x \cdot y) + x)
\end{align*}
\]

Induction over natural numbers:

\[
\forall Y (0 \in Y \land \forall x (x \in Y \rightarrow s(x) \in Y)) \rightarrow \forall x x \in Y.
\]

Problem: Cannot quantify over sets in first-order logic, instead resort to induction scheme for all formulas \(\phi(x, y_1, \ldots, y_K) \):

\[
\forall y_1 \ldots y_K (\phi(0) \land \forall x (\phi(x) \rightarrow \phi(s(x)))) \rightarrow \forall x \phi(x).
\]
Peano axioms

Let \(\sigma = \langle 0, s, +, \cdot, = \rangle \). Peano axioms axiomatise elementary facts about arithmetic in first-order logic with equality:

\[
\begin{align*}
\forall x \neg (s(x) = 0) & \quad \forall x \forall y x + s(y) = s(x + y) \\
\forall x \forall y (s(x) = s(y) \rightarrow x = y) & \quad \forall x x \cdot 0 = 0 \\
\forall x x + 0 = x & \quad \forall x \forall y (x \cdot s(y) = (x \cdot y) + x)
\end{align*}
\]

Induction over natural numbers:

\[
\forall Y (0 \in Y \land \forall x (x \in Y \rightarrow s(x) \in Y)) \rightarrow \forall x x \in Y.
\]

Problem: Cannot quantify over sets in first-order logic, instead resort to induction scheme for all formulas \(\phi(x, y_1, \ldots, y_K) \):

\[
\forall y_1 \ldots y_k (\phi(0) \land \forall x (\phi(x) \rightarrow \phi(s(x)))) \rightarrow \forall x \phi(x).
\]

Let \(S_{PA} \) be the union of all formulas above, then “classical arithmetic” is a model of \(S_{PA} \).
Theorem (without proof)

First-order logic with equality is compact.
Non-standard models of arithmetic

Theorem (without proof)

First-order logic with equality is compact.

To obtain a non-standard model arithmetic:

- Introduce new constant symbol c and set
 \[
 \mathcal{C} = \{ \neg(c = s^i(0)) : i \in \mathbb{N} \}.
 \]

- Every finite subset of $S_{PA} \cup \mathcal{C}$ is satisfiable, hence $S_{PA} \cup \mathcal{C}$ has model \mathcal{A}

- But $c_\mathcal{A} \neq s^i_\mathcal{A}(0)$ for all $i \in \mathbb{N}$

- Hence \mathcal{A} is not isomorphic to the standard “classical” model of arithmetic
The Löwenheim-Skolem theorems

Theorem (Upward Löwenheim-Skolem theorem)

If S has an infinite model \mathcal{A} then for any cardinal κ it has a model \mathcal{B} with a universe of cardinality κ that extends \mathcal{A}.

Theorem (Downward Löwenheim-Skolem theorem)

If S has an infinite model \mathcal{A} then it has a model \mathcal{B} with a countable universe which is a substructure of \mathcal{A}.
The Löwenheim-Skolem theorems

Theorem (Upward Löwenheim-Skolem theorem)

If S has an infinite model \mathcal{A} then for any cardinal κ it has a model \mathcal{B} with a universe of cardinality κ that extends \mathcal{A}.

Theorem (Downward Löwenheim-Skolem theorem)

If S has an infinite model \mathcal{A} then it has a model \mathcal{B} with a countable universe which is a substructure of \mathcal{A}.

Corollary

Classical arithmetic is not first-order axiomatisable.