Lecture 11 Applications of Herbrand's theorem

Ground resolution proofs, semi-decidability of validity, undecidability of validity

Dr Christoph Haase University of Oxford (with small changes by Javier Esparza)

Recap

Theorem (Herbrand's theorem)

A closed formula in Skolem form is satisfiable if and only if it has a Herbrand model.

Recap

Theorem (Herbrand's theorem)

A closed formula in Skolem form is satisfiable if and only if it has a Herbrand model.

Theorem

A closed formula in Skolem form is satisfiable iff its Herbrand expansion is satisfiable when considered as a set of propositional formulas.

Recap

Theorem (Herbrand's theorem)

A closed formula in Skolem form is satisfiable if and only if it has a Herbrand model.

Theorem

A closed formula in Skolem form is satisfiable iff its Herbrand expansion is satisfiable when considered as a set of propositional formulas.

Theorem (Ground resolution theorem)

A closed formula in Skolem form is unsatisfiable if and only if there is a propositional resolution proof of \Box from its Herbrand expansion (in clause form).

Generalisation of the ground resolution theorem

Theorem

Let F_1, \ldots, F_n be closed rectified formulas in prenex form with Skolem forms G_1, \ldots, G_n . Assume each G_i is obtained using different Skolem functions and constants. Then

 $F_1 \wedge F_2 \wedge \cdots \wedge F_n$ is satisfiable iff $G_1 \wedge G_2 \wedge \cdots \wedge G_n$ is satisfiable

Generalisation of the ground resolution theorem

Theorem

Let F_1, \ldots, F_n be closed rectified formulas in prenex form with Skolem forms G_1, \ldots, G_n . Assume each G_i is obtained using different Skolem functions and constants. Then

 $F_1 \wedge F_2 \wedge \cdots \wedge F_n$ is satisfiable iff $G_1 \wedge G_2 \wedge \cdots \wedge G_n$ is satisfiable

Theorem (Ground resolution theorem)

Let F_1, \ldots, F_n be closed formulas in Skolem form whose respective matrices $F_1^*, F_2^*, \ldots, F_n^*$ are in CNF. Then $F_1 \wedge F_2 \wedge \cdots \wedge F_n$ is unsatisfiable if and only if there is a propositional resolution proof of \Box starting from the set of ground instances of clauses from F_1^*, \ldots, F_n^* .

Example

Consider the following hypothetical scenario:

- (a) Everyone at Oriel is lazy, a rower or drunk.
- (b) All rowers are lazy.
- (c) Someone at Oriel is not drunk.
- (d) Someone at Oriel is lazy.

Show that (a), (b) and (c) together entail (d).

Translation into first-order logic:

Translation into first-order logic:

$$egin{aligned} F_1 &:= orall x(O(x)
ightarrow (L(x) ee R(x) ee D(x))) \ F_2 &:= orall x(R(x)
ightarrow L(x)) \ F_3 &:= \exists x(O(x) \land \neg D(x)) \ F_4 &:= \neg \exists x(O(x) \land L(x)) \end{aligned}$$

Transformation into CNF Skolem form:

Translation into first-order logic:

$$egin{aligned} F_1 &:= orall x(O(x)
ightarrow (L(x) ee R(x) ee D(x))) \ F_2 &:= orall x(R(x)
ightarrow L(x)) \ F_3 &:= \exists x(O(x) \land \neg D(x)) \ F_4 &:= \neg \exists x(O(x) \land L(x)) \end{aligned}$$

Transformation into CNF Skolem form:

$$G_1 := \forall x (\neg O(x) \lor L(x) \lor R(x) \lor D(x))$$

$$G_2 := \forall x (\neg R(x) \lor L(x))$$

$$G_3 := O(a) \land \neg D(a)$$

$$G_4 := \forall x (\neg O(x) \lor \neg L(x))$$

Resolution proof for the example

$$G_1 := \forall x (\neg O(x) \lor L(x) \lor R(x) \lor D(x))$$

$$G_2 := \forall x (\neg R(x) \lor L(x))$$

$$G_3 := O(a) \land \neg D(a)$$

$$G_4 := \forall x (\neg O(x) \lor \neg L(x))$$

$$\begin{array}{c|c} \{\neg R(a), L(a)\} & \{\neg O(a), L(a), R(a), D(a)\} \\ \hline \\ & \underline{\{L(a), \neg O(a), D(a)\}} & \{\neg O(a), \neg L(a)\} \\ \hline \\ & \underline{\{\neg O(a), D(a)\}} & \{\neg D(a)\} \\ \hline \\ & \underline{\{\neg O(a)\}} & [O(a)\} \\ \hline \\ \hline \\ & \Box \end{array}$$

Show that the following formula is valid:

 $F = \forall x \exists y (P(x) \rightarrow Q(y)) \rightarrow \exists y \forall x (P(x) \rightarrow Q(y))$

Show that the following formula is valid:

$$F = \forall x \exists y (P(x) \rightarrow Q(y)) \rightarrow \exists y \forall x (P(x) \rightarrow Q(y))$$

F is valid if and only if *F* is unsatisfiable:

$$eg F \equiv orall x \exists y (P(x)
ightarrow Q(y)) \land
eg \exists y orall x (P(x)
ightarrow Q(y))$$

Show that the following formula is valid:

$$F = \forall x \exists y (P(x) \rightarrow Q(y)) \rightarrow \exists y \forall x (P(x) \rightarrow Q(y))$$

F is valid if and only if *F* is unsatisfiable:

$$eg F \equiv orall x \exists y (P(x)
ightarrow Q(y)) \land
eg \exists y orall x (P(x)
ightarrow Q(y))$$

Skolemise:

$$F_1 = \forall x (\neg P(x) \lor Q(f(x)))$$
 $F_2 = \forall y (P(g(y)) \land \neg Q(y))$

Show that the following formula is valid:

$$F = \forall x \exists y (P(x) \rightarrow Q(y)) \rightarrow \exists y \forall x (P(x) \rightarrow Q(y))$$

F is valid if and only if *F* is unsatisfiable:

$$eg F \equiv orall x \exists y (P(x)
ightarrow Q(y)) \land
eg \exists y orall x (P(x)
ightarrow Q(y))$$

Skolemise:

$$F_1 = \forall x (\neg P(x) \lor Q(f(x)))$$
 $F_2 = \forall y (P(g(y)) \land \neg Q(y))$

No ground terms due to lack of constant symbols, introduce some constant symbol *a*

$$\frac{\{P(g(a))\} \quad \{\neg P(g(a)), Q(f(g(a)))\}}{\{Q(f(g(a)))\}} \quad \{\neg Q(f(g(a)))\}$$

Semi-decidability of validity

Theorem

Validity of first-order logic is semi-decidable.

Theorem

Validity of first-order logic is semi-decidable.

Semi-Decision Procedure for Validity

Input: Closed formula F

Output: Either that F is valid or compute forever

Compute a Skolem-form formula *G* equisatisfiable with $\neg F$ Let G_1, G_2, \ldots be an enumeration of the Herbrand expansion E(G)for n = 1 to ∞ do

begin

if $\Box \in \text{Res}^*(G_1 \cup \ldots \cup G_n)$ then stop and output "*F* is valid" end

How to show undecidability

Principle:

- Take an undecidable problem P
- Provide a computable function *f* that translates an instance *I* of *P* into a satisfiability problem for first order logic *f*(*I*)
- "Satisfiability for first-order logic is at least as difficult as *P* and hence undecidable"

How to show undecidability

Principle:

- Take an undecidable problem P
- Provide a computable function *f* that translates an instance *I* of *P* into a satisfiability problem for first order logic *f*(*I*)
- "Satisfiability for first-order logic is at least as difficult as *P* and hence undecidable"

We choose P to be the Post Correspondence Problem (PCP)

Emil Post (1897 - 1954)

The post correspondence problem

In PCP, given set of **tiles** $(x_i, y_i) \in \{0, 1\}^* \times \{0, 1\}^*$, e.g.:

$$\left\{ \left[\begin{array}{c} 1\\101 \end{array} \right], \left[\begin{array}{c} 10\\00 \end{array} \right], \left[\begin{array}{c} 011\\11 \end{array} \right] \right\}$$

The post correspondence problem

In PCP, given set of **tiles** $(x_i, y_i) \in \{0, 1\}^* \times \{0, 1\}^*$, e.g.:

$$\left\{ \left[\begin{array}{c} 1\\101 \end{array} \right], \left[\begin{array}{c} 10\\00 \end{array} \right], \left[\begin{array}{c} 011\\11 \end{array} \right] \right\}$$

Solution is sequence of tiles such that top string equals bottom string:

$$\left[\begin{array}{c}1\\101\end{array}\right]\left[\begin{array}{c}011\\11\end{array}\right]\left[\begin{array}{c}10\\11\end{array}\right]\left[\begin{array}{c}00\\11\end{array}\right]\left[\begin{array}{c}011\\11\end{array}\right]$$

Definition (Post Correspondence Problem (PCP))

An instance of PCP is a finite set

 $P = \{(x_1, y_1), \ldots, (x_k, y_k)\} \subseteq \{0, 1\}^* \times \{0, 1\}^*.$

A solution of *P* is a sequence of indices $i_1, i_2, ..., i_n$ such that $i_j \in \{1, ..., k\}, 1 \le j \le n$ and

 $x_{i_1}x_{i_2}\cdots x_{i_n}=y_{i_1}y_{i_2}\cdots y_{i_n}.$

$\left\{ \left[\begin{array}{c} 1\\101 \end{array} \right], \left[\begin{array}{c} 10\\00 \end{array} \right], \left[\begin{array}{c} 011\\11 \end{array} \right] \right\}$

$$\left\{ \left[\begin{array}{c} 1\\101 \end{array} \right], \left[\begin{array}{c} 10\\00 \end{array} \right], \left[\begin{array}{c} 011\\11 \end{array} \right] \right\}$$

- introduce constant symbol e
- introduce unary function symbols f₀ and f₁
- introduce binary predicate symbol P
- write e.g. *f*₁₀₁₁₀(*e*) instead of *f*₁(*f*₀(*f*₁(*f*₁(*f*₀(*e*)))))

$$\left\{ \left[\begin{array}{c} 1\\101 \end{array} \right], \left[\begin{array}{c} 10\\00 \end{array} \right], \left[\begin{array}{c} 011\\11 \end{array} \right] \right\}$$

- introduce constant symbol e
- introduce unary function symbols f₀ and f₁
- introduce binary predicate symbol P
- write e.g. f₁₀₁₁₀(e) instead of f₁(f₀(f₁(f₁(f₀(e)))))

$$F_1 = P(f_1(e), f_{101}(e)) \land P(f_{10}(e), f_{00}(e)) \land P(f_{011}(e), f_{11}(e))$$

 $F_{2} = \forall u \forall v (P(u, v) \to P(f_{1}(u), f_{101}(v)) \land P(f_{10}(u), f_{00}(v)) \land \land P(f_{011}(u), f_{11}(v)))$

$$F_3 = \exists u P(u, u).$$

Given instance P of PCP

$$P = \{(x_1, y_1), \ldots, (x_k, y_k)\} \subseteq \{0, 1\}^* \times \{0, 1\}^*.$$

Given instance P of PCP

$$P = \{(x_1, y_1), \ldots, (x_k, y_k)\} \subseteq \{0, 1\}^* \times \{0, 1\}^*.$$

Define

$$\begin{split} F_1 &= \bigwedge_{i=1}^k P(f_{x_i}(e), f_{y_i}(e)) \\ F_2 &= \forall u \,\forall v \, \bigwedge_{i=1}^k (P(u, v) \to P(f_{x_i}(u), f_{y_i}(v))) \\ F_3 &= \exists u \, P(u, u) \,. \end{split}$$

Given instance P of PCP

$$P = \{(x_1, y_1), \ldots, (x_k, y_k)\} \subseteq \{0, 1\}^* \times \{0, 1\}^*.$$

Define

$$F_1 = \bigwedge_{i=1}^k P(f_{x_i}(e), f_{y_i}(e))$$

$$F_2 = \forall u \forall v \bigwedge_{i=1}^k (P(u, v) \to P(f_{x_i}(u), f_{y_i}(v)))$$

$$F_3 = \exists u P(u, u).$$

Proposition

P has a solution if and only if $F_1 \wedge F_2 \rightarrow F_3$ is valid.

$$F_{1} = \bigwedge_{i=1}^{k} P(f_{x_{i}}(e), f_{y_{i}}(e)) \qquad F_{3} = \exists u P(u, u)$$

$$F_{2} = \forall u \forall v \bigwedge_{i=1}^{k} (P(u, v) \rightarrow P(f_{x_{i}}(u), f_{y_{i}}(v)))$$

$$\text{If } F_{1} \land F_{2} \rightarrow F_{3} \text{ is valid, consider structure } \mathcal{A} \text{ with universe}$$

$$\{0, 1\}^{*}, e_{\mathcal{A}} = \varepsilon, (f_{0})_{\mathcal{A}}(\sigma) = \sigma 0, (f_{1})_{\mathcal{A}}(\sigma) = \sigma 1, \text{ and}$$

$$P_{\mathcal{A}} = \{(\sigma, \tau) : \exists i_{1} \dots \exists i_{t} . \sigma = x_{i_{1}} \dots x_{i_{t}} \text{ and } \tau = y_{i_{1}} \dots y_{i_{t}} \}.$$

$$F_{1} = \bigwedge_{i=1}^{k} P(f_{x_{i}}(e), f_{y_{i}}(e)) \qquad F_{3} = \exists u P(u, u)$$

$$F_{2} = \forall u \forall v \bigwedge_{i=1}^{k} (P(u, v) \rightarrow P(f_{x_{i}}(u), f_{y_{i}}(v)))$$
• If $F_{1} \land F_{2} \rightarrow F_{3}$ is valid, consider structure \mathcal{A} with universe $\{0, 1\}^{*}, e_{\mathcal{A}} = \varepsilon, (f_{0})_{\mathcal{A}}(\sigma) = \sigma 0, (f_{1})_{\mathcal{A}}(\sigma) = \sigma 1, \text{ and}$

$$P_{\mathcal{A}} = \{(\sigma, \tau) : \exists i_1 \dots \exists i_t \, . \, \sigma = x_{i_1} \dots x_{i_t} \text{ and } \tau = y_{i_1} \dots y_{i_t}\}.$$

Now A satisfies $F_1 \wedge F_2$ and $F_1 \wedge F_2 \rightarrow F_3$, and so A satisfies F_3 . But then P has solution.

$$F_{1} = \bigwedge_{i=1}^{k} P(f_{x_{i}}(e), f_{y_{i}}(e)) \qquad F_{3} = \exists u P(u, u)$$
$$F_{2} = \forall u \forall v \bigwedge_{i=1}^{k} (P(u, v) \rightarrow P(f_{x_{i}}(u), f_{y_{i}}(v)))$$

• If $F_1 \wedge F_2 \rightarrow F_3$ is valid, consider structure \mathcal{A} with universe $\{0,1\}^*$, $e_{\mathcal{A}} = \varepsilon$, $(f_0)_{\mathcal{A}}(\sigma) = \sigma 0$, $(f_1)_{\mathcal{A}}(\sigma) = \sigma 1$, and

$$\boldsymbol{P}_{\mathcal{A}} = \{(\sigma, \tau) : \exists i_1 \dots \exists i_t \dots \sigma = x_{i_1} \dots x_{i_t} \text{ and } \tau = y_{i_1} \dots y_{i_t}\}.$$

Now A satisfies $F_1 \wedge F_2$ and $F_1 \wedge F_2 \rightarrow F_3$, and so A satisfies F_3 . But then P has solution.

If *P* has solution, consider any *A* that satisfies *F*₁ ∧ *F*₂. Show by induction on *t* that for any sequence of tiles *i*₁... *i*_t,

 $\mathcal{A} \models \mathcal{P}(f_u(e), f_v(e)), \text{ where } u = x_{i_1} \dots x_{i_t} \text{ and } v = y_{i_1} \dots y_{i_t}.$

$$F_{1} = \bigwedge_{i=1}^{k} P(f_{x_{i}}(e), f_{y_{i}}(e)) \qquad F_{3} = \exists u P(u, u)$$
$$F_{2} = \forall u \forall v \bigwedge_{i=1}^{k} (P(u, v) \rightarrow P(f_{x_{i}}(u), f_{y_{i}}(v)))$$

• If $F_1 \wedge F_2 \rightarrow F_3$ is valid, consider structure \mathcal{A} with universe $\{0,1\}^*$, $e_{\mathcal{A}} = \varepsilon$, $(f_0)_{\mathcal{A}}(\sigma) = \sigma 0$, $(f_1)_{\mathcal{A}}(\sigma) = \sigma 1$, and

$$\boldsymbol{P}_{\mathcal{A}} = \{(\sigma, \tau) : \exists i_1 \dots \exists i_t \dots \sigma = x_{i_1} \dots x_{i_t} \text{ and } \tau = y_{i_1} \dots y_{i_t}\}.$$

Now A satisfies $F_1 \wedge F_2$ and $F_1 \wedge F_2 \rightarrow F_3$, and so A satisfies F_3 . But then P has solution.

If *P* has solution, consider any *A* that satisfies *F*₁ ∧ *F*₂. Show by induction on *t* that for any sequence of tiles *i*₁... *i*_t,

 $\mathcal{A} \models \mathcal{P}(f_u(e), f_v(e)), \text{ where } u = x_{i_1} \dots x_{i_t} \text{ and } v = y_{i_1} \dots y_{i_t}.$

$$F_{1} = \bigwedge_{i=1}^{k} P(f_{x_{i}}(e), f_{y_{i}}(e)) \qquad F_{3} = \exists u P(u, u)$$
$$F_{2} = \forall u \forall v \bigwedge_{i=1}^{k} (P(u, v) \rightarrow P(f_{x_{i}}(u), f_{y_{i}}(v)))$$

• If $F_1 \wedge F_2 \rightarrow F_3$ is valid, consider structure \mathcal{A} with universe $\{0,1\}^*$, $e_{\mathcal{A}} = \varepsilon$, $(f_0)_{\mathcal{A}}(\sigma) = \sigma 0$, $(f_1)_{\mathcal{A}}(\sigma) = \sigma 1$, and

$$\boldsymbol{P}_{\mathcal{A}} = \{(\sigma, \tau) : \exists i_1 \dots \exists i_t \dots \sigma = x_{i_1} \dots x_{i_t} \text{ and } \tau = y_{i_1} \dots y_{i_t}\}.$$

Now A satisfies $F_1 \wedge F_2$ and $F_1 \wedge F_2 \rightarrow F_3$, and so A satisfies F_3 . But then P has solution.

If *P* has solution, consider any *A* that satisfies *F*₁ ∧ *F*₂. Show by induction on *t* that for any sequence of tiles *i*₁...*i*_t,

 $\mathcal{A} \models P(f_u(e), f_v(e)), \text{ where } u = x_{i_1} \dots x_{i_t} \text{ and } v = y_{i_1} \dots y_{i_t}.$

But since *P* has solution, $A \models P(f_u(e), f_u(e))$ for some string *u*. Thus $A \models F_3$.

$$F_{1} = \bigwedge_{i=1}^{k} P(f_{x_{i}}(e), f_{y_{i}}(e)) \qquad F_{3} = \exists u P(u, u)$$
$$F_{2} = \forall u \forall v \bigwedge_{i=1}^{k} (P(u, v) \rightarrow P(f_{x_{i}}(u), f_{y_{i}}(v)))$$

• If $F_1 \wedge F_2 \rightarrow F_3$ is valid, consider structure \mathcal{A} with universe $\{0,1\}^*$, $e_{\mathcal{A}} = \varepsilon$, $(f_0)_{\mathcal{A}}(\sigma) = \sigma 0$, $(f_1)_{\mathcal{A}}(\sigma) = \sigma 1$, and

$$\boldsymbol{P}_{\mathcal{A}} = \{(\sigma, \tau) : \exists i_1 \dots \exists i_t \dots \sigma = x_{i_1} \dots x_{i_t} \text{ and } \tau = y_{i_1} \dots y_{i_t}\}.$$

Now A satisfies $F_1 \wedge F_2$ and $F_1 \wedge F_2 \rightarrow F_3$, and so A satisfies F_3 . But then P has solution.

If *P* has solution, consider any *A* that satisfies *F*₁ ∧ *F*₂. Show by induction on *t* that for any sequence of tiles *i*₁... *i*_t,

 $\mathcal{A} \models P(f_u(e), f_v(e)), \text{ where } u = x_{i_1} \dots x_{i_t} \text{ and } v = y_{i_1} \dots y_{i_t}.$

But since *P* has solution, $A \models P(f_u(e), f_u(e))$ for some string *u*. Thus $A \models F_3$.

Theorem

Validity and satisfiability in first-order logic are undecidable.