Lecture 12
Resolution for predicate logic
Unification, resolution
Drawbacks of ground resolution

- Ground resolution good for showing semi-decidability, bad for practical purposes
- Requires “looking ahead” to see which ground terms will be needed
- Want to instantiate ground terms “by need”
Drawbacks of ground resolution

- Ground resolution good for showing semi-decidability, bad for practical purposes
- Requires “looking ahead” to see which ground terms will be needed
- Want to instantiate ground terms “by need”

Today:

- Predicate-logic version of resolution
- Forms basis of programming language Prolog
Substitution

Key concept substitution:

- Used to replace variables by σ-terms
- More general: substitution is function θ mapping σ-terms to σ-terms such that

\[c \theta = c\]

\[f(t_1, \ldots, t_k) \theta = f(t_1 \theta, \ldots, t_k \theta)\]
Substitution

Key concept substitution:

- Used to replace variables by σ-terms

- More general: substitution is function θ mapping σ-terms to σ-terms such that

\[
c \theta = c
\]

\[
f(t_1, \ldots, t_k) \theta = f(t_1 \theta, \ldots, t_k \theta)
\]

- Extends canonically to arbitrary formulas, e.g.
 \[
P(x, c) \theta = P(x \theta, c \theta),\text{ etc.}
\]

- Denote by $\theta \cdot \theta'$ substitution first performing θ and then θ'
Substitution

Key concept substitution:

- Used to replace variables by σ-terms
- More general: substitution is function θ mapping σ-terms to σ-terms such that

\[
c\theta = c
\]
\[
f(t_1, \ldots, t_k)\theta = f(t_1\theta, \ldots, t_k\theta)
\]

- Extends canonically to arbitrary formulas, e.g.
 \[
P(x, c)\theta = P(x\theta, c\theta), \text{ etc.}
\]
- Denote by $\theta \cdot \theta'$ substitution first performing θ and then θ'

Example

Let $\theta = [f(y)/x]$, $\theta' = [g(c, z)/y]$, and $P(x, c)$ be an atomic formula,
Substitution

Key concept **substitution**:

- Used to replace variables by σ-terms
- More general: substitution is function θ mapping σ-terms to σ-terms such that

 $$
 c\theta = c \\
 f(t_1, \ldots, t_k)\theta = f(t_1\theta, \ldots, t_k\theta)
 $$

- Extends canonically to arbitrary formulas, e.g. $P(x, c)\theta = P(x\theta, c\theta)$, etc.

- Denote by $\theta \cdot \theta'$ substitution first performing θ and then θ'

Example

Let $\theta = [f(y)/x]$, $\theta' = [g(c, z)/y]$, and $P(x, c)$ be an atomic formula, then $P(x, c)\theta = P(x\theta, c\theta) = P(f(y), c)$, $\theta \cdot \theta' = [f(g(c, z))/x]$, and $P(x, c)(\theta \cdot \theta') = P(f(g(c, z)), c)$.
Substitution

For sets of literals \(D = \{L_1, \ldots, L_k\} \), define \(D\theta := \{L_1\theta, \ldots, L_k\theta\} \)

\(\theta \) unifies \(D \) if \(D\theta = \{L\} \) for some literal \(L \)
For sets of literals $D = \{L_1, \ldots, L_k\}$, define $D\theta := \{L_1\theta, \ldots, L_k\theta\}$.

\[\theta \text{ unifies } D \text{ if } D\theta = \{L\} \text{ for some literal } L \]

Example

We have that $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$ since

\[\{P(x)\theta, P(f(y))\theta\} = \{P(f(a)), P(f(a))\} = \{P(f(a))\}, \]

but $\theta' = [f(y)/x]$ is also unifier.
Substitution

- For sets of literals $D = \{L_1, \ldots, L_k\}$, define $D\theta := \{L_1\theta, \ldots, L_k\theta\}$

- θ unifies D if $D\theta = \{L\}$ for some literal L

Example

We have that $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$ since

$$\{P(x)\theta, P(f(y))\theta\} = \{P(f(a)), P(f(a))\} = \{P(f(a))\},$$

but $\theta' = [f(y)/x]$ is also unifier. Note that $\theta = \theta' \cdot [a/y]$.
Substitution

- For sets of literals $D = \{L_1, \ldots, L_k\}$, define $D\theta := \{L_1\theta, \ldots, L_k\theta\}$
- θ unifies D if $D\theta = \{L\}$ for some literal L

Example

We have that $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$ since

$$\{P(x)\theta, P(f(y))\theta\} = \{P(f(a)), P(f(a))\} = \{P(f(a))\},$$

but $\theta' = [f(y)/x]$ is also unifier. Note that $\theta = \theta' \cdot [a/y]$.

Definition

We call θ a **most general unifier (mgu)** of D if θ is a unifier and for all other unifiers θ' there is unifier θ'' such that $\theta' = \theta \cdot \theta''$.
Substitution

- For sets of literals $D = \{L_1, \ldots, L_k\}$, define $D\theta := \{L_1\theta, \ldots, L_k\theta\}$

- θ unifies D if $D\theta = \{L\}$ for some literal L

Example

We have that $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$ since

$$\{P(x)\theta, P(f(y))\theta\} = \{P(f(a)), P(f(a))\} = \{P(f(a))\},$$

but $\theta' = [f(y)/x]$ is also unifier. Note that $\theta = \theta' \cdot [a/y]$.

Definition

We call θ a **most general unifier (mgu)** of D if θ is a unifier and for all other unifiers θ' there is unifier θ'' such that $\theta' = \theta \cdot \theta''$.

Note:

- Not unique in general but unique up to renaming of variables

- Sometimes does not exist: $\{P(f(x)), P(g(x))\}$, $\{P(x), P(f(x))\}$
Most general unifier

Theorem (Unification Theorem)

A unifiable set of literals D has a most general unifier.
Most general unifier

Theorem (Unification Theorem)

A unifiable set of literals D has a most general unifier.

Proof.

Unification Algorithm

Input: Set of literals D

Output: Either a most general unifier of D or “fail”

$\theta :=$ identity substitution

while θ is not a unifier of D do

begin

pick two distinct literals in $D\theta$ and

find left-most positions at which they differ

if one of the corresponding sub-terms is variable x and other term t not containing x

then $\theta := \theta \cdot [t/x]$ else output “fail” and halt

end
Example

Consider input $D = \{P(x, y), P(f(z), x)\}$:

\[
\begin{align*}
\{P(x, y), P(f(z), x)\}, \text{ apply } [f(z)/x] \\
\{P(f(z), y), P(f(z), f(z))\}, \text{ apply } [f(z)/y] \\
\{P(f(z), f(z))\}
\end{align*}
\]

Thus $[f(z)/x][f(z)/y]$ is a most general unifier of the set D.
Example

Consider input \(D = \{ P(x, y), P(f(z), x) \} : \)

\[
\{ P(x, y), P(f(z), x) \}, \text{ apply } [f(z)/x] \\
\{ P(f(z), y), P(f(z), f(z)) \}, \text{ apply } [f(z)/y] \\
\{ P(f(z), f(z)) \}
\]

Thus \([f(z)/x][f(z)/y]\) is a most general unifier of the set \(D \).
<table>
<thead>
<tr>
<th>Unifiable?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(f(x))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(g(y))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(x)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(f(y))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(x, f(y))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(f(u), z)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(x, f(y))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(f(u), f(z))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(x, f(x))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(f(y), y)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(x, g(x), g^2(x))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(f(z), w, g(w))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(x, f(y))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(g(y), f(a))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(g(a), z)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable \(x \) gets replaced by a term in which \(x \) does not occur.
Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable \(x \) gets replaced by a term in which \(x \) does not occur

Loop invariant: for any unifier \(\theta' \) of \(D\theta \), we have \(\theta' = \theta \cdot \theta' \).
Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur.

Loop invariant: for any unifier θ' of $D\theta$, we have $\theta' = \theta \cdot \theta'$.

- Holds before entering while loop because θ is the identity substitution.
Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable \(x \) gets replaced by a term in which \(x \) does not occur.

Loop invariant: for any unifier \(\theta' \) of \(D\theta \), we have \(\theta' = \theta \cdot \theta' \).

- Holds before entering while loop because \(\theta \) is the identity substitution.
- Let \(\theta' \) be unifier. Assume \(\theta' = \theta \cdot \theta' \) holds at begin and algorithm does not halt. We show \(\theta' = \theta \cdot \theta' \) holds again at end.
- Since algorithm does not halt, we find \(x \) and \(t \) in \(D\theta \).
Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable \(x \) gets replaced by a term in which \(x \) does not occur.

Loop invariant: for any unifier \(\theta' \) of \(D\theta \), we have \(\theta' = \theta \cdot \theta' \).

- Holds before entering while loop because \(\theta \) is the identity substitution.
- Let \(\theta' \) be unifier. Assume \(\theta' = \theta \cdot \theta' \) holds at `begin` and algorithm does not halt. We show \(\theta' = \theta \cdot \theta' \) holds again at `end`.
- Since algorithm does not halt, we find \(x \) and \(t \) in \(D\theta \).
- Since \(\theta' \) is unifier of \(D\theta \), we have \(t\theta' = x\theta' \).
Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ' of $D\theta$, we have $\theta' = \theta \cdot \theta'$.

- Holds before entering while loop because θ is the identity substitution.
- Let θ' be unifier. Assume $\theta' = \theta \cdot \theta'$ holds at begin and algorithm does not halt. We show $\theta' = \theta \cdot \theta'$ holds again at end.
- Since algorithm does not halt, we find x and t in $D\theta$.
- Since θ' is unifier of $D\theta$, we have $t\theta' = x\theta'$.
- So $\theta' = [t/x] \cdot \theta'$, hence

$$
(\theta \cdot [t/x]) \cdot \theta' = \theta \cdot ([t/x] \cdot \theta') = \theta \cdot \theta' = \theta'.
$$
Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable \(x \) gets replaced by a term in which \(x \) does not occur.

Loop invariant: for any unifier \(\theta' \) of \(D\theta \), we have \(\theta' = \theta \cdot \theta' \).

- Holds before entering while loop because \(\theta \) is the identity substitution.
- Let \(\theta' \) be unifier. Assume \(\theta' = \theta \cdot \theta' \) holds at \textbf{begin} and algorithm does not halt. We show \(\theta' = \theta \cdot \theta' \) holds again at \textbf{end}.
- Since algorithm does not halt, we find \(x \) and \(t \) in \(D\theta \).
- Since \(\theta' \) is unifier of \(D\theta \), we have \(t\theta' = x\theta' \).
- So \(\theta' = [t/x] \cdot \theta' \), hence

\[
(\theta \cdot [t/x]) \cdot \theta' = \theta \cdot ([t/x] \cdot \theta') = \theta \cdot \theta' = \theta'.
\]

- The assignment \(\theta := \theta \cdot [t/x] \) establishes \(\theta' = \theta \cdot \theta' \) again.

After termination: \(\theta \) is unifier because of the loop condition, and loop invariant implies \(\theta \) is mgu.
Resolution

For set of literals D, \overline{D} denotes complement of all literals in D.
For set of literals D, \overline{D} denotes complement of all literals in D.

Definition (Resolution)

Let C_1, C_2 be clauses with no variables in common.

R is a **resolvent** of C_1 and C_2 if there are $D_1 \subseteq C_1$ and $D_2 \subseteq C_2$ such that $D_1 \cup \overline{D_2}$ has mgu θ and

$$R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta \setminus \{\overline{L}\})$$

with $L = D_1 \theta$ and $\overline{L} = D_2 \theta$.
Resolution

For set of literals D, \overline{D} denotes complement of all literals in D.

Definition (Resolution)

Let C_1, C_2 be clauses with no variables in common.

R is a **resolvent** of C_1 and C_2 if there are $D_1 \subseteq C_1$ and $D_2 \subseteq C_2$ such that $D_1 \cup \overline{D_2}$ has mgu θ and

$$R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta \setminus \{\overline{L}\})$$

with $L = D_1 \theta$ and $\overline{L} = D_2 \theta$.

Let C_1, C_2 be clauses with variables in common.

R is resolvent if there are renamings θ_1, θ_2 such that $C_1 \theta_1$, $C_2 \theta_2$ have no variables in common, and R is resolvent of $C_1 \theta_1$ and $C_2 \theta_2$.
Example

Given signature with constant symbol e, unary function symbols f and g, and ternary predicate symbol P, compute resolvent of

$$C_1 = \{ \neg P(f(e), x, f(g(e))) \} \quad \text{and} \quad C_2 = \{ \neg P(x, y, z), P(f(x), y, f(z)) \}$$

as in the figure above.
Example

Given signature with constant symbol \(e \), unary function symbols \(f \) and \(g \), and ternary predicate symbol \(P \), compute resolvent of

\[
C_1 = \{ \neg P(f(e), x, f(g(e))) \} \quad \text{and} \quad C_2 = \{ \neg P(x, y, z), P(f(x), y, f(z)) \}
\]
as in the figure above.
Exercise

Have the following pairs of predicate clauses a resolvent? How many resolvents are there?

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>Resolvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ $P(x), Q(x, y)$ }</td>
<td>{ $\neg P(f(x))$ }</td>
<td></td>
</tr>
<tr>
<td>{ $Q(g(x)), R(f(x))$ }</td>
<td>{ $\neg Q(f(x))$ }</td>
<td></td>
</tr>
<tr>
<td>{ $P(x), P(f(x))$ }</td>
<td>{ $\neg P(y), Q(y, z)$ }</td>
<td></td>
</tr>
</tbody>
</table>
Predicate-resolution derivation

Use resolution in order to derive clause C from set of clauses F:

- Sequence of clauses C_1, \ldots, C_m such that $C = C_m$
- Each C_i is either from F or obtained from resolution of C_j and C_k, $j, k < i$
- $\text{Res}^*(F)$ is set of all clauses derivable from F
Putting it all together

\[F_1 : \forall x A(e, x, x) \]
\[F_2 : \forall x \forall y \forall z (\neg A(x, y, z) \lor A(s(x), y, s(z))) \]
\[F_3 : \forall x \exists y A(s(s(e)), x, y) \]

show that \(F_1 \land F_2 \models F_3 \), i.e. that \(F_1 \land F_2 \land \neg F_3 \) is unsat
Putting it all together

\[F_1 : \forall x \ A(e, x, x) \]
\[F_2 : \forall x \forall y \forall z (\neg A(x, y, z) \lor A(s(x), y, s(z))) \]
\[F_3 : \forall x \exists y \ A(s(s(e)), x, y) \]

show that \(F_1 \land F_2 \models F_3 \), i.e. that \(F_1 \land F_2 \land \neg F_3 \) is unsat

- **Step 1:** Skolemise separately
 \[\neg F_3 = \exists y \forall z \neg A(s(s(e)), y, z) \sim G_3 := \forall z \neg A(s(s(e)), c, z) \]
Putting it all together

\[F_1 : \forall x \ A(e, x, x) \]
\[F_2 : \forall x \forall y \forall z \ (\neg A(x, y, z) \lor A(s(x), y, s(z))) \]
\[F_3 : \forall x \exists y \ A(s(s(e)), x, y) \]

show that \(F_1 \land F_2 \models F_3 \), i.e. that \(F_1 \land F_2 \land \neg F_3 \) is unsat

- Step 1: Skolemise separately
 \[\neg F_3 = \exists y \forall z \neg A(s(s(e)), y, z) \leadsto G_3 := \forall z \neg A(s(s(e)), c, z) \]

- Step 2: Use resolution to derive empty clause

1. \{\neg A(s(s(e)), c, z_1)\} \hspace{1cm} \text{clause of } G_3
2. \{\neg A(x_2, y_2, z_2), A(s(x_2), y_2, s(z_2))\} \hspace{1cm} \text{clause of } F_2
3. \{\neg A(s(e), c, z_3)\}
4. \{\neg A(e, c, z_4)\}
5. \{A(e, y_5, y_5)\}
6. \lozenge

1,2 Res. w/ \([s(e)/x_2][c/y_2][s(z_2)/z_1][z_3/z_2]\)
2,3 Res. w/ \([e/x_2][c/y_2][s(z_2)/z_3][z_4/z_3] \]
4,5 Res. Sub \([c/y_5][c/z_4] \]
Soundness of resolution

Lemma (Resolution Lemma)

Let $F = \forall x_1 \ldots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \ldots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \ldots \forall x_n$ to $\forall \ast$. Clearly $\forall \ast (G \land R) \models F$.

For the converse direction it suffices to show $F \models R$ (exercise).

Suppose R is resolvent of clauses $C_1, C_2 \in G$, with $R = (C_1 \theta \{L\}) \cup (C_2 \theta' \{L\})$ for substitutions θ, θ' and complementary literals $L \in C_1 \theta$ and $L \in C_2 \theta'$. Let A be an assignment that satisfies $F = \forall \ast G$.

Since $C_1, C_2 \in G$, we have $A| = C_1 \theta \land C_2 \theta'$ (exercise, apply Translation Lemma; recall that A assigns values to free variables in $C_1 \theta \land C_2 \theta'$).

Since A satisfies at most one of L and L, it follows that A satisfies at least one of $C_1 \theta\{L\}$ and $C_2 \theta'\{L\}$.

Conclude that A satisfies R, as required.
Soundness of resolution

Lemma (Resolution Lemma)

Let $F = \forall x_1 \ldots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \ldots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \ldots \forall x_n$ to \forall^*. Clearly $\forall^*(G \land R) \models F$.
Soundness of resolution

Lemma (Resolution Lemma)

Let $F = \forall x_1 \ldots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \ldots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \ldots \forall x_n$ to \forall^*. Clearly $\forall^* (G \land R) \models F$. For the converse direction it suffices to show $F \models R$ (exercise).

Suppose R is resolvent of clauses $C_1, C_2 \in G$, with $R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta' \setminus \{\overline{L}\})$ for substitutions θ, θ' and complementary literals $L \in C_1 \theta$ and $\overline{L} \in C_2 \theta'$.
Lemma (Resolution Lemma)

Let $F = \forall x_1 \ldots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \ldots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \ldots \forall x_n$ to \forall^\ast. Clearly $\forall^\ast (G \land R) \models F$. For the converse direction it suffices to show $F \models R$ (exercise).

Suppose R is resolvent of clauses $C_1, C_2 \in G$, with $R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta' \setminus \{\overline{L}\})$ for substitutions θ, θ' and complementary literals $L \in C_1 \theta$ and $\overline{L} \in C_2 \theta'$.

Let \mathcal{A} be an assignment that satisfies $F = \forall^\ast G$.

Since $C_1, C_2 \in G$, we have $\mathcal{A} \models C_1 \theta \land C_2 \theta'$ (exercise, apply Translation Lemma; recall that \mathcal{A} assigns values to free variables in $C_1 \theta \land C_2 \theta'$).
Soundness of resolution

Lemma (Resolution Lemma)

Let $F = \forall x_1 \ldots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \ldots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \ldots \forall x_n$ to \forall^*. Clearly $\forall^* (G \land R) \models F$.

For the converse direction it suffices to show $F \models R$ (exercise).

Suppose R is resolvent of clauses $C_1, C_2 \in G$, with

$$R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta' \setminus \{\overline{L}\})$$

for substitutions θ, θ' and complementary literals $L \in C_1 \theta$ and $\overline{L} \in C_2 \theta'$.

Let A be an assignment that satisfies $F = \forall^* G$.

Since $C_1, C_2 \in G$, we have $A \models C_1 \theta \land C_2 \theta'$ (exercise, apply Translation Lemma; recall that A assigns values to free variables in $C_1 \theta \land C_2 \theta'$).

Since A satisfies at most one of L and \overline{L}, it follows that A satisfies at least one of $C_1 \theta \setminus \{L\}$ and $C_2 \theta' \setminus \{\overline{L}\}$.

14 / 16
Soundness of resolution

Lemma (Resolution Lemma)

Let $F = \forall x_1 \ldots \forall x_n G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_1 \ldots \forall x_n (G \land R)$.

Proof.

Abbreviate $\forall x_1 \ldots \forall x_n$ to \forall^*. Clearly $\forall^* (G \land R) \models F$.

For the converse direction it suffices to show $F \models R$ (exercise).

Suppose R is resolvent of clauses $C_1, C_2 \in G$, with $R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta' \setminus \{\overline{L}\})$ for substitutions θ, θ' and complementary literals $L \in C_1 \theta$ and $\overline{L} \in C_2 \theta'$.

Let \mathcal{A} be an assignment that satisfies $F = \forall^* G$.

Since $C_1, C_2 \in G$, we have $\mathcal{A} \models C_1 \theta \land C_2 \theta'$ (exercise, apply Translation Lemma; recall that \mathcal{A} assigns values to free variables in $C_1 \theta \land C_2 \theta'$).

Since \mathcal{A} satisfies at most one of L and \overline{L}, it follows that \mathcal{A} satisfies at least one of $C_1 \theta \setminus \{L\}$ and $C_2 \theta' \setminus \{\overline{L}\}$.

Conclude that \mathcal{A} satisfies R, as required.
Completeness of resolution

Lemma (Liting-lemma)

Let \(C_1, C_2 \) be predicate clauses and let \(C'_1, C'_2 \) be two ground instances of them that can be resolved into the resolvent \(R' \).

Then there is **predicate resolvent** \(R \) of \(C_1, C_2 \) such that \(R' \) is a ground instance of \(R \).
Completeness of resolution

Lemma (Liting-lemma)

Let C_1, C_2 be predicate clauses and let C_1', C_2' be two ground instances of them that can be resolved into the resolvent R'. Then there is *predicate resolvent* R of C_1, C_2 such that R' is a ground instance of R.

C_1 C_2

—: Resolution
→: Substitution
Completeness of resolution

Lemma (Liting-lemma)

Let C_1, C_2 be predicate clauses and let C'_1, C'_2 be two ground instances of them that can be resolved into the resolvent R'. Then there is predicate resolvent R of C_1, C_2 such that R' is a ground instance of R.

$C_1 \downarrow \downarrow C'_1 \quad C_2 \downarrow \downarrow C'_2$

—: Resolution
→: Substitution
Completeness of resolution

Lemma (Liting-lemma)

Let C_1, C_2 be predicate clauses and let C'_1, C'_2 be two ground instances of them that can be resolved into the resolvent R'. Then there is predicate resolvent R of C_1, C_2 such that R' is a ground instance of R.

$\begin{array}{c}
C_1 \\
\downarrow \\
C'_1
\end{array}$ $\hspace{1cm}$ $\begin{array}{c}
C_2 \\
\downarrow \\
C'_2
\end{array}$ $\hspace{1cm}$ $\begin{array}{c}
R' \\
\downarrow \\
C_1 \\
\downarrow \\
C_2
\end{array}$

\longrightarrow: Resolution

\rightarrow: Substitution
Completeness of resolution

Lemma (Liting-lemma)

Let C_1, C_2 be predicate clauses and let C'_1, C'_2 be two ground instances of them that can be resolved into the resolvent R'. Then there is predicate resolvent R of C_1, C_2 such that R' is a ground instance of R.

\[C_1 \downarrow \downarrow C_2 \]

--- Resolution

\[\rightarrow \text{: Substitution} \]
Completeness of resolution

Lemma (Liting-lemma)

Let C_1, C_2 be predicate clauses and let C'_1, C'_2 be two ground instances of them that can be resolved into the resolvent R'. Then there is predicate resolvent R of C_1, C_2 such that R' is a ground instance of R.

\[C_1 \xrightarrow{\text{Resolution}} C'_1 \xrightarrow{\text{Substitution}} R \xrightarrow{\text{Resolution}} R' \]

—: Resolution
→: Substitution
Lifting-Lemma: example

\[\\{ \neg P(f(x)), Q(x) \} \quad \{ P(f(g(y))) \} \]
Lifting-Lemma: example

\[
\begin{align*}
\{ \neg P(f(x)), Q(x) \} & \quad \{ P(f(g(y))) \} \\
\downarrow^{[x/g(a)]} & \quad \downarrow^{[y/a]} \\
\{ \neg P(f(g(a))), Q(g(a)) \} & \quad \{ P(f(g(a))) \}
\end{align*}
\]
Lifting-Lemma: example

\[
\{ \neg P(f(x)), Q(x) \} \quad \{ P(f(g(y))) \}
\]

\[
\downarrow [x/g(a)]
\]

\[
\{ \neg P(f(g(a))), Q(g(a)) \} \quad \{ P(f(g(a))) \}
\]

\[
\downarrow [y/a]
\]

\[
\{ Q(g(a)) \}
\]
Lifting-Lemma: example

\[
\{ \neg P(f(x)), Q(x) \} \quad \{ P(f(g(y))) \}
\]

\[
\{ \neg P(f(g(a))), Q(g(a)) \} \quad \{ Q(g(y)) \} \quad \{ P(f(g(a))) \}
\]

\[
\{ Q(g(a)) \}
\]
Lifting-Lemma: example

\[\{\neg P(f(x)), Q(x)\}\]

\[\{\neg P(f(g(a))), Q(g(a))\}\]

\[\{Q(g(y))\}\]

\[\{Q(g(a))\}\]

\[\{P(f(g(a)))\}\]

\[\{P(f(g(y)))\}\]

\[\{P(f(g(a)))\}\]

\[\{Q(g(y))\}\]

\[\{Q(g(a))\}\]

\[\{\neg P(f(g(a))), Q(g(a))\}\]