Lecture 13 Compactness for predicate logic

The compactness theorem, non-standard models of arithmetic

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

The compactness theorem

Theorem

Let S be a countably infinite set of first-order formulas. Then S is satisfiable if and only if every finite subset of S is satisfiable.

The compactness theorem

(2)

(3)

(4)

(5)

(6)

Theorem

Let S be a countably infinite set of first-order formulas. Then S is satisfiable if and only if every finite subset of S is satisfiable.

Proof.

Let $\mathcal T$ be obtained from skolemising $\mathcal S,$ and let $\mathcal E$ be the Herbrand expansion of $\mathcal T.$ Then

finite subsets of \mathcal{S} are satisfiable
finite subsets of ${\mathcal S}$ are satisfiable

- \Rightarrow all finite subsets of \mathcal{T} are satisfiable
 - \Rightarrow all finite subsets of \mathcal{E} are satisfiable
- $\Rightarrow \mathcal{E}$ is satisfiable
 - $\Rightarrow \mathcal{T}$ is satisfiable
 - $\Rightarrow S$ is satisfiable.

Justification of individual proof steps

- Not immediate how to construct *T*, since *S* could use up all function symbols *f*₁, *f*₂,...
- Rename *f_i* to *f_{2i}* to ensure there are infinitely many unused function symbols *f_{2i+1}*, *i* ≥ 0 available

Justification of individual proof steps

- Not immediate how to construct *T*, since *S* could use up all function symbols *f*₁, *f*₂,...
- Rename *f_i* to *f_{2i}* to ensure there are infinitely many unused function symbols *f_{2i+1}*, *i* ≥ 0 available
- $(1) \Rightarrow (2)$ since skolemisation preserves satisfiability
- (2) \Rightarrow (3) cf. ground resolution
- (3) \Rightarrow (4) since propositional logic is compact
- (4) ⇒ (5) a propositional model A for E induces a Herbrand model in which in particular

$$(t_1,\ldots,t_k)\in P_{\mathcal{H}}\iff \mathcal{A}\models P(t_1,\ldots,t_k)$$

• (5) \Rightarrow (6) analogue to proof that skolemisation preserves satisfiability

Compactness theorem puts limits to the expressive power of first-order formulas.

Compactness theorem puts limits to the expressive power of first-order formulas.

Example

Let *F* be a σ -sentence over some signature σ such that *F* has a model A_n with $|U_{A_n}| = n$ for every n > 1. Then *F* has a model with an infinite universe.

Compactness theorem puts limits to the expressive power of first-order formulas.

Example

Let *F* be a σ -sentence over some signature σ such that *F* has a model A_n with $|U_{A_n}| = n$ for every n > 1. Then *F* has a model with an infinite universe.

Proof.

Introduce fresh binary predicate R, and for n > 1 define $G_n = \forall x \neg R(x, x) \land \exists x_1 \dots \exists x_n \bigwedge_{1 \le i \le j \le n} R(x_i, x_j)$. In particular,

 $\mathcal{B} \models G_n$ implies $|U_{\mathcal{B}}| \ge n$.

Compactness theorem puts limits to the expressive power of first-order formulas.

Example

Let *F* be a σ -sentence over some signature σ such that *F* has a model A_n with $|U_{A_n}| = n$ for every n > 1. Then *F* has a model with an infinite universe.

Proof.

Introduce fresh binary predicate R, and for n > 1 define $G_n = \forall x \neg R(x, x) \land \exists x_1 \dots \exists x_n \land_{1 \le i < j \le n} R(x_i, x_j)$. In particular,

 $\mathcal{B} \models G_n$ implies $|U_{\mathcal{B}}| \ge n$.

Moreover, $F_n = F \wedge G_n$ is satisfiable for every n > 1.

Compactness theorem puts limits to the expressive power of first-order formulas.

Example

Let *F* be a σ -sentence over some signature σ such that *F* has a model A_n with $|U_{A_n}| = n$ for every n > 1. Then *F* has a model with an infinite universe.

Proof.

Introduce fresh binary predicate R, and for n > 1 define $G_n = \forall x \neg R(x, x) \land \exists x_1 \dots \exists x_n \land_{1 \le i \le n} R(x_i, x_j)$. In particular,

 $\mathcal{B} \models G_n$ implies $|U_{\mathcal{B}}| \ge n$.

Moreover, $F_n = F \land G_n$ is satisfiable for every n > 1. Now define $S := \bigcup_{n>1} \{F_n\}$. Every finite subset of S is satisfiable, hence S has model B. If $|U_B|$ were equal to some $n \in \mathbb{N}$ then $B \not\models F_{n+1}$.

Compactness theorem puts limits to the expressive power of first-order formulas.

Example

Let *F* be a σ -sentence over some signature σ such that *F* has a model A_n with $|U_{A_n}| = n$ for every n > 1. Then *F* has a model with an infinite universe.

Proof.

Introduce fresh binary predicate R, and for n > 1 define $G_n = \forall x \neg R(x, x) \land \exists x_1 \dots \exists x_n \bigwedge_{1 \le i \le j \le n} R(x_i, x_j)$. In particular,

 $\mathcal{B} \models G_n$ implies $|U_{\mathcal{B}}| \ge n$.

Moreover, $F_n = F \land G_n$ is satisfiable for every n > 1. Now define $S := \bigcup_{n>1} \{F_n\}$. Every finite subset of S is satisfiable, hence S has model \mathcal{B} . If $|U_{\mathcal{B}}|$ were equal to some $n \in \mathbb{N}$ then $\mathcal{B} \not\models F_{n+1}$. Hence $|U_{\mathcal{B}}|$ is infinite, and \mathcal{B} induces model \mathcal{A} of F with an infinite universe.

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$ be the signature of arithmetic. Can we find a possibly infinite set of σ -formulas whose only model up to isomorphism is the classical arithmetic?

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$ be the signature of arithmetic. Can we find a possibly infinite set of σ -formulas whose only model up to isomorphism is the classical arithmetic?

Figure: Giuseppe Peano (1858 - 1932)

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$. Peano axioms axiomatise elementary facts about arithmetic in first-order logic with equality:

$$\begin{aligned} \forall x \neg (s(x) = 0) & \forall x \forall y x + s(y) = s(x + y) \\ \forall x \forall y (s(x) = s(y) \rightarrow x = y) & \forall x x \cdot 0 = 0 \\ \forall x x + 0 = x & \forall x \forall y (x \cdot s(y) = (x \cdot y) + x) \end{aligned}$$

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$. Peano axioms axiomatise elementary facts about arithmetic in first-order logic with equality:

$$\begin{aligned} \forall x \neg (s(x) = 0) & \forall x \forall y x + s(y) = s(x + y) \\ \forall x \forall y (s(x) = s(y) \rightarrow x = y) & \forall x x \cdot 0 = 0 \\ \forall x x + 0 = x & \forall x \forall y (x \cdot s(y) = (x \cdot y) + x) \end{aligned}$$

Induction over natural numbers:

$$\forall Y (0 \in Y \land \forall x (x \in Y \rightarrow s(x) \in Y)) \rightarrow \forall x x \in Y.$$

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$. Peano axioms axiomatise elementary facts about arithmetic in first-order logic with equality:

$$\begin{aligned} \forall x \neg (s(x) = 0) & \forall x \forall y x + s(y) = s(x + y) \\ \forall x \forall y (s(x) = s(y) \rightarrow x = y) & \forall x x \cdot 0 = 0 \\ \forall x x + 0 = x & \forall x \forall y (x \cdot s(y) = (x \cdot y) + x) \end{aligned}$$

Induction over natural numbers:

$$\forall Y (0 \in Y \land \forall x (x \in Y \rightarrow s(x) \in Y)) \rightarrow \forall x x \in Y.$$

Problem: Cannot quantify over sets in first-order logic, instead resort to induction scheme for all formulas $\phi(x, y_1, \dots, y_K)$:

$$\forall y_1 \dots y_k (\phi(0) \land \forall x(\phi(x) \to \phi(s(x)))) \to \forall x \phi(x).$$

Let $\sigma = \langle 0, s, +, \cdot, = \rangle$. Peano axioms axiomatise elementary facts about arithmetic in first-order logic with equality:

$$\begin{aligned} \forall x \neg (s(x) = 0) & \forall x \forall y x + s(y) = s(x + y) \\ \forall x \forall y (s(x) = s(y) \rightarrow x = y) & \forall x x \cdot 0 = 0 \\ \forall x x + 0 = x & \forall x \forall y (x \cdot s(y) = (x \cdot y) + x) \end{aligned}$$

Induction over natural numbers:

$$\forall Y (0 \in Y \land \forall x (x \in Y \rightarrow s(x) \in Y)) \rightarrow \forall x x \in Y.$$

Problem: Cannot quantify over sets in first-order logic, instead resort to induction scheme for all formulas $\phi(x, y_1, \dots, y_K)$:

$$\forall y_1 \dots y_k (\phi(0) \land \forall x(\phi(x) \to \phi(s(x)))) \to \forall x \phi(x).$$

Let S_{PA} be the union of all formulas above, then "classical arithmetic" is a model of S_{PA} .

Non-standard models of arithmetic

Theorem (without proof)

First-order logic with equality is compact.

Non-standard models of arithmetic

Theorem (without proof)

First-order logic with equality is compact.

To obtain a non-standard model arithmetic:

Introduce new constant symbol c and set

$$\mathcal{C} = \{\neg (\boldsymbol{c} = \boldsymbol{s}^{i}(\boldsymbol{0})) : i \in \mathbb{N}\}.$$

- Every finite subset of S_{PA} ∪ C is satisfiable, hence S_{PA} ∪ C has model A
- But $c_{\mathcal{A}} \neq s^i_{\mathcal{A}}(0_{\mathcal{A}})$ for all $i \in \mathbb{N}$
- Hence A is not isomorphic to the standard "classical" model of arithmetic

The Löwenheim-Skolem theorems

Theorem (Upward Löwenheim-Skolem theorem)

If S has an infinite model A then for any cardinal κ it has a model B with a universe of cardinality κ that extends A.

Theorem (Downward Löwenheim-Skolem theorem)

If S has an infinite model A then it has a model B with a countable universe which is a substructure of A.

The Löwenheim-Skolem theorems

Theorem (Upward Löwenheim-Skolem theorem)

If S has an infinite model A then for any cardinal κ it has a model B with a universe of cardinality κ that extends A.

Theorem (Downward Löwenheim-Skolem theorem)

If S has an infinite model A then it has a model B with a countable universe which is a substructure of A.

Corollary

Classical arithmetic is not first-order axiomatisable.