Lecture 12 Resolution for predicate logic

Unification, resolution

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

Drawbacks of ground resolution

- Ground resolution good for showing semi-decidability, bad for practical purposes
- Requires "looking ahead" to see which ground terms will be needed
- Want to instantiate ground terms "by need"

Drawbacks of ground resolution

- Ground resolution good for showing semi-decidability, bad for practical purposes
- Requires "looking ahead" to see which ground terms will be needed
- Want to instantiate ground terms "by need"

Today:

- Predicate-logic version of resolution
- Forms basis of programming language Prolog

Key concept substitution:

- Used to replace variables by σ -terms
- More general: substitution is function θ mapping $\sigma\text{-terms}$ to $\sigma\text{-terms}$ such that

$$c heta = c$$

 $f(t_1,\ldots,t_k) heta = f(t_1 heta,\ldots,t_k heta)$

Key concept substitution:

- Used to replace variables by σ -terms
- More general: substitution is function θ mapping σ -terms to σ -terms such that

$$c heta = c$$

 $f(t_1,\ldots,t_k) heta = f(t_1 heta,\ldots,t_k heta)$

- Extends canonically to arbitrary formulas, e.g. $P(x, c)\theta = P(x\theta, c\theta)$, etc.
- Denote by $\theta \cdot \theta'$ substitution first performing θ and then θ'

Key concept substitution:

- Used to replace variables by σ -terms
- More general: substitution is function θ mapping σ -terms to σ -terms such that

$$c heta = c$$

 $f(t_1,\ldots,t_k) heta = f(t_1 heta,\ldots,t_k heta)$

- Extends canonically to arbitrary formulas, e.g. $P(x, c)\theta = P(x\theta, c\theta)$, etc.
- Denote by $\theta \cdot \theta'$ substitution first performing θ and then θ'

Example

Let $\theta = [f(y)/x]$, $\theta' = [g(c, z)/y]$, and P(x, c) be an atomic formula,

Key concept substitution:

- Used to replace variables by σ -terms
- More general: substitution is function θ mapping σ -terms to σ -terms such that

$$c heta = c$$

 $f(t_1,\ldots,t_k) heta = f(t_1 heta,\ldots,t_k heta)$

- Extends canonically to arbitrary formulas, e.g. $P(x, c)\theta = P(x\theta, c\theta)$, etc.
- Denote by $\theta \cdot \theta'$ substitution first performing θ and then θ'

Example

Let $\theta = [f(y)/x]$, $\theta' = [g(c, z)/y]$, and P(x, c) be an atomic formula, then $P(x, c)\theta = P(x\theta, c\theta) = P(f(y), c)$, $\theta \cdot \theta' = [f(g(c, z))/x]$, and $P(x, c)(\theta \cdot \theta') = P(f(g(c, z)), c)$.

- For sets of literals $D = \{L_1, \ldots, L_k\}$, define $D\theta := \{L_1\theta, \ldots, L_k\theta\}$
- θ unifies *D* if $D\theta = \{L\}$ for some literal *L*

- For sets of literals $D = \{L_1, \ldots, L_k\}$, define $D\theta := \{L_1\theta, \ldots, L_k\theta\}$
- θ unifies *D* if $D\theta = \{L\}$ for some literal *L*

Example

We have that $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$ since

 $\{P(x)\theta, P(f(y))\theta\} = \{P(f(a)), P(f(a))\} = \{P(f(a))\},\$

but $\theta' = [f(y)/x]$ is also unifier.

- For sets of literals $D = \{L_1, \ldots, L_k\}$, define $D\theta := \{L_1\theta, \ldots, L_k\theta\}$
- θ unifies *D* if $D\theta = \{L\}$ for some literal *L*

Example

We have that $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$ since

 $\{P(x)\theta, P(f(y))\theta\} = \{P(f(a)), P(f(a))\} = \{P(f(a))\},\$

but $\theta' = [f(y)/x]$ is also unifier. Note that $\theta = \theta' \cdot [a/y]$.

- For sets of literals $D = \{L_1, \ldots, L_k\}$, define $D\theta := \{L_1\theta, \ldots, L_k\theta\}$
- θ unifies *D* if $D\theta = \{L\}$ for some literal *L*

Example

We have that $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$ since

 $\{P(x)\theta, P(f(y))\theta\} = \{P(f(a)), P(f(a))\} = \{P(f(a))\},\$

but $\theta' = [f(y)/x]$ is also unifier. Note that $\theta = \theta' \cdot [a/y]$.

Definition

We call θ a **most general unifier (mgu)** of *D* if θ is a unifier and for all other unifiers θ' there is unifier θ'' such that $\theta' = \theta \cdot \theta''$.

- For sets of literals $D = \{L_1, \ldots, L_k\}$, define $D\theta := \{L_1\theta, \ldots, L_k\theta\}$
- θ unifies *D* if $D\theta = \{L\}$ for some literal *L*

Example

We have that $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$ since

 $\{P(x)\theta, P(f(y))\theta\} = \{P(f(a)), P(f(a))\} = \{P(f(a))\},\$

but $\theta' = [f(y)/x]$ is also unifier. Note that $\theta = \theta' \cdot [a/y]$.

Definition

We call θ a **most general unifier (mgu)** of *D* if θ is a unifier and for all other unifiers θ' there is unifier θ'' such that $\theta' = \theta \cdot \theta''$.

Note:

- Not unique in general but unique up to renaming of variables
- Sometimes does not exist: {*P*(*f*(*x*)), *P*(*g*(*x*))}, {*P*(*x*), *P*(*f*(*x*))}

Most general unifier

Theorem (Unification Theorem)

A unifiable set of literals D has a most general unifier.

Most general unifier

Theorem (Unification Theorem)

A unifiable set of literals D has a most general unifier.

Proof.

Unification Algorithm

Input: Set of literals *D*

Output: Either a most general unifier of D or "fail"

 $\theta := \text{identity substitution}$

while θ is not a unifier of D do

begin

pick two distinct literals in $D\theta$ and

find left-most positions at which they differ

if one of the corresponding sub-terms is variable x and other term t not containing x

```
then \theta := \theta \cdot [t/x] else output "fail" and halt end
```

Example

Example

Consider input $D = \{P(x, y), P(f(z), x)\}$:

{ $P(\underline{x}, y), P(\underline{f}(z), x)$ }, apply [f(z)/x] { $P(f(z), \underline{y}), P(f(z), \underline{f}(z))$ }, apply [f(z)/y] {P(f(z), f(z))}

Thus [f(z)/x][f(z)/y] is a most general unifier of the set *D*.

Example

Example

Consider input $D = \{P(x, y), P(f(z), x)\}$:

{ $P(\underline{x}, y), P(\underline{f}(z), x)$ }, apply [f(z)/x] { $P(f(z), \underline{y}), P(f(z), \underline{f}(z))$ }, apply [f(z)/y] {P(f(z), f(z))}

Thus [f(z)/x][f(z)/y] is a most general unifier of the set *D*.

Exercise

Unifiable?			Yes	No
	P(f(x))	P(g(y))		
	P(x)	P(f(y))		
	P(x, f(y))	P(f(u),z)		
	P(x, f(y))	P(f(u), f(z))		
	P(x, f(x))	P(f(y), y)		
	$P(x,g(x),g^2(x))$	P(f(z), w, g(w))		
P(x, f(y))	P(g(y), f(a))	P(g(a), z)		

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ' of $D\theta$, we have $\theta' = \theta \cdot \theta'$.

• Holds before entering while loop because θ is the identity substitution.

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

- Holds before entering while loop because θ is the identity substitution.
- Let θ' be unifier. Assume θ' = θ ⋅ θ' holds at begin and algorithm does not halt. We show θ' = θ ⋅ θ' holds again at end.
- Since algorithm does not halt, we find x and t in $D\theta$.

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

- Holds before entering while loop because θ is the identity substitution.
- Let θ' be unifier. Assume θ' = θ ⋅ θ' holds at begin and algorithm does not halt. We show θ' = θ ⋅ θ' holds again at end.
- Since algorithm does not halt, we find x and t in $D\theta$.
- Since θ' is unifier of $D\theta$, we have $t\theta' = x\theta'$.

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

- Holds before entering while loop because θ is the identity substitution.
- Let θ' be unifier. Assume θ' = θ ⋅ θ' holds at begin and algorithm does not halt. We show θ' = θ ⋅ θ' holds again at end.
- Since algorithm does not halt, we find x and t in $D\theta$.
- Since θ' is unifier of $D\theta$, we have $t\theta' = x\theta'$.
- So $\theta' = [t/x] \cdot \theta'$, hence

$$(\theta \cdot [t/x]) \cdot \theta' = \theta \cdot ([t/x] \cdot \theta') = \theta \cdot \theta' = \theta'$$
.

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ' of $D\theta$, we have $\theta' = \theta \cdot \theta'$.

- Holds before entering while loop because θ is the identity substitution.
- Let θ' be unifier. Assume θ' = θ ⋅ θ' holds at begin and algorithm does not halt. We show θ' = θ ⋅ θ' holds again at end.
- Since algorithm does not halt, we find x and t in $D\theta$.
- Since θ' is unifier of $D\theta$, we have $t\theta' = x\theta'$.
- So $\theta' = [t/x] \cdot \theta'$, hence

$$(\theta \cdot [t/x]) \cdot \theta' = \theta \cdot ([t/x] \cdot \theta') = \theta \cdot \theta' = \theta'$$
.

• The assignment $\theta := \theta \cdot [t/x]$ establishes $\theta' = \theta \cdot \theta'$ again.

After termination: θ is unifier because of the loop condition, and loop invariant implies θ is mgu.

Resolution

For set of literals D, \overline{D} denotes complement of all literals in D.

Resolution

For set of literals D, \overline{D} denotes complement of all literals in D.

Definition (Resolution)

Let C_1 , C_2 be clauses with no variables in common.

R is a **resolvent** of C_1 and C_2 if there are $D_1 \subseteq C_1$ and $D_2 \subseteq C_2$ such that $D_1 \cup \overline{D_2}$ has mgu θ and

$$\boldsymbol{R} = (\boldsymbol{C}_1 \boldsymbol{\theta} \setminus \{\boldsymbol{L}\}) \cup (\boldsymbol{C}_2 \boldsymbol{\theta} \setminus \{\overline{\boldsymbol{L}}\})$$

with $L = D_1 \theta$ and $\overline{L} = D_2 \theta$.

Resolution

For set of literals D, \overline{D} denotes complement of all literals in D.

Definition (Resolution)

Let C_1 , C_2 be clauses with no variables in common.

R is a **resolvent** of C_1 and C_2 if there are $D_1 \subseteq C_1$ and $D_2 \subseteq C_2$ such that $D_1 \cup \overline{D_2}$ has mgu θ and

$$R = (C_1\theta \setminus \{L\}) \cup (C_2\theta \setminus \{\overline{L}\})$$

with $L = D_1 \theta$ and $\overline{L} = D_2 \theta$.

Let C_1 , C_2 be clauses with variables in common.

R is resolvent if there are renamings θ_1 , θ_2 such that $C_1\theta_1$, $C_2\theta_2$ have no variables in common, and *R* is resolvent of $C_1\theta_1$ and $C_2\theta_2$.

Example

Example

Given signature with constant symbol *e*, unary function symbols *f* and *g*, and ternary predicate symbol *P*, compute resolvent of

 $C_1 = \{\neg P(f(e), x, f(g(e)))\}$ and $C_2 = \{\neg P(x, y, z), P(f(x), y, f(z))\}$

as in the figure above.

Example

Figure: First-order resolution example

Example

Given signature with constant symbol e, unary function symbols f and g, and ternary predicate symbol P, compute resolvent of

 $C_1 = \{\neg P(f(e), x, f(g(e)))\}$ and $C_2 = \{\neg P(x, y, z), P(f(x), y, f(z))\}$

as in the figure above.

Exercise

Have the following pairs of predicate clauses a resolvent? How many resolvents are there?

<i>C</i> ₁	<i>C</i> ₂	Resolvents
$\{P(x),Q(x,y)\}$	$\{\neg P(f(x))\}$	
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	
$\{P(x), P(f(x))\}$	$\{\neg P(y), Q(y, z)\}$	

Use resolution in order to derive clause C from set of clauses F:

- Sequence of clauses C_1, \ldots, C_m such that $C = C_m$
- Each C_i is either from F or obtained from resolution of C_j and C_k , j, k < i
- Res*(F) is set of all clauses derivable from F

Putting it all together

$$\begin{aligned} F_1 &: \forall x \, A(e, x, x) \\ F_2 &: \forall x \forall y \forall z \, (\neg A(x, y, z) \lor A(s(x), y, s(z))) \\ F_3 &: \forall x \exists y \, A(s(s(e)), x, y) \end{aligned}$$

show that $F_1 \wedge F_2 \models F_3$, i.e. that $F_1 \wedge F_2 \wedge \neg F_3$ is unsat

Putting it all together

$$F_1: \forall x A(e, x, x)$$

$$F_2: \forall x \forall y \forall z (\neg A(x, y, z) \lor A(s(x), y, s(z)))$$

$$F_3: \forall x \exists y A(s(s(e)), x, y)$$

show that $F_1 \wedge F_2 \models F_3$, i.e. that $F_1 \wedge F_2 \wedge \neg F_3$ is unsat

• Step 1: Skolemise separately

$$\neg F_3 = \exists y \forall z \neg A(s(s(e)), y, z) \rightsquigarrow G_3 := \forall z \neg A(s(s(e)), c, z)$$

Putting it all together

$$\begin{aligned} F_1 &: \forall x \, A(e, x, x) \\ F_2 &: \forall x \forall y \forall z \, (\neg A(x, y, z) \lor A(s(x), y, s(z))) \\ F_3 &: \forall x \exists y \, A(s(s(e)), x, y) \end{aligned}$$

show that $F_1 \wedge F_2 \models F_3$, i.e. that $F_1 \wedge F_2 \wedge \neg F_3$ is unsat

Step 1: Skolemise separately

$$eg F_3 = \exists y \forall z \neg A(s(s(e)), y, z) \rightsquigarrow G_3 := \forall z \neg A(s(s(e)), c, z)$$

Step 2: Use resolution to derive empty clause

1.
$$\{\neg A(s(s(e)), c, z_1)\}$$
 clause of G_3

 2. $\{\neg A(x_2, y_2, z_2), A(s(x_2), y_2, s(z_2))\}$
 clause of F_2

 3. $\{\neg A(s(e), c, z_3)\}$
 1,2 Res. w/ $[s(e)/x_2][c/y_2][s(z_2)/z_1][z_3/z_2]$

 4. $\{\neg A(e, c, z_4)\}$
 2,3 Res. w/ $[e/x_2][c/y_2][s(z_2)/z_3][z_4/z_3]$

 5. $\{A(e, y_5, y_5)\}$
 clause of F_1

 6. \Box
 4,5 Res. Sub $[c/y_5][c/z_4]$

Lemma (Resolution Lemma)

Let $F = \forall x_1 \dots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \dots \forall x_n (G \land R)$.

Lemma (Resolution Lemma)

Let $F = \forall x_1 \dots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \dots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \dots \forall x_n$ to \forall^* . Clearly $\forall^*(G \land R) \models F$.

Lemma (Resolution Lemma)

Let $F = \forall x_1 \dots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \dots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \dots \forall x_n$ to \forall^* . Clearly $\forall^*(G \land R) \models F$. For the converse direction it suffices to show $F \models R$ (exercise). Suppose *R* is resolvent of clauses $C_1, C_2 \in G$, with $R = (C_1\theta \setminus \{L\}) \cup (C_2\theta' \setminus \{\overline{L}\})$ for substitutions θ, θ' and complementary literals $L \in C_1\theta$ and $\overline{L} \in C_2\theta'$.

Lemma (Resolution Lemma)

Let $F = \forall x_1 \dots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \dots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \dots \forall x_n$ to \forall^* . Clearly $\forall^*(G \land R) \models F$. For the converse direction it suffices to show $F \models R$ (exercise). Suppose R is resolvent of clauses $C_1, C_2 \in G$, with $R = (C_1\theta \setminus \{L\}) \cup (C_2\theta' \setminus \{\overline{L}\})$ for substitutions θ, θ' and complementary literals $L \in C_1\theta$ and $\overline{L} \in C_2\theta'$. Let \mathcal{A} be an assignment that satisfies $F = \forall^*G$. Since $C_1, C_2 \in G$, we have $\mathcal{A} \models C_1\theta \land C_2\theta'$ (exercise, apply Translation Lemma; recall that \mathcal{A} assigns values to free variables in $C_1\theta \land C_2\theta'$).

Lemma (Resolution Lemma)

Let $F = \forall x_1 \dots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \dots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \dots \forall x_n$ to \forall^* . Clearly $\forall^*(G \land R) \models F$. For the converse direction it suffices to show $F \models R$ (exercise). Suppose R is resolvent of clauses $C_1, C_2 \in G$, with $R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta' \setminus \{\overline{L}\})$ for substitutions θ, θ' and complementary literals $L \in C_1 \theta$ and $\overline{L} \in C_2 \theta'$. Let \mathcal{A} be an assignment that satisfies $F = \forall^* G$. Since $C_1, C_2 \in G$, we have $\mathcal{A} \models C_1 \theta \land C_2 \theta'$ (exercise, apply Translation Lemma; recall that \mathcal{A} assigns values to free variables in $C_1 \theta \land C_2 \theta'$). Since \mathcal{A} satisfies at most one of L and \overline{L} , it follows that \mathcal{A} satisfies at least one of $C_1 \theta \setminus \{L\}$ and $C_2 \theta' \setminus \{\overline{L}\}$.

Lemma (Resolution Lemma)

Let $F = \forall x_1 \dots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \dots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \dots \forall x_n$ to \forall^* . Clearly $\forall^*(G \land R) \models F$. For the converse direction it suffices to show $F \models R$ (exercise). Suppose *R* is resolvent of clauses $C_1, C_2 \in G$, with $R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta' \setminus \{\overline{L}\})$ for substitutions θ, θ' and complementary literals $L \in C_1 \theta$ and $\overline{L} \in C_2 \theta'$. Let \mathcal{A} be an assignment that satisfies $F = \forall^* G$. Since $C_1, C_2 \in G$, we have $\mathcal{A} \models C_1 \theta \land C_2 \theta'$ (exercise, apply Translation Lemma; recall that \mathcal{A} assigns values to free variables in $C_1\theta \wedge C_2\theta'$). Since A satisfies at most one of L and \overline{L} , it follows that A satisfies at least one of $C_1\theta \setminus \{L\}$ and $C_2\theta' \setminus \{L\}$. Conclude that A satisfies R, as required.

Lemma (Liting-lemma)

Let C_1 , C_2 be predicate clauses and let C'_1 , C'_2 be two ground instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of C_1 , C_2 such that R' is a ground instance of R.

Lemma (Liting-lemma)

Let C_1 , C_2 be predicate clauses and let C'_1 , C'_2 be two ground instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of C_1 , C_2 such that R' is a ground instance of R.

 C_1

 C_2

- —: Resolution
- \rightarrow : Substitution

Lemma (Liting-lemma)

Let C_1 , C_2 be predicate clauses and let C'_1 , C'_2 be two ground instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of C_1 , C_2 such that R' is a ground instance of R.

- —: Resolution
- \rightarrow : Substitution

Lemma (Liting-lemma)

Let C_1 , C_2 be predicate clauses and let C'_1 , C'_2 be two ground instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of C_1 , C_2 such that R' is a ground instance of R.

—: Resolution

 \rightarrow : Substitution

Lemma (Liting-lemma)

Let C_1 , C_2 be predicate clauses and let C'_1 , C'_2 be two ground instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of C_1 , C_2 such that R' is a ground instance of R.

—: Resolution

 \rightarrow : Substitution

Lemma (Liting-lemma)

Let C_1 , C_2 be predicate clauses and let C'_1 , C'_2 be two ground instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of C_1 , C_2 such that R' is a ground instance of R.

—: Resolution

 \rightarrow : Substitution

$\{\neg P(f(x)), Q(x)\}$

$\{P(f(g(y)))\}$

$$\{P(f(g(y)))\}$$

$$\downarrow_{[V/a]}$$

$$\{P(f(g(a)))\}$$

$$\{\neg P(f(x)), Q(x)\}$$

$$\downarrow^{[x/g(a)]}$$

$$\{\neg P(f(g(a))), Q(g(a))\}$$

