
Resolution for
predicate logic

12.1

Lecture 12
Resolution for predicate logic
Unification, resolution

Dr Christoph Haase
University of Oxford

(with small changes by Javier Esparza)

1 / 16



Resolution for
predicate logic

12.2

Drawbacks of ground resolution

Ground resolution good for showing semi-decidability, bad for
practical purposes

Requires “looking ahead” to see which ground terms will be
needed

Want to instantiate ground terms “by need”

Today:

Predicate-logic version of resolution

Forms basis of programming language Prolog

2 / 16



Resolution for
predicate logic

12.2

Drawbacks of ground resolution

Ground resolution good for showing semi-decidability, bad for
practical purposes

Requires “looking ahead” to see which ground terms will be
needed

Want to instantiate ground terms “by need”

Today:

Predicate-logic version of resolution

Forms basis of programming language Prolog

2 / 16



Resolution for
predicate logic

12.3

Substitution
Key concept substitution:

Used to replace variables by σ-terms

More general: substitution is function θ mapping σ-terms to
σ-terms such that

cθ = c
f (t1, . . . , tk )θ = f (t1θ, . . . , tkθ)

Extends canonically to arbitrary formulas, e.g.
P(x , c)θ = P(xθ, cθ), etc.

Denote by θ · θ′ substitution first performing θ and then θ′

Example

Let θ = [f (y)/x ], θ′ = [g(c, z)/y ], and P(x , c) be an atomic formula,
then P(x , c)θ = P(xθ, cθ) = P(f (y), c), θ · θ′ = [f (g(c, z))/x ], and
P(x , c)(θ · θ′) = P(f (g(c, z)), c).

3 / 16



Resolution for
predicate logic

12.3

Substitution
Key concept substitution:

Used to replace variables by σ-terms

More general: substitution is function θ mapping σ-terms to
σ-terms such that

cθ = c
f (t1, . . . , tk )θ = f (t1θ, . . . , tkθ)

Extends canonically to arbitrary formulas, e.g.
P(x , c)θ = P(xθ, cθ), etc.

Denote by θ · θ′ substitution first performing θ and then θ′

Example

Let θ = [f (y)/x ], θ′ = [g(c, z)/y ], and P(x , c) be an atomic formula,
then P(x , c)θ = P(xθ, cθ) = P(f (y), c), θ · θ′ = [f (g(c, z))/x ], and
P(x , c)(θ · θ′) = P(f (g(c, z)), c).

3 / 16



Resolution for
predicate logic

12.3

Substitution
Key concept substitution:

Used to replace variables by σ-terms

More general: substitution is function θ mapping σ-terms to
σ-terms such that

cθ = c
f (t1, . . . , tk )θ = f (t1θ, . . . , tkθ)

Extends canonically to arbitrary formulas, e.g.
P(x , c)θ = P(xθ, cθ), etc.

Denote by θ · θ′ substitution first performing θ and then θ′

Example

Let θ = [f (y)/x ], θ′ = [g(c, z)/y ], and P(x , c) be an atomic formula,

then P(x , c)θ = P(xθ, cθ) = P(f (y), c), θ · θ′ = [f (g(c, z))/x ], and
P(x , c)(θ · θ′) = P(f (g(c, z)), c).

3 / 16



Resolution for
predicate logic

12.3

Substitution
Key concept substitution:

Used to replace variables by σ-terms

More general: substitution is function θ mapping σ-terms to
σ-terms such that

cθ = c
f (t1, . . . , tk )θ = f (t1θ, . . . , tkθ)

Extends canonically to arbitrary formulas, e.g.
P(x , c)θ = P(xθ, cθ), etc.

Denote by θ · θ′ substitution first performing θ and then θ′

Example

Let θ = [f (y)/x ], θ′ = [g(c, z)/y ], and P(x , c) be an atomic formula,
then P(x , c)θ = P(xθ, cθ) = P(f (y), c), θ · θ′ = [f (g(c, z))/x ], and
P(x , c)(θ · θ′) = P(f (g(c, z)), c).

3 / 16



Resolution for
predicate logic

12.4

Substitution

For sets of literals D = {L1, . . . ,Lk}, define Dθ := {L1θ, . . . , Lkθ}

θ unifies D if Dθ = {L} for some literal L

Example

We have that θ = [f (a)/x ][a/y ] unifies {P(x),P(f (y))} since

{P(x)θ,P(f (y))θ} = {P(f (a)),P(f (a))} = {P(f (a))},

but θ′ = [f (y)/x ] is also unifier. Note that θ = θ′ · [a/y ].

Definition

We call θ a most general unifier (mgu) of D if θ is a unifier and for
all other unifiers θ′ there is unifier θ′′ such that θ′ = θ · θ′′.

Note:
Not unique in general but unique up to renaming of variables

Sometimes does not exist: {P(f (x)),P(g(x))}, {P(x),P(f (x))}

4 / 16



Resolution for
predicate logic

12.4

Substitution

For sets of literals D = {L1, . . . ,Lk}, define Dθ := {L1θ, . . . , Lkθ}

θ unifies D if Dθ = {L} for some literal L

Example

We have that θ = [f (a)/x ][a/y ] unifies {P(x),P(f (y))} since

{P(x)θ,P(f (y))θ} = {P(f (a)),P(f (a))} = {P(f (a))},

but θ′ = [f (y)/x ] is also unifier.

Note that θ = θ′ · [a/y ].

Definition

We call θ a most general unifier (mgu) of D if θ is a unifier and for
all other unifiers θ′ there is unifier θ′′ such that θ′ = θ · θ′′.

Note:
Not unique in general but unique up to renaming of variables

Sometimes does not exist: {P(f (x)),P(g(x))}, {P(x),P(f (x))}

4 / 16



Resolution for
predicate logic

12.4

Substitution

For sets of literals D = {L1, . . . ,Lk}, define Dθ := {L1θ, . . . , Lkθ}

θ unifies D if Dθ = {L} for some literal L

Example

We have that θ = [f (a)/x ][a/y ] unifies {P(x),P(f (y))} since

{P(x)θ,P(f (y))θ} = {P(f (a)),P(f (a))} = {P(f (a))},

but θ′ = [f (y)/x ] is also unifier. Note that θ = θ′ · [a/y ].

Definition

We call θ a most general unifier (mgu) of D if θ is a unifier and for
all other unifiers θ′ there is unifier θ′′ such that θ′ = θ · θ′′.

Note:
Not unique in general but unique up to renaming of variables

Sometimes does not exist: {P(f (x)),P(g(x))}, {P(x),P(f (x))}

4 / 16



Resolution for
predicate logic

12.4

Substitution

For sets of literals D = {L1, . . . ,Lk}, define Dθ := {L1θ, . . . , Lkθ}

θ unifies D if Dθ = {L} for some literal L

Example

We have that θ = [f (a)/x ][a/y ] unifies {P(x),P(f (y))} since

{P(x)θ,P(f (y))θ} = {P(f (a)),P(f (a))} = {P(f (a))},

but θ′ = [f (y)/x ] is also unifier. Note that θ = θ′ · [a/y ].

Definition

We call θ a most general unifier (mgu) of D if θ is a unifier and for
all other unifiers θ′ there is unifier θ′′ such that θ′ = θ · θ′′.

Note:
Not unique in general but unique up to renaming of variables

Sometimes does not exist: {P(f (x)),P(g(x))}, {P(x),P(f (x))}

4 / 16



Resolution for
predicate logic

12.4

Substitution

For sets of literals D = {L1, . . . ,Lk}, define Dθ := {L1θ, . . . , Lkθ}

θ unifies D if Dθ = {L} for some literal L

Example

We have that θ = [f (a)/x ][a/y ] unifies {P(x),P(f (y))} since

{P(x)θ,P(f (y))θ} = {P(f (a)),P(f (a))} = {P(f (a))},

but θ′ = [f (y)/x ] is also unifier. Note that θ = θ′ · [a/y ].

Definition

We call θ a most general unifier (mgu) of D if θ is a unifier and for
all other unifiers θ′ there is unifier θ′′ such that θ′ = θ · θ′′.

Note:
Not unique in general but unique up to renaming of variables

Sometimes does not exist: {P(f (x)),P(g(x))}, {P(x),P(f (x))}
4 / 16



Resolution for
predicate logic

12.5

Most general unifier

Theorem (Unification Theorem)

A unifiable set of literals D has a most general unifier.

Proof.

Unification Algorithm
Input: Set of literals D
Output: Either a most general unifier of D or “fail”
θ := identity substitution
while θ is not a unifier of D do
begin

pick two distinct literals in Dθ and
find left-most positions at which they differ

if one of the corresponding sub-terms is variable x and
other term t not containing x

then θ := θ · [t/x ] else output “fail” and halt
end

5 / 16



Resolution for
predicate logic

12.5

Most general unifier

Theorem (Unification Theorem)

A unifiable set of literals D has a most general unifier.

Proof.

Unification Algorithm
Input: Set of literals D
Output: Either a most general unifier of D or “fail”
θ := identity substitution
while θ is not a unifier of D do
begin

pick two distinct literals in Dθ and
find left-most positions at which they differ

if one of the corresponding sub-terms is variable x and
other term t not containing x

then θ := θ · [t/x ] else output “fail” and halt
end

5 / 16



Resolution for
predicate logic

12.6

Example

Example

Consider input D = {P(x , y),P(f (z), x)}:

{P(x , y),P(f (z), x)}, apply [f (z)/x ]
{P(f (z), y),P(f (z), f (z))}, apply [f (z)/y ]

{P(f (z), f (z))}

Thus [f (z)/x ][f (z)/y ] is a most general unifier of the set D.

6 / 16



Resolution for
predicate logic

12.6

Example

Example

Consider input D = {P(x , y),P(f (z), x)}:

{P(x , y),P(f (z), x)}, apply [f (z)/x ]
{P(f (z), y),P(f (z), f (z))}, apply [f (z)/y ]

{P(f (z), f (z))}

Thus [f (z)/x ][f (z)/y ] is a most general unifier of the set D.

6 / 16



Resolution for
predicate logic

12.7

Exercise

Unifiable? Yes No

P(f (x)) P(g(y))

P(x) P(f (y))

P(x , f (y)) P(f (u), z)

P(x , f (y)) P(f (u), f (z))

P(x , f (x)) P(f (y), y)

P(x ,g(x),g2(x)) P(f (z),w ,g(w))

P(x , f (y)) P(g(y), f (a)) P(g(a), z)

7 / 16



Resolution for
predicate logic

12.8

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ′ of Dθ, we have θ′ = θ · θ′.
Holds before entering while loop because θ is the identity
substitution.
Let θ′ be unifier. Assume θ′ = θ · θ′ holds at begin and algorithm
does not halt. We show θ′ = θ · θ′ holds again at end.
Since algorithm does not halt, we find x and t in Dθ.
Since θ′ is unifier of Dθ, we have tθ′ = xθ′.
So θ′ = [t/x ] · θ′, hence

(θ · [t/x ]) · θ′ = θ · ([t/x ] · θ′) = θ · θ′ = θ′ .

The assignment θ := θ · [t/x ] establishes θ′ = θ · θ′ again.

After termination: θ is unifier because of the loop condition, and loop
invariant implies θ is mgu.

8 / 16



Resolution for
predicate logic

12.8

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ′ of Dθ, we have θ′ = θ · θ′.

Holds before entering while loop because θ is the identity
substitution.
Let θ′ be unifier. Assume θ′ = θ · θ′ holds at begin and algorithm
does not halt. We show θ′ = θ · θ′ holds again at end.
Since algorithm does not halt, we find x and t in Dθ.
Since θ′ is unifier of Dθ, we have tθ′ = xθ′.
So θ′ = [t/x ] · θ′, hence

(θ · [t/x ]) · θ′ = θ · ([t/x ] · θ′) = θ · θ′ = θ′ .

The assignment θ := θ · [t/x ] establishes θ′ = θ · θ′ again.

After termination: θ is unifier because of the loop condition, and loop
invariant implies θ is mgu.

8 / 16



Resolution for
predicate logic

12.8

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ′ of Dθ, we have θ′ = θ · θ′.
Holds before entering while loop because θ is the identity
substitution.

Let θ′ be unifier. Assume θ′ = θ · θ′ holds at begin and algorithm
does not halt. We show θ′ = θ · θ′ holds again at end.
Since algorithm does not halt, we find x and t in Dθ.
Since θ′ is unifier of Dθ, we have tθ′ = xθ′.
So θ′ = [t/x ] · θ′, hence

(θ · [t/x ]) · θ′ = θ · ([t/x ] · θ′) = θ · θ′ = θ′ .

The assignment θ := θ · [t/x ] establishes θ′ = θ · θ′ again.

After termination: θ is unifier because of the loop condition, and loop
invariant implies θ is mgu.

8 / 16



Resolution for
predicate logic

12.8

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ′ of Dθ, we have θ′ = θ · θ′.
Holds before entering while loop because θ is the identity
substitution.
Let θ′ be unifier. Assume θ′ = θ · θ′ holds at begin and algorithm
does not halt. We show θ′ = θ · θ′ holds again at end.
Since algorithm does not halt, we find x and t in Dθ.

Since θ′ is unifier of Dθ, we have tθ′ = xθ′.
So θ′ = [t/x ] · θ′, hence

(θ · [t/x ]) · θ′ = θ · ([t/x ] · θ′) = θ · θ′ = θ′ .

The assignment θ := θ · [t/x ] establishes θ′ = θ · θ′ again.

After termination: θ is unifier because of the loop condition, and loop
invariant implies θ is mgu.

8 / 16



Resolution for
predicate logic

12.8

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ′ of Dθ, we have θ′ = θ · θ′.
Holds before entering while loop because θ is the identity
substitution.
Let θ′ be unifier. Assume θ′ = θ · θ′ holds at begin and algorithm
does not halt. We show θ′ = θ · θ′ holds again at end.
Since algorithm does not halt, we find x and t in Dθ.
Since θ′ is unifier of Dθ, we have tθ′ = xθ′.

So θ′ = [t/x ] · θ′, hence

(θ · [t/x ]) · θ′ = θ · ([t/x ] · θ′) = θ · θ′ = θ′ .

The assignment θ := θ · [t/x ] establishes θ′ = θ · θ′ again.

After termination: θ is unifier because of the loop condition, and loop
invariant implies θ is mgu.

8 / 16



Resolution for
predicate logic

12.8

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ′ of Dθ, we have θ′ = θ · θ′.
Holds before entering while loop because θ is the identity
substitution.
Let θ′ be unifier. Assume θ′ = θ · θ′ holds at begin and algorithm
does not halt. We show θ′ = θ · θ′ holds again at end.
Since algorithm does not halt, we find x and t in Dθ.
Since θ′ is unifier of Dθ, we have tθ′ = xθ′.
So θ′ = [t/x ] · θ′, hence

(θ · [t/x ]) · θ′ = θ · ([t/x ] · θ′) = θ · θ′ = θ′ .

The assignment θ := θ · [t/x ] establishes θ′ = θ · θ′ again.

After termination: θ is unifier because of the loop condition, and loop
invariant implies θ is mgu.

8 / 16



Resolution for
predicate logic

12.8

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a
variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ′ of Dθ, we have θ′ = θ · θ′.
Holds before entering while loop because θ is the identity
substitution.
Let θ′ be unifier. Assume θ′ = θ · θ′ holds at begin and algorithm
does not halt. We show θ′ = θ · θ′ holds again at end.
Since algorithm does not halt, we find x and t in Dθ.
Since θ′ is unifier of Dθ, we have tθ′ = xθ′.
So θ′ = [t/x ] · θ′, hence

(θ · [t/x ]) · θ′ = θ · ([t/x ] · θ′) = θ · θ′ = θ′ .

The assignment θ := θ · [t/x ] establishes θ′ = θ · θ′ again.

After termination: θ is unifier because of the loop condition, and loop
invariant implies θ is mgu.

8 / 16



Resolution for
predicate logic

12.9

Resolution

For set of literals D, D denotes complement of all literals in D.

Definition (Resolution)

Let C1, C2 be clauses with no variables in common.
R is a resolvent of C1 and C2 if there are D1 ⊆ C1 and D2 ⊆ C2 such
that D1 ∪ D2 has mgu θ and

R = (C1θ \ {L}) ∪ (C2θ \ {L})

with L = D1θ and L = D2θ.

Let C1,C2 be clauses with variables in common.
R is resolvent if there are renamings θ1, θ2 such that C1θ1,C2θ2 have
no variables in common, and R is resolvent of C1θ1 and C2θ2.

9 / 16



Resolution for
predicate logic

12.9

Resolution

For set of literals D, D denotes complement of all literals in D.

Definition (Resolution)

Let C1, C2 be clauses with no variables in common.
R is a resolvent of C1 and C2 if there are D1 ⊆ C1 and D2 ⊆ C2 such
that D1 ∪ D2 has mgu θ and

R = (C1θ \ {L}) ∪ (C2θ \ {L})

with L = D1θ and L = D2θ.

Let C1,C2 be clauses with variables in common.
R is resolvent if there are renamings θ1, θ2 such that C1θ1,C2θ2 have
no variables in common, and R is resolvent of C1θ1 and C2θ2.

9 / 16



Resolution for
predicate logic

12.9

Resolution

For set of literals D, D denotes complement of all literals in D.

Definition (Resolution)

Let C1, C2 be clauses with no variables in common.
R is a resolvent of C1 and C2 if there are D1 ⊆ C1 and D2 ⊆ C2 such
that D1 ∪ D2 has mgu θ and

R = (C1θ \ {L}) ∪ (C2θ \ {L})

with L = D1θ and L = D2θ.

Let C1,C2 be clauses with variables in common.
R is resolvent if there are renamings θ1, θ2 such that C1θ1,C2θ2 have
no variables in common, and R is resolvent of C1θ1 and C2θ2.

9 / 16



Resolution for
predicate logic

12.10

Example

{¬P(f (e), x , f (g(e)))}

[u/x ]

{¬P(f (e),u, f (g(e)))}
[e/x ][u/y ][g(e)/z]

{¬P(x , y , z), P(f (x), y , f (z))}

{¬P(e,u,g(e))}

Figure: First-order resolution example

Example

Given signature with constant symbol e, unary function symbols f
and g, and ternary predicate symbol P, compute resolvent of

C1 = {¬P(f (e), x , f (g(e)))} and C2 = {¬P(x , y , z),P(f (x), y , f (z))}

as in the figure above.
10 / 16



Resolution for
predicate logic

12.10

Example

{¬P(f (e), x , f (g(e)))}

[u/x ]

{¬P(f (e),u, f (g(e)))}
[e/x ][u/y ][g(e)/z]

{¬P(x , y , z), P(f (x), y , f (z))}

{¬P(e,u,g(e))}

Figure: First-order resolution example

Example

Given signature with constant symbol e, unary function symbols f
and g, and ternary predicate symbol P, compute resolvent of

C1 = {¬P(f (e), x , f (g(e)))} and C2 = {¬P(x , y , z),P(f (x), y , f (z))}

as in the figure above.
10 / 16



Resolution for
predicate logic

12.11

Exercise

Have the following pairs of predicate clauses a resolvent?
How many resolvents are there?

C1 C2 Resolvents

{P(x),Q(x , y)} {¬P(f (x))}

{Q(g(x)),R(f (x))} {¬Q(f (x))}

{P(x),P(f (x))} {¬P(y),Q(y , z)}

11 / 16



Resolution for
predicate logic

12.12

Predicate-resolution derivation

Use resolution in order to derive clause C from set of clauses F :

Sequence of clauses C1, . . . ,Cm such that C = Cm

Each Ci is either from F or obtained from resolution of Cj and Ck ,
j , k < i
Res∗(F ) is set of all clauses derivable from F

12 / 16



Resolution for
predicate logic

12.13

Putting it all together

F1 : ∀x A(e, x , x)
F2 : ∀x∀y∀z (¬A(x , y , z) ∨ A(s(x), y , s(z)))
F3 : ∀x∃y A(s(s(e)), x , y)

show that F1 ∧ F2 |= F3, i.e. that F1 ∧ F2 ∧ ¬F3 is unsat

Step 1: Skolemise separately

¬F3 = ∃y∀z ¬A(s(s(e)), y , z) G3 := ∀z ¬A(s(s(e)), c, z)

Step 2: Use resolution to derive empty clause

1. {¬A(s(s(e)), c, z1)} clause of G3

2. {¬A(x2, y2, z2),A(s(x2), y2, s(z2))} clause of F2

3. {¬A(s(e), c, z3)} 1,2 Res. w/ [s(e)/x2][c/y2][s(z2)/z1][z3/z2]

4. {¬A(e, c, z4)} 2,3 Res. w/ [e/x2][c/y2][s(z2)/z3][z4/z3]

5. {A(e, y5, y5)} clause of F1

6. � 4,5 Res. Sub [c/y5][c/z4]

13 / 16



Resolution for
predicate logic

12.13

Putting it all together

F1 : ∀x A(e, x , x)
F2 : ∀x∀y∀z (¬A(x , y , z) ∨ A(s(x), y , s(z)))
F3 : ∀x∃y A(s(s(e)), x , y)

show that F1 ∧ F2 |= F3, i.e. that F1 ∧ F2 ∧ ¬F3 is unsat

Step 1: Skolemise separately

¬F3 = ∃y∀z ¬A(s(s(e)), y , z) G3 := ∀z ¬A(s(s(e)), c, z)

Step 2: Use resolution to derive empty clause

1. {¬A(s(s(e)), c, z1)} clause of G3

2. {¬A(x2, y2, z2),A(s(x2), y2, s(z2))} clause of F2

3. {¬A(s(e), c, z3)} 1,2 Res. w/ [s(e)/x2][c/y2][s(z2)/z1][z3/z2]

4. {¬A(e, c, z4)} 2,3 Res. w/ [e/x2][c/y2][s(z2)/z3][z4/z3]

5. {A(e, y5, y5)} clause of F1

6. � 4,5 Res. Sub [c/y5][c/z4]

13 / 16



Resolution for
predicate logic

12.13

Putting it all together

F1 : ∀x A(e, x , x)
F2 : ∀x∀y∀z (¬A(x , y , z) ∨ A(s(x), y , s(z)))
F3 : ∀x∃y A(s(s(e)), x , y)

show that F1 ∧ F2 |= F3, i.e. that F1 ∧ F2 ∧ ¬F3 is unsat

Step 1: Skolemise separately

¬F3 = ∃y∀z ¬A(s(s(e)), y , z) G3 := ∀z ¬A(s(s(e)), c, z)

Step 2: Use resolution to derive empty clause

1. {¬A(s(s(e)), c, z1)} clause of G3

2. {¬A(x2, y2, z2),A(s(x2), y2, s(z2))} clause of F2

3. {¬A(s(e), c, z3)} 1,2 Res. w/ [s(e)/x2][c/y2][s(z2)/z1][z3/z2]

4. {¬A(e, c, z4)} 2,3 Res. w/ [e/x2][c/y2][s(z2)/z3][z4/z3]

5. {A(e, y5, y5)} clause of F1

6. � 4,5 Res. Sub [c/y5][c/z4]

13 / 16



Resolution for
predicate logic

12.14

Soundness of resolution

Lemma (Resolution Lemma)

Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem form, with G
quantifier-free. Let R be a resolvent of two clauses in G. Then
F ≡ ∀x1 . . . ∀xn(G ∧ R).

Proof.

Abbreviate ∀x1 . . . ∀xn to ∀∗. Clearly ∀∗(G ∧ R) |= F .
For the converse direction it suffices to show F |= R (exercise).
Suppose R is resolvent of clauses C1,C2 ∈ G, with
R = (C1θ \ {L}) ∪ (C2θ

′ \ {L}) for substitutions θ, θ′ and
complementary literals L ∈ C1θ and L ∈ C2θ

′.
Let A be an assignment that satisfies F = ∀∗G.
Since C1,C2 ∈ G, we have A |= C1θ ∧ C2θ

′ (exercise, apply
Translation Lemma; recall that A assigns values to free variables in
C1θ ∧ C2θ

′).
Since A satisfies at most one of L and L, it follows that A satisfies at
least one of C1θ \ {L} and C2θ

′ \ {L}.
Conclude that A satisfies R, as required.

14 / 16



Resolution for
predicate logic

12.14

Soundness of resolution

Lemma (Resolution Lemma)

Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem form, with G
quantifier-free. Let R be a resolvent of two clauses in G. Then
F ≡ ∀x1 . . . ∀xn(G ∧ R).

Proof.

Abbreviate ∀x1 . . . ∀xn to ∀∗. Clearly ∀∗(G ∧ R) |= F .

For the converse direction it suffices to show F |= R (exercise).
Suppose R is resolvent of clauses C1,C2 ∈ G, with
R = (C1θ \ {L}) ∪ (C2θ

′ \ {L}) for substitutions θ, θ′ and
complementary literals L ∈ C1θ and L ∈ C2θ

′.
Let A be an assignment that satisfies F = ∀∗G.
Since C1,C2 ∈ G, we have A |= C1θ ∧ C2θ

′ (exercise, apply
Translation Lemma; recall that A assigns values to free variables in
C1θ ∧ C2θ

′).
Since A satisfies at most one of L and L, it follows that A satisfies at
least one of C1θ \ {L} and C2θ

′ \ {L}.
Conclude that A satisfies R, as required.

14 / 16



Resolution for
predicate logic

12.14

Soundness of resolution

Lemma (Resolution Lemma)

Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem form, with G
quantifier-free. Let R be a resolvent of two clauses in G. Then
F ≡ ∀x1 . . . ∀xn(G ∧ R).

Proof.

Abbreviate ∀x1 . . . ∀xn to ∀∗. Clearly ∀∗(G ∧ R) |= F .
For the converse direction it suffices to show F |= R (exercise).
Suppose R is resolvent of clauses C1,C2 ∈ G, with
R = (C1θ \ {L}) ∪ (C2θ

′ \ {L}) for substitutions θ, θ′ and
complementary literals L ∈ C1θ and L ∈ C2θ

′.

Let A be an assignment that satisfies F = ∀∗G.
Since C1,C2 ∈ G, we have A |= C1θ ∧ C2θ

′ (exercise, apply
Translation Lemma; recall that A assigns values to free variables in
C1θ ∧ C2θ

′).
Since A satisfies at most one of L and L, it follows that A satisfies at
least one of C1θ \ {L} and C2θ

′ \ {L}.
Conclude that A satisfies R, as required.

14 / 16



Resolution for
predicate logic

12.14

Soundness of resolution

Lemma (Resolution Lemma)

Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem form, with G
quantifier-free. Let R be a resolvent of two clauses in G. Then
F ≡ ∀x1 . . . ∀xn(G ∧ R).

Proof.

Abbreviate ∀x1 . . . ∀xn to ∀∗. Clearly ∀∗(G ∧ R) |= F .
For the converse direction it suffices to show F |= R (exercise).
Suppose R is resolvent of clauses C1,C2 ∈ G, with
R = (C1θ \ {L}) ∪ (C2θ

′ \ {L}) for substitutions θ, θ′ and
complementary literals L ∈ C1θ and L ∈ C2θ

′.
Let A be an assignment that satisfies F = ∀∗G.
Since C1,C2 ∈ G, we have A |= C1θ ∧ C2θ

′ (exercise, apply
Translation Lemma; recall that A assigns values to free variables in
C1θ ∧ C2θ

′).

Since A satisfies at most one of L and L, it follows that A satisfies at
least one of C1θ \ {L} and C2θ

′ \ {L}.
Conclude that A satisfies R, as required.

14 / 16



Resolution for
predicate logic

12.14

Soundness of resolution

Lemma (Resolution Lemma)

Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem form, with G
quantifier-free. Let R be a resolvent of two clauses in G. Then
F ≡ ∀x1 . . . ∀xn(G ∧ R).

Proof.

Abbreviate ∀x1 . . . ∀xn to ∀∗. Clearly ∀∗(G ∧ R) |= F .
For the converse direction it suffices to show F |= R (exercise).
Suppose R is resolvent of clauses C1,C2 ∈ G, with
R = (C1θ \ {L}) ∪ (C2θ

′ \ {L}) for substitutions θ, θ′ and
complementary literals L ∈ C1θ and L ∈ C2θ

′.
Let A be an assignment that satisfies F = ∀∗G.
Since C1,C2 ∈ G, we have A |= C1θ ∧ C2θ

′ (exercise, apply
Translation Lemma; recall that A assigns values to free variables in
C1θ ∧ C2θ

′).
Since A satisfies at most one of L and L, it follows that A satisfies at
least one of C1θ \ {L} and C2θ

′ \ {L}.

Conclude that A satisfies R, as required.

14 / 16



Resolution for
predicate logic

12.14

Soundness of resolution

Lemma (Resolution Lemma)

Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem form, with G
quantifier-free. Let R be a resolvent of two clauses in G. Then
F ≡ ∀x1 . . . ∀xn(G ∧ R).

Proof.

Abbreviate ∀x1 . . . ∀xn to ∀∗. Clearly ∀∗(G ∧ R) |= F .
For the converse direction it suffices to show F |= R (exercise).
Suppose R is resolvent of clauses C1,C2 ∈ G, with
R = (C1θ \ {L}) ∪ (C2θ

′ \ {L}) for substitutions θ, θ′ and
complementary literals L ∈ C1θ and L ∈ C2θ

′.
Let A be an assignment that satisfies F = ∀∗G.
Since C1,C2 ∈ G, we have A |= C1θ ∧ C2θ

′ (exercise, apply
Translation Lemma; recall that A assigns values to free variables in
C1θ ∧ C2θ

′).
Since A satisfies at most one of L and L, it follows that A satisfies at
least one of C1θ \ {L} and C2θ

′ \ {L}.
Conclude that A satisfies R, as required.

14 / 16



Resolution for
predicate logic

12.15

Completeness of resolution

Lemma (Liting-lemma)

Let C1,C2 be predicate clauses and let C′1,C
′
2 be two ground

instances of them that can be resolved into the resolvent R′.
Then there is predicate resolvent R of C1,C2 such that R′ is a ground
instance of R.

—: Resolution
→: Substitution

15 / 16



Resolution for
predicate logic

12.15

Completeness of resolution

Lemma (Liting-lemma)

Let C1,C2 be predicate clauses and let C′1,C
′
2 be two ground

instances of them that can be resolved into the resolvent R′.
Then there is predicate resolvent R of C1,C2 such that R′ is a ground
instance of R.

C1 C2

—: Resolution
→: Substitution

15 / 16



Resolution for
predicate logic

12.15

Completeness of resolution

Lemma (Liting-lemma)

Let C1,C2 be predicate clauses and let C′1,C
′
2 be two ground

instances of them that can be resolved into the resolvent R′.
Then there is predicate resolvent R of C1,C2 such that R′ is a ground
instance of R.

C1

��

C2

��
C′1 C′2

—: Resolution
→: Substitution

15 / 16



Resolution for
predicate logic

12.15

Completeness of resolution

Lemma (Liting-lemma)

Let C1,C2 be predicate clauses and let C′1,C
′
2 be two ground

instances of them that can be resolved into the resolvent R′.
Then there is predicate resolvent R of C1,C2 such that R′ is a ground
instance of R.

C1

��

C2

��
C′1 C′2

R′

—: Resolution
→: Substitution

15 / 16



Resolution for
predicate logic

12.15

Completeness of resolution

Lemma (Liting-lemma)

Let C1,C2 be predicate clauses and let C′1,C
′
2 be two ground

instances of them that can be resolved into the resolvent R′.
Then there is predicate resolvent R of C1,C2 such that R′ is a ground
instance of R.

C1

��

C2

��
C′1 R C′2

R′

—: Resolution
→: Substitution

15 / 16



Resolution for
predicate logic

12.15

Completeness of resolution

Lemma (Liting-lemma)

Let C1,C2 be predicate clauses and let C′1,C
′
2 be two ground

instances of them that can be resolved into the resolvent R′.
Then there is predicate resolvent R of C1,C2 such that R′ is a ground
instance of R.

C1

��

C2

��
C′1 R

��

C′2

R′

—: Resolution
→: Substitution

15 / 16



Resolution for
predicate logic

12.16

Lifting-Lemma: example

{¬P(f (x)),Q(x)} {P(f (g(y)))}

16 / 16



Resolution for
predicate logic

12.16

Lifting-Lemma: example

{¬P(f (x)),Q(x)}

[x/g(a)]
��

{P(f (g(y)))}

[y/a]
��

{¬P(f (g(a))),Q(g(a))} {P(f (g(a)))}

16 / 16



Resolution for
predicate logic

12.16

Lifting-Lemma: example

{¬P(f (x)),Q(x)}

[x/g(a)]
��

{P(f (g(y)))}

[y/a]
��

{¬P(f (g(a))),Q(g(a))} {P(f (g(a)))}

{Q(g(a))}

16 / 16



Resolution for
predicate logic

12.16

Lifting-Lemma: example

{¬P(f (x)),Q(x)}

[x/g(a)]
��

{P(f (g(y)))}

[y/a]
��

{¬P(f (g(a))),Q(g(a))} {Q(g(y))} {P(f (g(a)))}

{Q(g(a))}

16 / 16



Resolution for
predicate logic

12.16

Lifting-Lemma: example

{¬P(f (x)),Q(x)}

[x/g(a)]
��

{P(f (g(y)))}

[y/a]
��

{¬P(f (g(a))),Q(g(a))} {Q(g(y))}

[y/a]
��

{P(f (g(a)))}

{Q(g(a))}

16 / 16


