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Recap

Theorem (Herbrand’s theorem)

A closed formula in Skolem form is satisfiable if and only if it has a
Herbrand model.

Theorem

A closed formula in Skolem form is satisfiable iff its Herbrand
expansion is satisfiable when considered as a set of propositional
formulas.

Theorem (Ground resolution theorem)

A closed formula in Skolem form is unsatisfiable if and only if there is
a propositional resolution proof of � from its Herbrand expansion (in
clause form).
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Generalisation of the ground resolution theorem

Theorem

Let F1, . . . ,Fn be closed rectified formulas in prenex form with Skolem
forms G1, . . . ,Gn. Assume each Gi is obtained using different Skolem
functions and constants. Then

F1 ∧ F2 ∧ · · · ∧ Fn is satisfiable
iff G1 ∧G2 ∧ · · · ∧Gn is satisfiable

Theorem (Ground resolution theorem)

Let F1, . . . ,Fn be closed formulas in Skolem form whose respective
matrices F ∗1 ,F

∗
2 , . . . ,F

∗
n are in CNF. Then F1 ∧ F2 ∧ · · · ∧ Fn is

unsatisfiable if and only if there is a propositional resolution proof of �
starting from the set of ground instances of clauses from F ∗1 , . . . ,F

∗
n .
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An example

Example

Consider the following hypothetical scenario:
(a) Everyone at Oriel is lazy, a rower or drunk.
(b) All rowers are lazy.
(c) Someone at Oriel is not drunk.
(d) Someone at Oriel is lazy.
Show that (a), (b) and (c) together entail (d).
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An example

Translation into first-order logic:

F1 := ∀x(O(x)→ (L(x) ∨ R(x) ∨ D(x)))
F2 := ∀x(R(x)→ L(x))
F3 := ∃x(O(x) ∧ ¬D(x))
F4 := ¬∃x(O(x) ∧ L(x))

Transformation into CNF Skolem form:

G1 := ∀x(¬O(x) ∨ L(x) ∨ R(x) ∨ D(x))
G2 := ∀x(¬R(x) ∨ L(x))
G3 := O(a) ∧ ¬D(a)
G4 := ∀x(¬O(x) ∨ ¬L(x))
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Resolution proof for the example

G1 := ∀x(¬O(x) ∨ L(x) ∨ R(x) ∨ D(x))
G2 := ∀x(¬R(x) ∨ L(x))
G3 := O(a) ∧ ¬D(a)
G4 := ∀x(¬O(x) ∨ ¬L(x))

{¬R(a), L(a)} {¬O(a), L(a), R(a), D(a)}
{L(a),¬O(a), D(a)} {¬O(a),¬L(a)}

{¬O(a), D(a)} {¬D(a)}
{¬O(a)} {O(a)}

�
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Another example

Show that the following formula is valid:

F = ∀x∃y(P(x)→ Q(y))→ ∃y∀x(P(x)→ Q(y))

F is valid if and only if F is unsatisfiable:

¬F ≡ ∀x∃y(P(x)→ Q(y)) ∧ ¬∃y∀x(P(x)→ Q(y))

Skolemise:

F1 = ∀x(¬P(x) ∨Q(f (x)) F2 = ∀y(P(g(y)) ∧ ¬Q(y))

No ground terms due to lack of constant symbols, introduce some
constant symbol a

{P(g(a))} {¬P(g(a)),Q(f (g(a)))}
{Q(f (g(a)))} {¬Q(f (g(a)))}

�
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Semi-decidability of validity

Theorem

Validity of first-order logic is semi-decidable.

Semi-Decision Procedure for Validity
Input: Closed formula F
Output: Either that F is valid or compute forever
Compute a Skolem-form formula G equisatisfiable with ¬F
Let G1,G2, . . . be an enumeration of the Herbrand expansion E(G)
for n = 1 to∞ do
begin

if � ∈ Res∗(G1 ∪ . . . ∪Gn) then stop and output “F is valid”
end
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How to show undecidability

Principle:

Take an undecidable problem P

Provide a computable function f that translates an instance I of P
into a satisfiability problem for first order logic f (I)

“Satisfiability for first-order logic is at least as difficult as P and
hence undecidable”

We choose P to be the Post Correspondence Problem (PCP)
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Emil Post (1897 – 1954)
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The post correspondence problem

In PCP, given set of tiles (xi , yi) ∈ {0,1}∗ × {0,1}∗, e.g.:{[
1

101

]
,

[
10
00

]
,

[
011
11

]}

Solution is sequence of tiles such that top string equals bottom string:[
1

101

] [
011
11

] [
10
00

] [
011
11

]
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The post correspondence problem

Definition (Post Correspondence Problem (PCP))

An instance of PCP is a finite set

P = {(x1, y1), . . . , (xk , yk )} ⊆ {0,1}∗ × {0,1}∗.

A solution of P is a sequence of indices i1, i2, . . . , in such that
ij ∈ {1, . . . , k}, 1 ≤ j ≤ n and

xi1xi2 · · · xin = yi1yi2 · · · yin .
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Reduction to first-order logic

{[
1

101

]
,

[
10
00

]
,

[
011
11

]}

introduce constant symbol e
introduce unary function symbols f0 and f1
introduce binary predicate symbol P
write e.g. f10110(e) instead of f1(f0(f1(f1(f0(e)))))

F1 = P(f1(e), f101(e)) ∧ P(f10(e), f00(e)) ∧ P(f011(e), f11(e))
F2 = ∀u ∀v (P(u, v)→ P(f1(u), f101(v)) ∧ P(f10(u), f00(v)) ∧

∧P(f011(u), f11(v)))
F3 = ∃u P(u,u) .
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Reduction to first-order logic

Given instance P of PCP

P = {(x1, y1), . . . , (xk , yk )} ⊆ {0,1}∗ × {0,1}∗.

Define

F1 =
k∧

i=1

P(fxi (e), fyi (e))

F2 = ∀u ∀v
k∧

i=1

(P(u, v)→ P(fxi (u), fyi (v)))

F3 = ∃u P(u,u) .

Proposition

P has a solution if and only if F1 ∧ F2 → F3 is valid.
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Reduction to first-order logic

F1 =
k∧

i=1

P(fxi (e), fyi (e)) F3 = ∃u P(u,u)

F2 = ∀u ∀v
k∧

i=1

(P(u, v)→ P(fxi (u), fyi (v)))

If F1 ∧ F2 → F3 is valid, consider structure A with universe
{0,1}∗, eA = ε, (f0)A(σ) = σ0, (f1)A(σ) = σ1, and

PA = {(σ, τ) : ∃i1 . . . ∃it . σ = xi1 . . . xit and τ = yi1 . . . yit} .

Now A satisfies F1 ∧ F2 and F1 ∧ F2 → F3, and so A satisfies F3.
But then P has solution.
If P has solution, consider any A that satisfies F1 ∧ F2. Show by
induction on t that for any sequence of tiles i1 . . . it ,

A |= P(fu(e), fv (e)), where u = xi1 . . . xit and v = yi1 . . . yit .

But since P has solution, A |= P(fu(e), fu(e)) for some string u.
Thus A |= F3.

Theorem

Validity and satisfiability in first-order logic are undecidable.
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