Lecture 12
Resolution for predicate logic

Unification, resolution

Dr Christoph Haase
University of Oxford

(with small changes by Javier Esparza)
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Drawbacks of ground resolution

@ Ground resolution good for showing semi-decidability, bad for
practical purposes

@ Requires “looking ahead” to see which ground terms will be
needed

@ Want to instantiate ground terms “by need”
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Drawbacks of ground resolution

@ Ground resolution good for showing semi-decidability, bad for
practical purposes

@ Requires “looking ahead” to see which ground terms will be
needed

@ Want to instantiate ground terms “by need”

Today:

@ Predicate-logic version of resolution

@ Forms basis of programming language Prolog
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Substitution
Key concept substitution:

@ Used to replace variables by o-terms

@ More general: substitution is function § mapping o-terms to
o-terms such that
ch=c
f(t,..., )0 = f(Ho,... 10)

@ Extends canonically to arbitrary formulas, e.g.
P(x,c)8 = P(x8,ch), etc.

@ Denote by 6 - ¢’ substitution first performing 6 and then ¢’

Example

Let 8 = [f(y)/x], 0" = [g(c,z)/y], and P(x, c) be an atomic formula,
then P(x, c)0 = P(x0,co) = P(f(y),c), 8 - ¢ = [f(g(c, 2))/x], and
P(x,c)(0-¢") = P(f(g(c, 2)), ¢).
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@ For sets of literals D = {L4, ..., L}, define DO := {L46, ..., L0}

@ ¢ unifies D if DO = {L} for some literal L
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Substitution
@ For sets of literals D = {L4, ..., Ly}, define D .= {L40,...,

@ ¢ unifies D if DO = {L} for some literal L

Example
We have that 6 = [f(a)/x][a/y] unifies {P(x), P(f(y))} since

{P(x)0, P(f(y))0} = {P(f(a)), P(f(a))} = {P(f(a))},
but ' = [f(y)/x] is also unifier.
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Substitution
@ For sets of literals D = {L4, ..., L}, define DO := {L46, ..., L0}

@ ¢ unifies D if DO = {L} for some literal L

Example
We have that 6 = [f(a)/x][a/y] unifies {P(x), P(f(y))} since

{P(x)0, P(f(y))0} = {P(f(a)), P(f(a))} = {P(f(a))},
but ' = [f(y)/x] is also unifier. Note that 6 = 0’ - [a/y].

Definition
We call 6 a most general unifier (mgu) of D if 6 is a unifier and for
all other unifiers ¢’ there is unifier 8" such that ¢’ =6 - 9".

Note:
@ Not unique in general but unique up to renaming of variables

@ Sometimes does not exist: {P(f(x)), P(g(x))}, {P(x), P(f(x))}



Most general unifier

Theorem (Unification Theorem)
A unifiable set of literals D has a most general unifier.
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Most general unifier

Theorem (Unification Theorem)
A unifiable set of literals D has a most general unifier.

Proof.

Unification Algorithm
Input: Set of literals D
Output: Either a most general unifier of D or “fail”
6 := identity substitution
while ¢ is not a unifier of D do
begin
pick two distinct literals in D6 and
find left-most positions at which they differ
if one of the corresponding sub-terms is variable x and
other term ¢ not containing x
then 0 := 0 - [t/x] else output “fail” and halt
end




Example

Example
Consider input D = {P(x, y), P(f(z), x)}:

y), P(£(2), x)}, apply [f(z)/X]
f(2),y), P(f(2),£(2))}, apply [f(z)/y]
f(2),1(2))}

Thus [f(2)/x][f(z)/y] is a most general unifier of the set D.
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{P(
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Example

Example
Consider input D = {P(x, y), P(f(z), x)}:

y), P(£(2), x)}, apply [f(z)/X]
f(2),y), P(f(2),£(2))}, apply [f(z)/y]
f(2),1(2))}

Thus [f(z)/x][f(z)/y] is a most general unifier of the set D.

{P(x,
{P(
{P(

)
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Exercise

Unifiable? Yes | No
P(f(x)) P(9(¥))
P(x) P(t(y))
P(x,f(y)) P(f(u), 2)
P(x, f(y)) P(f(u), f(2))
P(x, f(x)) P(t(y),y)
P(x,9(x).g%(x))  P(f(2),w,g(w))
P(x,f(y))  P(a(y).f(a)) P(9(a), 2)




Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur
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@ Let ¢’ be unifier. Assume 6’ = 0 - ¢’ holds at begin and algorithm
does not halt. We show 6’ = 6 - 6’ holds again at end.

@ Since algorithm does not halt, we find x and t in D6.
@ Since ¢’ is unifier of DO, we have t0’ = x6’.



Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier ¢’ of D9, we have 8’ =6 - 6.

@ Holds before entering while loop because 6 is the identity
substitution.

@ Let ¢’ be unifier. Assume 6’ = 0 - ¢’ holds at begin and algorithm
does not halt. We show 6’ = 6 - 6’ holds again at end.

@ Since algorithm does not halt, we find x and t in D6.
@ Since ¢’ is unifier of DO, we have t0’ = x6’.
@ So ¢ =t/x]- 0, hence

O-[t/x])-0' =0 (t/x] - 0)=0-0 =0 .



Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier ¢’ of D9, we have 8’ =6 - 6.

@ Holds before entering while loop because 6 is the identity
substitution.

@ Let ¢’ be unifier. Assume 6’ = 0 - ¢’ holds at begin and algorithm
does not halt. We show 6’ = 6 - 6’ holds again at end.

@ Since algorithm does not halt, we find x and t in D6.
@ Since ¢’ is unifier of DO, we have t0’ = x6’.
@ So ¢ =t/x]- 0, hence

(- 1t/x1)-0"=06-([t/x]-0')=0-0"=0".
@ The assignment 6 := 0 - [t/x] establishes 8’ = 6 - ¢’ again.

After termination: 6 is unifier because of the loop condition, and loop
invariant implies 6 is mgu.



Resolution

For set of literals D, D denotes complement of all literals in D.
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Definition (Resolution)
Let Cy, C> be clauses with no variables in common.

R is a resolvent of C; and C; if there are D; C C; and D> C C, such
that D; U D, has mgu 6 and

R=(Cio\{L}) U (Ca0\{L})
with L = D10 and L = Dy0.




Resolution

For set of literals D, D denotes complement of all literals in D.

Definition (Resolution)
Let Cy, C> be clauses with no variables in common.

R is a resolvent of C; and C; if there are D; C C; and D> C C, such
that D; U D, has mgu 6 and

R=(Cio\{L}) U (Ca0\{L})
with L = D10 and L = Dy0.

Let Cy, C> be clauses with variables in common.

R is resolvent if there are renamings 61, 6> such that C;64, C.6> have
no variables in common, and R is resolvent of C;6; and C»0-.




Example

Example

Given signature with constant symbol e, unary function symbols f
and g, and ternary predicate symbol P, compute resolvent of

C1 = {=P(f(e), x, f(g(e)))} and Cz = {~P(x,y,2), P(f(x), y,{(2))}

as in the figure above.
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Example

{=P(f(e), x, f(g(e)))}
[u/x]
{=P(f(e), u,f(g(e)))} {(=P(x,y,2), P(f(x),y,(2))}

le/X][u/yll9(e)/ 2] /

{_'P(ev u, g(e))}

Figure: First-order resolution example

Example

Given signature with constant symbol e, unary function symbols f
and g, and ternary predicate symbol P, compute resolvent of

C1 = {=P(f(e), x, f(g(e)))} and Cz = {=P(x,y,2), P(f(x), y,{(2))}

as in the figure above.

10/16



Exercise

Have the following pairs of predicate clauses a resolvent?
How many resolvents are there?

Cq C Resolvents
{P(x), Q(x, y)} {=P(f(x))}
{Q(g(x)), R(f(x))} {=Q(f(x))}

{P(x), P(f(x))}

{=P(y), Qly, 2)}
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Predicate-resolution derivation

Use resolution in order to derive clause C from set of clauses F:

@ Sequence of clauses Cy, ..., Cy such that C = Cp,

@ Each C; is either from F or obtained from resolution of C; and C,
L k<i

@ Res*(F) is set of all clauses derivable from F

12/16



Putting it all together

Fi: VxA(e x,x)
Fa: VxVyVz (=A(x,y,2) vV A(s(x), ¥, s(2)))
F3: Vx3y A(s(s(e)), x,y)

show that F{ A F» |= Fs, i.e. that F; A Fo A —=F3 is unsat
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Fi: VxA(e x,x)
Fo . VXVyVz (-A(x,y,z) V A(s(x),y, s(2)))
Fs : Vx3y A(s(s(e)), x.y)
show that Fi A F> = Fs, i.e. that Fy A Fo A —F3 is unsat
@ Step 1: Skolemise separately
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Putting it all together

Fi: VxA(e x,x)
Fo . VXVyVz (-A(x,y,z) V A(s(x),y, s(2)))
Fs : Vx3y A(s(s(e)), x.y)
show that Fi A F> = Fs, i.e. that Fy A Fo A —F3 is unsat
@ Step 1: Skolemise separately
-F3 = 3yvz-A(s(s(e)),y, z) ~ Gz :=Vz-A(s(s(e)), ¢, z)

@ Step 2: Use resolution to derive empty clause

1. {-A(s(s(e)),c, z1)} clause of Gs

2. {-A(X, y2, 22), A(5(X2), Y2, S(22))}  clause of F»

3. {-A(s(e),c,z3)} 1,2 Res. w/ [s(e)/x2][c/y21[8(22)/ z1][23/ 2]
4. {-A(e,c,z4)} 2,3 Res. W/ [e/x2][c/y=1[8(22)/Z5][24/ Z5]

5. {A(e,ys, ¥5)} clause of F4

6.0 4,5 Res. Sub [c/ys][c/z4]
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Soundness of resolution

Lemma (Resolution Lemma)

Let F =Vx;...Vx,G be a closed formula in Skolem form, with G
quantifier-free. Let R be a resolvent of two clauses in G. Then
F=Vxi...Yxp(G A R).
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Soundness of resolution

Lemma (Resolution Lemma)

Let F =Vx; ...Yx,G be a closed formula in Skolem form, with G
quantifier-free. Let R be a resolvent of two clauses in G. Then
F=Vxi...Yxp(G A R).

Proof.

Abbreviate Vxi ... Vx, to vV*. Clearly V*(GAR) = F.

For the converse direction it suffices to show F = R (exercise).
Suppose R is resolvent of clauses Cy, C, € G, with

R = (C16\ {L}) U (Co0' \ {L}) for substitutions 6,6’ and
complementary literals L € Cif# and L € C,¢'.

Let A be an assignment that satisfies F = V*G.

Since Cy, C; € G, we have A |= C10 A Co0' (exercise, apply
Translation Lemma; recall that A assigns values to free variables in
Ci10 N Co0").

Since A satisfies at most one of L and L, it follows that A satisfies at
least one of C10\ {L} and C,0’ \ {L}.

Conclude that A satisfies R, as required. O




Completeness of resolution

Lemma (Liting-lemma)

Let C1, C, be predicate clauses and let C}, C;, be two ground
instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of Cy, C, such that R’ is a ground
instance of R.
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Lemma (Liting-lemma)

Let Cy, G, be predicate clauses and let C;, C,, be two ground
instances of them that can be resolved into the resolvent R’.

Then there is predicate resolvent R of Cy, C, such that R’ is a ground

instance of R.

c

—: Resolution
—s: Substitution
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|

G

15/16



Completeness of resolution

Lemma (Liting-lemma)

Let C1, C, be predicate clauses and let C}, C;, be two ground
instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of Cy, C, such that R’ is a ground

instance of R.

C C
C C,
R/

—: Resolution
—: Substitution

15/16



Completeness of resolution

Lemma (Liting-lemma)

Let C1, C, be predicate clauses and let C}, C;, be two ground
instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of Cy, C, such that R’ is a ground

instance of R.

—: Resolution
—: Substitution

15/16



Completeness of resolution

Lemma (Liting-lemma)

Let C1, C, be predicate clauses and let C}, C;, be two ground
instances of them that can be resolved into the resolvent R'.

Then there is predicate resolvent R of Cy, C, such that R’ is a ground
instance of R.

—: Resolution
—: Substitution

15/16



Lifting-Lemma: example

{=P(f(x)), Q(x)} {P(f(9(¥)))}
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Lifting-Lemma: example

{=P(f(x)), Q(x)} {P(flan)))}
i[x/g(a)] l[y/a]
{=P(f(9(a))), Qg(a))} {P(f(g(a)))}
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Lifting-Lemma: example

{=P(f(x)), Q(x)} {P(flg¥)))}
l[x/g(a)] i[y/a]
{=P(f(g(a))), Qlg(a))} {P(f(g(a)))}

\/

{Q(g(a))}
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Lifting-Lemma: example

{=P(f(x)) {P(flg¥)))}
J{[x/g \ / J{[y/a]
{=P(f(g( 9y} {P(f(9(a)))}
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Lifting-Lemma: example

{=P(f(x))

l[x/g \ / l[y/al
\ l[y/a/

{Q(g(a))}

{=P(f(g(

16

16



