Lecture 11
Applications of Herbrand’s theorem

Ground resolution proofs, semi-decidability of validity, undecidability
of validity

Dr Christoph Haase

University of Oxford
(with small changes by Javier Esparza)
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Recap

Theorem (Herbrand’s theorem)

A closed formula in Skolem form is satisfiable if and only if it has a
Herbrand model.
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A closed formula in Skolem form is satisfiable if and only if it has a
Herbrand model.

Theorem

A closed formula in Skolem form is satisfiable iff its Herbrand

expansion is satisfiable when considered as a set of propositional
formulas.
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Recap

Theorem (Herbrand’s theorem)

A closed formula in Skolem form is satisfiable if and only if it has a
Herbrand model.

Theorem

A closed formula in Skolem form is satisfiable iff its Herbrand
expansion is satisfiable when considered as a set of propositional
formulas.

Theorem (Ground resolution theorem)

A closed formula in Skolem form is unsatisfiable if and only if there is
a propositional resolution proof of O] from its Herbrand expansion (in
clause form).
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Generalisation of the ground resolution theorem

Theorem
Let F, ..., F, be closed rectified formulas in prenex form with Skolem
forms Gy, ..., G,. Assume each G; is obtained using different Skolem

functions and constants. Then

Fi AN Fo A --- A Fp is satisfiable
iffGi AN Go A --- N\ G, is satisfiable
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Generalisation of the ground resolution theorem

Theorem
Let F, ..., F, be closed rectified formulas in prenex form with Skolem
forms Gy, ..., G,. Assume each G; is obtained using different Skolem

functions and constants. Then

Fi AN Fo A --- A Fp is satisfiable
iffGi AN Go A --- N\ G, is satisfiable

Theorem (Ground resolution theorem)

LetFy,..., F, be closed formulas in Skolem form whose respective
matrices F{,F;,... F; arein CNF. Then Fy A Fa A--- N Fpis
unsatisfiable if and only if there is a propositional resolution proof of (]
starting from the set of ground instances of clauses from F', ..., Fj.




An example
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An example

Example
Consider the following hypothetical scenario:

(a) Everyone at Oriel is lazy, a rower or drunk.

(b) All rowers are lazy.

(c) Someone at Oriel is not drunk.

(d) Someone at Oriel is lazy.

Show that (a), (b) and (c) together entail (d).
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An example

Translation into first-order logic:
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An example

Translation into first-order logic:

Fy:=vx(O(x) = (L(x) v
Fa :=Yx(R(x) = L(x))
Fs —HX(O(X)/\ D(x))
Fa:==3x(O(x) A L(x))

Transformation into CNF Skolem form:

R(x) v D(x)))
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An example

Translation into first-order logic:

Fi :==Vx(O(x) — (L(x) vV R(x) v D(x)))
Fo :=Vx(R(x) — L(x))

F3 := 3x(O(x) A ~D(x))

Fs = —-3x(O(x) A L(x))

Transformation into CNF Skolem form:

Gy :=Vx(—O(x) vV L(x) V R(x) v D(x))
Go :=Vx(=R(x) Vv L(x))

Gs := O(a) A —=D(a)

G4 = Vx ﬂO(X) V —\L(X))



Resolution proof for the example

Gy :=Vx(—=O(x) Vv L(x) vV R(x) Vv D(x))
Gy :=V¥x(—R(x) Vv L(x))

Gs := O(a) A —D(a)

Gy = Vx(—O(x) Vv —L(x))

{-A(a), L(a)} {~0(a), L(a), R(a), D(a)}

{L(a), ~O(a), D(a)} {~0(a), ~L(a)}
{=0(a), D(a)} {-D(a)}
{—~0(a)} {O(a)}




Another example
Show that the following formula is valid:

F =vx3y(P(x) = Q(y)) = Fyvx(P(x) = Q(y))
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Another example
Show that the following formula is valid:
F =vx3y(P(x) = Q(y)) = yvx(P(x) = Qy))
F is valid if and only if F is unsatisfiable:

-F =Vx3y(P(x) — Q(y)) A =3y¥x(P(x) — Q(¥))



Another example
Show that the following formula is valid:
F =vx3y(P(x) = Q(y)) = yvx(P(x) = Qy))
F is valid if and only if F is unsatisfiable:
-F =Vx3y(P(x) — Q(y)) A =3y¥x(P(x) — Q(¥))
Skolemise:

Fi = Vx(=P(x) v Q(f(x)) Fa =Vy(P(9(y)) A ~Q(¥))



Another example
Show that the following formula is valid:
F =vx3y(P(x) = Q(y)) = yvx(P(x) = Qy))
F is valid if and only if F is unsatisfiable:
-F =vx3y(P(x) — Q(y)) A ~3y¥x(P(x) — Q(¥))
Skolemise:
Fi = vx(=P(x) v Q(f(x)) Fa = vy (P(g(y)) A ~Q(y))

No ground terms due to lack of constant symbols, introduce some
constant symbol a

{P(9(a))}  {~P(g(a)), Qf(9(a)))}
{Q(f(9(a)))} {(-Q(f(9(a)))}
O




Semi-decidability of validity

Theorem
Validity of first-order logic is semi-decidable.
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Semi-decidability of validity

Theorem
Validity of first-order logic is semi-decidable.

Semi-Decision Procedure for Validity
Input: Closed formula F
Output: Either that F is valid or compute forever
Compute a Skolem-form formula G equisatisfiable with —F
Let Gy, Gg, ... be an enumeration of the Herbrand expansion E(G)
forn=11tocc do
begin
if 0 € Res*(Gy U... U Gp) then stop and output “F is valid”
end



How to show undecidability

Principle:
@ Take an undecidable problem P

@ Provide a computable function f that translates an instance / of P
into a satisfiability problem for first order logic f(/)

@ “Satisfiability for first-order logic is at least as difficult as P and
hence undecidable”
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How to show undecidability

Principle:
@ Take an undecidable problem P

@ Provide a computable function f that translates an instance / of P
into a satisfiability problem for first order logic f(/)

@ “Satisfiability for first-order logic is at least as difficult as P and
hence undecidable”

We choose P to be the Post Correspondence Problem (PCP)



Emil Post (1897 — 1954)
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The post correspondence problem

In PCP, given set of tiles (x;, y;) € {0,1}* x {0,1}*, e.g.:

oo - Loo ] 150 ])
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The post correspondence problem

In PCP, given set of tiles (x;, y;) € {0,1}* x {0,1}*, e.g.:

oo - Loo ] 150 ])

Solution is sequence of tiles such that top string equals bottom string:

Lo [ [ Lo [ 5]
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The post correspondence problem

Definition (Post Correspondence Problem (PCP))
An instance of PCP is a finite set

P= {(X1’y1)7"'7(xkayk)} c {0,1}* X {0,1}*.

A solution of P is a sequence of indices i1, b, . . . , I such that
ije{l,....,k},1<j<nand

Xi Xip = Xip = YirYip Vi
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Reduction to first-order logic
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Reduction to first-order logic

oo J-Loa] 157 ])

@ introduce constant symbol e

@ introduce unary function symbols f; and f;

@ introduce binary predicate symbol P

@ write e.g. fip110(€) instead of £ (f(f (f(f(e)))))
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Reduction to first-order logic

oo J-Loa] 157 ])

@ introduce constant symbol e

@ introduce unary function symbols f; and f;

@ introduce binary predicate symbol P

@ write e.g. fip110(€) instead of £ (f(f (f(f(e)))))

Fi = P(fi(e). fio1(e)) A P(fio(e). foo(€)) A P(for1(e). fi1(e))

Fo = Yuvv(P(u,v)— P(fi(u), fio1(v)) A P(fio(U), foo(v)) A
AP(fo11(u), f11(v)))

F3 = 3uP(u,u).
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Reduction to first-order logic

Given instance P of PCP

P={(x1,y1), -, (X, ¥x)} €{0,1}" x {0,1}".
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Reduction to first-order logic

Given instance P of PCP

P={(x1.y1), -, (X i)} €{0,1}" x {0, 1}".
Define

F = /\P(fx,(e)7in(e))

K
F, = VYuvv /\(P(u, v) = P(f(u), f,(v)))
i=1
F3 = FJuP(u,u).
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Reduction to first-order logic

Given instance P of PCP

P={(x1,y1), -, (X, ¥x)} €{0,1}" x {0,1}".

Define
k
Fi =\ P(f(e).f,(e)
i=1
k
F, = YuVv /\(P(u, v) = P(f(u), f,(v)))
i=1
F3 = FJuP(u,u).
Proposition
P has a solution if and only if F1 A F, — F3 is valid. J
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Reduction to first-order logic
k
Fi = \ P(fu(e). fy(e)) Fs = 3uP(u,u)
i=1

k
Fo =vuvv J\(P(u,v) = P(fo(u), f,(v)))
i=1
@ If F; A Fo — F3is valid, consider structure A with universe
{0,1}*, ea = ¢, (fo) a(o) = 00, (fi) a(0) = 01, and

PA:{(O',T):E|I'1...E|I't.U:X,'1..‘X,'i andT:y,-1 y,t}
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Reduction to first-order logic

k
Fi= N\ PU5(e).fu(e)) Fs = 3u P(u,u)
i=1

K
F> =vuvv /\(P(u, v) — P(f(u),1,(v)))

i=1
@ If F; A Fo — F3is valid, consider structure A with universe
{0,1}*, ea = ¢, (fo) a(o) = 00, (fi) a(0) = 01, and
PA = {(O’,T) : E|i1 ...3/[.0 = Xj, ... Xj andT:y,-1 y,t}

Now A satisfies F; A Fo and F; A Fo — F3, and so A satisfies Fs.
But then P has solution.
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Reduction to first-order logic

k
Fi= N\ PU5(e).fu(e)) Fs = 3u P(u,u)
i=1

k
Fo = vuvv \(P(u,v) = P(fy(u), £,(v)))
i=1
@ If F; A Fo — F3is valid, consider structure A with universe
{0,1}*, ea =¢, (fo)a(o) =00, (fi)a(c) =01, and
PA = {(O’,T) : E|i1 ...3/[.0 = Xj, ... Xj andT:y,-1 y,t}
Now A satisfies F; A Fo and F; A Fo — F3, and so A satisfies Fs.
But then P has solution.
@ If P has solution, consider any A that satisfies F; A F». Show by
induction on t that for any sequence of tiles i . . . iy,

A= P(fy(e), f,(e)), whereu=x;, ...x, and v=y, ...V,

g+
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Reduction to first-order logic
k
Fi = \ P(fu(e). fy(e)) Fs = 3uP(u,u)
i=1

k
Fo = vuvv \(P(u,v) = P(fy(u), £,(v)))
i=1
@ If F; A Fo — F3is valid, consider structure A with universe
{0,1}*, ea =¢, (fo)a(o) =00, (fi)a(c) =01, and
PA = {(O’,T) : E|i1 ...3/[.0 = Xj, ... Xj andT:y,-1 y,t}
Now A satisfies F; A Fo and F; A Fo — F3, and so A satisfies Fs.
But then P has solution.
@ If P has solution, consider any A that satisfies F; A F». Show by
induction on t that for any sequence of tiles i . . . iy,

A= P(fy(e), f,(e)), where u =X, ... x, and v =y, ... Y.

But since P has solution, A = P(f,(e), f,(€)) for some string u.
Thus A = Fs.
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Reduction to first-order logic
k
Fi = \ P(fu(e). fy(e)) Fs = 3uP(u,u)
i=1

k
Fo = vuyv \(P(u,v) = P(fy(u), ,(V)))
i=1
@ If F; A Fo — F3is valid, consider structure A with universe
{0,1}*, ea =¢, (fo)a(o) =00, (fi)a(c) =01, and
PA = {(O’,T) : E|i1 ...3/[.0 = Xj, ... Xj andT:y,-1 y,t}
Now A satisfies F; A Fo and F; A Fo — F3, and so A satisfies Fs.
But then P has solution.
@ If P has solution, consider any A that satisfies F; A F». Show by
induction on t that for any sequence of tiles i . . . iy,

A= P(fy(e), f,(e)), where u =X, ... x, and v =y, ... Y.
But since P has solution, A = P(f,(e), f,(€)) for some string u.
Thus A = Fs.
Theorem
Validity and satisfiability in first-order logic are undecidable.
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