Lecture 12 Resolution for predicate logic

Unification, resolution

Dr Christoph Haase
University of Oxford
(with small changes by Javier Esparza)

Drawbacks of ground resolution

- Ground resolution good for showing semi-decidability, bad for practical purposes
- Requires "looking ahead" to see which ground terms will be needed
- Want to instantiate ground terms "by need"

Drawbacks of ground resolution

- Ground resolution good for showing semi-decidability, bad for practical purposes
- Requires "looking ahead" to see which ground terms will be needed
- Want to instantiate ground terms "by need"

Today:

- Predicate-logic version of resolution
- Forms basis of programming language Prolog

Substitution

Key concept substitution:

- Used to replace variables by σ-terms
- More general: substitution is function θ mapping σ-terms to σ-terms such that

$$
\begin{aligned}
c \theta & =c \\
f\left(t_{1}, \ldots, t_{k}\right) \theta & =f\left(t_{1} \theta, \ldots, t_{k} \theta\right)
\end{aligned}
$$

Substitution

Key concept substitution:

- Used to replace variables by σ-terms
- More general: substitution is function θ mapping σ-terms to σ-terms such that

$$
\begin{aligned}
c \theta & =c \\
f\left(t_{1}, \ldots, t_{k}\right) \theta & =f\left(t_{1} \theta, \ldots, t_{k} \theta\right)
\end{aligned}
$$

- Extends canonically to arbitrary formulas, e.g. $P(x, c) \theta=P(x \theta, c \theta)$, etc.
- Denote by $\theta \cdot \theta^{\prime}$ substitution first performing θ and then θ^{\prime}

Substitution

Key concept substitution:

- Used to replace variables by σ-terms
- More general: substitution is function θ mapping σ-terms to σ-terms such that

$$
\begin{aligned}
c \theta & =c \\
f\left(t_{1}, \ldots, t_{k}\right) \theta & =f\left(t_{1} \theta, \ldots, t_{k} \theta\right)
\end{aligned}
$$

- Extends canonically to arbitrary formulas, e.g. $P(x, c) \theta=P(x \theta, c \theta)$, etc.
- Denote by $\theta \cdot \theta^{\prime}$ substitution first performing θ and then θ^{\prime}

Example

Let $\theta=[f(y) / x], \theta^{\prime}=[g(c, z) / y]$, and $P(x, c)$ be an atomic formula,

Substitution

Key concept substitution:

- Used to replace variables by σ-terms
- More general: substitution is function θ mapping σ-terms to σ-terms such that

$$
\begin{aligned}
c \theta & =c \\
f\left(t_{1}, \ldots, t_{k}\right) \theta & =f\left(t_{1} \theta, \ldots, t_{k} \theta\right)
\end{aligned}
$$

- Extends canonically to arbitrary formulas, e.g.

$$
P(x, c) \theta=P(x \theta, c \theta), \text { etc. }
$$

- Denote by $\theta \cdot \theta^{\prime}$ substitution first performing θ and then θ^{\prime}

Example

Let $\theta=[f(y) / x], \theta^{\prime}=[g(c, z) / y]$, and $P(x, c)$ be an atomic formula, then $P(x, c) \theta=P(x \theta, c \theta)=P(f(y), c), \theta \cdot \theta^{\prime}=[f(g(c, z)) / x]$, and $P(x, c)\left(\theta \cdot \theta^{\prime}\right)=P(f(g(c, z)), c)$.

Substitution

- For sets of literals $D=\left\{L_{1}, \ldots, L_{k}\right\}$, define $D \theta:=\left\{L_{1} \theta, \ldots, L_{k} \theta\right\}$
- θ unifies D if $D \theta=\{L\}$ for some literal L

Substitution

- For sets of literals $D=\left\{L_{1}, \ldots, L_{k}\right\}$, define $D \theta:=\left\{L_{1} \theta, \ldots, L_{k} \theta\right\}$
- θ unifies D if $D \theta=\{L\}$ for some literal L

Example

We have that $\theta=[f(a) / x][a / y]$ unifies $\{P(x), P(f(y))\}$ since

$$
\{P(x) \theta, P(f(y)) \theta\}=\{P(f(a)), P(f(a))\}=\{P(f(a))\}
$$

but $\theta^{\prime}=[f(y) / x]$ is also unifier.

Substitution

- For sets of literals $D=\left\{L_{1}, \ldots, L_{k}\right\}$, define $D \theta:=\left\{L_{1} \theta, \ldots, L_{k} \theta\right\}$
- θ unifies D if $D \theta=\{L\}$ for some literal L

Example

We have that $\theta=[f(a) / x][a / y]$ unifies $\{P(x), P(f(y))\}$ since

$$
\{P(x) \theta, P(f(y)) \theta\}=\{P(f(a)), P(f(a))\}=\{P(f(a))\}
$$

but $\theta^{\prime}=[f(y) / x]$ is also unifier. Note that $\theta=\theta^{\prime} \cdot[a / y]$.

Substitution

- For sets of literals $D=\left\{L_{1}, \ldots, L_{k}\right\}$, define $D \theta:=\left\{L_{1} \theta, \ldots, L_{k} \theta\right\}$
- θ unifies D if $D \theta=\{L\}$ for some literal L

Example

We have that $\theta=[f(a) / x][a / y]$ unifies $\{P(x), P(f(y))\}$ since

$$
\{P(x) \theta, P(f(y)) \theta\}=\{P(f(a)), P(f(a))\}=\{P(f(a))\}
$$

but $\theta^{\prime}=[f(y) / x]$ is also unifier. Note that $\theta=\theta^{\prime} \cdot[a / y]$.

Definition

We call θ a most general unifier (mgu) of D if θ is a unifier and for all other unifiers θ^{\prime} there is unifier $\theta^{\prime \prime}$ such that $\theta^{\prime}=\theta \cdot \theta^{\prime \prime}$.

Substitution

- For sets of literals $D=\left\{L_{1}, \ldots, L_{k}\right\}$, define $D \theta:=\left\{L_{1} \theta, \ldots, L_{k} \theta\right\}$
- θ unifies D if $D \theta=\{L\}$ for some literal L

Example

We have that $\theta=[f(a) / x][a / y]$ unifies $\{P(x), P(f(y))\}$ since

$$
\{P(x) \theta, P(f(y)) \theta\}=\{P(f(a)), P(f(a))\}=\{P(f(a))\}
$$

but $\theta^{\prime}=[f(y) / x]$ is also unifier. Note that $\theta=\theta^{\prime} \cdot[a / y]$.

Definition

We call θ a most general unifier (mgu) of D if θ is a unifier and for all other unifiers θ^{\prime} there is unifier $\theta^{\prime \prime}$ such that $\theta^{\prime}=\theta \cdot \theta^{\prime \prime}$.

Note:

- Not unique in general but unique up to renaming of variables
- Sometimes does not exist: $\{P(f(x)), P(g(x))\},\{P(x), P(f(x))\}$

Most general unifier

Theorem (Unification Theorem)
A unifiable set of literals D has a most general unifier.

Most general unifier

Theorem (Unification Theorem)
A unifiable set of literals D has a most general unifier.

Proof.

Unification Algorithm

Input: Set of literals D
Output: Either a most general unifier of D or "fail"
θ := identity substitution
while θ is not a unifier of D do begin
pick two distinct literals in $D \theta$ and find left-most positions at which they differ
if one of the corresponding sub-terms is variable x and other term t not containing x
then $\theta:=\theta \cdot[t / x]$ else output "fail" and halt end

Example

Example

Consider input $D=\{P(x, y), P(f(z), x)\}$:

$$
\begin{aligned}
& \{P(\underline{x}, y), P(\underline{f}(z), x)\}, \text { apply }[f(z) / x] \\
& \{P(f(z), \underline{y}), P(f(z), \underline{f}(z))\}, \text { apply }[f(z) / y] \\
& \{P(f(z), f(z))\}
\end{aligned}
$$

Thus $[f(z) / x][f(z) / y]$ is a most general unifier of the set D.

Example

Example

Consider input $D=\{P(x, y), P(f(z), x)\}$:

$$
\begin{aligned}
& \{P(\underline{x}, y), P(\underline{f}(z), x)\}, \text { apply }[f(z) / x] \\
& \{P(f(z), \underline{y}), P(f(z), \underline{f}(z))\}, \text { apply }[f(z) / y] \\
& \{P(f(z), f(z))\}
\end{aligned}
$$

Thus $[f(z) / x][f(z) / y]$ is a most general unifier of the set D.

Exercise

Unifiable?		Yes	No
$P(f(x))$	$P(g(y))$		
$P(x)$	$P(f(y))$		
$P(x, f(y))$	$P(f(u), z)$		
$P(x, f(y))$	$P(f(u), f(z))$		
$P(x, f(x))$	$P(f(y), y)$		
$P\left(x, g(x), g^{2}(x)\right)$	$P(f(z), w, g(w))$		
$P(x, f(y))$	$P(g(y), f(a))$	$P(g(a), z)$	

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ^{\prime} of $D \theta$, we have $\theta^{\prime}=\theta \cdot \theta^{\prime}$.

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ^{\prime} of $D \theta$, we have $\theta^{\prime}=\theta \cdot \theta^{\prime}$.

- Holds before entering while loop because θ is the identity substitution.

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ^{\prime} of $D \theta$, we have $\theta^{\prime}=\theta \cdot \theta^{\prime}$.

- Holds before entering while loop because θ is the identity substitution.
- Let θ^{\prime} be unifier. Assume $\theta^{\prime}=\theta \cdot \theta^{\prime}$ holds at begin and algorithm does not halt. We show $\theta^{\prime}=\theta \cdot \theta^{\prime}$ holds again at end.
- Since algorithm does not halt, we find x and t in $D \theta$.

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ^{\prime} of $D \theta$, we have $\theta^{\prime}=\theta \cdot \theta^{\prime}$.

- Holds before entering while loop because θ is the identity substitution.
- Let θ^{\prime} be unifier. Assume $\theta^{\prime}=\theta \cdot \theta^{\prime}$ holds at begin and algorithm does not halt. We show $\theta^{\prime}=\theta \cdot \theta^{\prime}$ holds again at end.
- Since algorithm does not halt, we find x and t in $D \theta$.
- Since θ^{\prime} is unifier of $D \theta$, we have $t \theta^{\prime}=x \theta^{\prime}$.

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ^{\prime} of $D \theta$, we have $\theta^{\prime}=\theta \cdot \theta^{\prime}$.

- Holds before entering while loop because θ is the identity substitution.
- Let θ^{\prime} be unifier. Assume $\theta^{\prime}=\theta \cdot \theta^{\prime}$ holds at begin and algorithm does not halt. We show $\theta^{\prime}=\theta \cdot \theta^{\prime}$ holds again at end.
- Since algorithm does not halt, we find x and t in $D \theta$.
- Since θ^{\prime} is unifier of $D \theta$, we have $t \theta^{\prime}=x \theta^{\prime}$.
- So $\theta^{\prime}=[t / x] \cdot \theta^{\prime}$, hence

$$
(\theta \cdot[t / x]) \cdot \theta^{\prime}=\theta \cdot\left([t / x] \cdot \theta^{\prime}\right)=\theta \cdot \theta^{\prime}=\theta^{\prime} .
$$

Proof of unification theorem

Termination: at each loop iteration the algorithm either halts, or a variable x gets replaced by a term in which x does not occur

Loop invariant: for any unifier θ^{\prime} of $D \theta$, we have $\theta^{\prime}=\theta \cdot \theta^{\prime}$.

- Holds before entering while loop because θ is the identity substitution.
- Let θ^{\prime} be unifier. Assume $\theta^{\prime}=\theta \cdot \theta^{\prime}$ holds at begin and algorithm does not halt. We show $\theta^{\prime}=\theta \cdot \theta^{\prime}$ holds again at end.
- Since algorithm does not halt, we find x and t in $D \theta$.
- Since θ^{\prime} is unifier of $D \theta$, we have $t \theta^{\prime}=x \theta^{\prime}$.
- So $\theta^{\prime}=[t / x] \cdot \theta^{\prime}$, hence

$$
(\theta \cdot[t / x]) \cdot \theta^{\prime}=\theta \cdot\left([t / x] \cdot \theta^{\prime}\right)=\theta \cdot \theta^{\prime}=\theta^{\prime} .
$$

- The assignment $\theta:=\theta \cdot[t / x]$ establishes $\theta^{\prime}=\theta \cdot \theta^{\prime}$ again.

After termination: θ is unifier because of the loop condition, and loop invariant implies θ is mgu.

Resolution

For set of literals D, \bar{D} denotes complement of all literals in D.

Resolution

For set of literals D, \bar{D} denotes complement of all literals in D.

Definition (Resolution)

Let C_{1}, C_{2} be clauses with no variables in common.
R is a resolvent of C_{1} and C_{2} if there are $D_{1} \subseteq C_{1}$ and $D_{2} \subseteq C_{2}$ such that $D_{1} \cup \overline{D_{2}}$ has mgu θ and

$$
\begin{aligned}
& \qquad R=\left(C_{1} \theta \backslash\{L\}\right) \cup\left(C_{2} \theta \backslash\{\bar{L}\}\right) \\
& \text { with } L=D_{1} \theta \text { and } \bar{L}=D_{2} \theta \text {. }
\end{aligned}
$$

Resolution

For set of literals D, \bar{D} denotes complement of all literals in D.

Definition (Resolution)

Let C_{1}, C_{2} be clauses with no variables in common.
R is a resolvent of C_{1} and C_{2} if there are $D_{1} \subseteq C_{1}$ and $D_{2} \subseteq C_{2}$ such that $D_{1} \cup \overline{D_{2}}$ has mgu θ and

$$
R=\left(C_{1} \theta \backslash\{L\}\right) \cup\left(C_{2} \theta \backslash\{\bar{L}\}\right)
$$

with $L=D_{1} \theta$ and $\bar{L}=D_{2} \theta$.
Let C_{1}, C_{2} be clauses with variables in common.
R is resolvent if there are renamings θ_{1}, θ_{2} such that $C_{1} \theta_{1}, C_{2} \theta_{2}$ have no variables in common, and R is resolvent of $C_{1} \theta_{1}$ and $C_{2} \theta_{2}$.

Example

Example

Given signature with constant symbol e, unary function symbols f and g, and ternary predicate symbol P, compute resolvent of

$$
C_{1}=\{\neg P(f(e), x, f(g(e)))\} \text { and } C_{2}=\{\neg P(x, y, z), P(f(x), y, f(z))\}
$$

as in the figure above.

Example

$$
\begin{aligned}
& \{\neg P(f(e), x, f(g(e)))\} \\
& \quad \mid[u / x] \\
& \{\neg P(f(e), u, f(g(e)))\}
\end{aligned}
$$

Figure: First-order resolution example

Example

Given signature with constant symbol e, unary function symbols f and g, and ternary predicate symbol P, compute resolvent of

$$
C_{1}=\{\neg P(f(e), x, f(g(e)))\} \text { and } C_{2}=\{\neg P(x, y, z), P(f(x), y, f(z))\}
$$

as in the figure above.

Exercise

Have the following pairs of predicate clauses a resolvent? How many resolvents are there?

C_{1}	C_{2}	Resolvents
$\{P(x), Q(x, y)\}$	$\{\neg P(f(x))\}$	
$\{Q(g(x)), R(f(x))\}$	$\{\neg Q(f(x))\}$	
$\{P(x), P(f(x))\}$	$\{\neg P(y), Q(y, z)\}$	

Predicate-resolution derivation

Use resolution in order to derive clause C from set of clauses F :

- Sequence of clauses C_{1}, \ldots, C_{m} such that $C=C_{m}$
- Each C_{i} is either from F or obtained from resolution of C_{j} and C_{k}, $j, k<i$
- Res* $^{*}(F)$ is set of all clauses derivable from F

Putting it all together

$$
\begin{aligned}
& F_{1}: \forall x A(e, x, x) \\
& F_{2}: \forall x \forall y \forall z(\neg A(x, y, z) \vee A(s(x), y, s(z))) \\
& F_{3}: \forall x \exists y A(s(s(e)), x, y)
\end{aligned}
$$

show that $F_{1} \wedge F_{2} \models F_{3}$, i.e. that $F_{1} \wedge F_{2} \wedge \neg F_{3}$ is unsat

Putting it all together

$$
\begin{aligned}
& F_{1}: \forall x A(e, x, x) \\
& F_{2}: \forall x \forall y \forall z(\neg A(x, y, z) \vee A(s(x), y, s(z))) \\
& F_{3}: \forall x \exists y A(s(s(e)), x, y)
\end{aligned}
$$

show that $F_{1} \wedge F_{2} \models F_{3}$, i.e. that $F_{1} \wedge F_{2} \wedge \neg F_{3}$ is unsat

- Step 1: Skolemise separately

$$
\neg F_{3}=\exists y \forall z \neg A(s(s(e)), y, z) \rightsquigarrow G_{3}:=\forall z \neg A(s(s(e)), c, z)
$$

Putting it all together

$$
\begin{aligned}
& F_{1}: \forall x A(e, x, x) \\
& F_{2}: \forall x \forall y \forall z(\neg A(x, y, z) \vee A(s(x), y, s(z))) \\
& F_{3}: \forall x \exists y A(s(s(e)), x, y)
\end{aligned}
$$

show that $F_{1} \wedge F_{2} \models F_{3}$, i.e. that $F_{1} \wedge F_{2} \wedge \neg F_{3}$ is unsat

- Step 1: Skolemise separately

$$
\neg F_{3}=\exists y \forall z \neg A(s(s(e)), y, z) \rightsquigarrow G_{3}:=\forall z \neg A(s(s(e)), c, z)
$$

- Step 2: Use resolution to derive empty clause

1. $\left\{\neg A\left(s(s(e)), c, z_{1}\right)\right\}$
2. $\left\{\neg A\left(x_{2}, y_{2}, z_{2}\right), A\left(s\left(x_{2}\right), y_{2}, s\left(z_{2}\right)\right)\right\}$
3. $\left\{\neg A\left(s(e), c, z_{3}\right)\right\}$
4. $\left\{\neg A\left(e, c, z_{4}\right)\right\}$
5. $\left\{A\left(e, y_{5}, y_{5}\right)\right\}$
6. \square
clause of G_{3}
clause of F_{2}
1,2 Res. w/ $\left[s(e) / x_{2}\right]\left[c / y_{2}\right]\left[s\left(z_{2}\right) / z_{1}\right]\left[z_{3} / z_{2}\right]$
2,3 Res. w/ [e/ $\left.x_{2}\right]\left[c / y_{2}\right]\left[s\left(z_{2}\right) / z_{3}\right]\left[z_{4} / z_{3}\right]$ clause of F_{1}
4,5 Res. Sub $\left[c / y_{5}\right]\left[c / z_{4}\right]$

Soundness of resolution

Lemma (Resolution Lemma)

Let $F=\forall x_{1} \ldots \forall x_{n} G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_{1} \ldots \forall x_{n}(G \wedge R)$.

Soundness of resolution

Lemma (Resolution Lemma)

Let $F=\forall x_{1} \ldots \forall x_{n} G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_{1} \ldots \forall x_{n}(G \wedge R)$.

Proof.

Abbreviate $\forall x_{1} \ldots \forall x_{n}$ to \forall^{*}. Clearly $\forall^{*}(G \wedge R) \models F$.

Soundness of resolution

Lemma (Resolution Lemma)

Let $F=\forall x_{1} \ldots \forall x_{n} G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_{1} \ldots \forall x_{n}(G \wedge R)$.

Proof.

Abbreviate $\forall x_{1} \ldots \forall x_{n}$ to \forall^{*}. Clearly $\forall^{*}(G \wedge R) \models F$. For the converse direction it suffices to show $F \models R$ (exercise). Suppose R is resolvent of clauses $C_{1}, C_{2} \in G$, with $R=\left(C_{1} \theta \backslash\{L\}\right) \cup\left(C_{2} \theta^{\prime} \backslash\{\bar{L}\}\right)$ for substitutions θ, θ^{\prime} and complementary literals $L \in C_{1} \theta$ and $\bar{L} \in C_{2} \theta^{\prime}$.

Soundness of resolution

Lemma (Resolution Lemma)

Let $F=\forall x_{1} \ldots \forall x_{n} G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_{1} \ldots \forall x_{n}(G \wedge R)$.

Proof.

Abbreviate $\forall x_{1} \ldots \forall x_{n}$ to \forall^{*}. Clearly $\forall^{*}(G \wedge R) \models F$.
For the converse direction it suffices to show $F \models R$ (exercise).
Suppose R is resolvent of clauses $C_{1}, C_{2} \in G$, with
$R=\left(C_{1} \theta \backslash\{L\}\right) \cup\left(C_{2} \theta^{\prime} \backslash\{\bar{L}\}\right)$ for substitutions θ, θ^{\prime} and complementary literals $L \in C_{1} \theta$ and $\bar{L} \in C_{2} \theta^{\prime}$.
Let \mathcal{A} be an assignment that satisfies $F=\forall^{*} G$.
Since $C_{1}, C_{2} \in G$, we have $\mathcal{A} \models C_{1} \theta \wedge C_{2} \theta^{\prime}$ (exercise, apply
Translation Lemma; recall that \mathcal{A} assigns values to free variables in $\left.C_{1} \theta \wedge C_{2} \theta^{\prime}\right)$.

Soundness of resolution

Lemma (Resolution Lemma)

Let $F=\forall x_{1} \ldots \forall x_{n} G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_{1} \ldots \forall x_{n}(G \wedge R)$.

Proof.

Abbreviate $\forall x_{1} \ldots \forall x_{n}$ to \forall^{*}. Clearly $\forall^{*}(G \wedge R) \models F$. For the converse direction it suffices to show $F \models R$ (exercise).
Suppose R is resolvent of clauses $C_{1}, C_{2} \in G$, with
$R=\left(C_{1} \theta \backslash\{L\}\right) \cup\left(C_{2} \theta^{\prime} \backslash\{\bar{L}\}\right)$ for substitutions θ, θ^{\prime} and complementary literals $L \in C_{1} \theta$ and $\bar{L} \in C_{2} \theta^{\prime}$.
Let \mathcal{A} be an assignment that satisfies $F=\forall^{*} G$.
Since $C_{1}, C_{2} \in G$, we have $\mathcal{A} \models C_{1} \theta \wedge C_{2} \theta^{\prime}$ (exercise, apply
Translation Lemma; recall that \mathcal{A} assigns values to free variables in
$C_{1} \theta \wedge C_{2} \theta^{\prime}$).
Since \mathcal{A} satisfies at most one of L and \bar{L}, it follows that \mathcal{A} satisfies at least one of $C_{1} \theta \backslash\{L\}$ and $C_{2} \theta^{\prime} \backslash\{\bar{L}\}$.

Soundness of resolution

Lemma (Resolution Lemma)

Let $F=\forall x_{1} \ldots \forall x_{n} G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall x_{1} \ldots \forall x_{n}(G \wedge R)$.

Proof.

Abbreviate $\forall x_{1} \ldots \forall x_{n}$ to \forall^{*}. Clearly $\forall^{*}(G \wedge R) \models F$.
For the converse direction it suffices to show $F \models R$ (exercise).
Suppose R is resolvent of clauses $C_{1}, C_{2} \in G$, with
$R=\left(C_{1} \theta \backslash\{L\}\right) \cup\left(C_{2} \theta^{\prime} \backslash\{\bar{L}\}\right)$ for substitutions θ, θ^{\prime} and complementary literals $L \in C_{1} \theta$ and $\bar{L} \in C_{2} \theta^{\prime}$.
Let \mathcal{A} be an assignment that satisfies $F=\forall^{*} G$.
Since $C_{1}, C_{2} \in G$, we have $\mathcal{A} \models C_{1} \theta \wedge C_{2} \theta^{\prime}$ (exercise, apply
Translation Lemma; recall that \mathcal{A} assigns values to free variables in
$C_{1} \theta \wedge C_{2} \theta^{\prime}$).
Since \mathcal{A} satisfies at most one of L and \bar{L}, it follows that \mathcal{A} satisfies at least one of $C_{1} \theta \backslash\{L\}$ and $C_{2} \theta^{\prime} \backslash\{\bar{L}\}$.
Conclude that \mathcal{A} satisfies R, as required.

Completeness of resolution

Lemma (Liting-lemma)

Let C_{1}, C_{2} be predicate clauses and let $C_{1}^{\prime}, C_{2}^{\prime}$ be two ground instances of them that can be resolved into the resolvent R^{\prime}.
Then there is predicate resolvent R of C_{1}, C_{2} such that R^{\prime} is a ground instance of R.

Completeness of resolution

Lemma (Liting-lemma)

Let C_{1}, C_{2} be predicate clauses and let $C_{1}^{\prime}, C_{2}^{\prime}$ be two ground instances of them that can be resolved into the resolvent R^{\prime}.
Then there is predicate resolvent R of C_{1}, C_{2} such that R^{\prime} is a ground instance of R.
$\begin{array}{ll}C_{1} & C_{2}\end{array}$
—: Resolution
\rightarrow : Substitution

Completeness of resolution

Lemma (Liting-lemma)

Let C_{1}, C_{2} be predicate clauses and let $C_{1}^{\prime}, C_{2}^{\prime}$ be two ground instances of them that can be resolved into the resolvent R^{\prime}.
Then there is predicate resolvent R of C_{1}, C_{2} such that R^{\prime} is a ground instance of R.

—: Resolution
\rightarrow : Substitution

Completeness of resolution

Lemma (Liting-lemma)

Let C_{1}, C_{2} be predicate clauses and let $C_{1}^{\prime}, C_{2}^{\prime}$ be two ground instances of them that can be resolved into the resolvent R^{\prime}.
Then there is predicate resolvent R of C_{1}, C_{2} such that R^{\prime} is a ground instance of R.

—: Resolution
\rightarrow : Substitution

Completeness of resolution

Lemma (Liting-lemma)

Let C_{1}, C_{2} be predicate clauses and let $C_{1}^{\prime}, C_{2}^{\prime}$ be two ground instances of them that can be resolved into the resolvent R^{\prime}.
Then there is predicate resolvent R of C_{1}, C_{2} such that R^{\prime} is a ground instance of R.

—: Resolution
\rightarrow : Substitution

Completeness of resolution

Lemma (Liting-lemma)

Let C_{1}, C_{2} be predicate clauses and let $C_{1}^{\prime}, C_{2}^{\prime}$ be two ground instances of them that can be resolved into the resolvent R^{\prime}.
Then there is predicate resolvent R of C_{1}, C_{2} such that R^{\prime} is a ground instance of R.

—: Resolution
\rightarrow : Substitution

Lifting-Lemma: example

$$
\{\neg P(f(x)), Q(x)\} \quad\{P(f(g(y)))\}
$$

Lifting-Lemma: example

$$
\begin{gathered}
\{\neg P(f(x)), Q(x)\} \\
\mid[x / g(a)] \\
\{\neg P(f(g(a))), Q(g(a))\}
\end{gathered}
$$

Lifting-Lemma: example

Lifting-Lemma: example

Lifting-Lemma: example

