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10.2

Recap

Give a quantifier-free formula F :

Prenex form: Q1x1Q2x2 · · ·QnxnF

Skolem form: ∀x1∀x2 · · · ∀xnF

Assuming Axiom of Choice, every first-order formula can be
translated into an equi-satisfiable formula in Skolem form
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10.3

Jaques Herbrand (1908 – 1931)
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10.4

Ground terms

Definition

Given a signature σ, a ground term is a σ-term in which no variable
symbol appears.

Example

Let σ = 〈c,d , f ,g, P,Q〉 with unary f and binary g, the set of ground
terms is

{c,d , f (c), f (d),g(c, c),g(c,d),g(d , c),g(d ,d), f (f (c)), f (f (d)), . . .}
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Herbrand structures

Definition

Let σ be a signature with at least one constant symbol. A σ-structure
H is a Herbrand structure if the following hold:

The universe UH is the set of ground terms over σ.
For every constant symbol c, we have cH = c.
For every function symbol f , for all ground terms t1, . . . , tn:
fH(t1, . . . , tn) = f (t1, . . . , tn).

Observe that every formula F can be interpreted over Herbrand
structures, even if no constant symbol appears in F ! For example,
take the Herbrand structures over the signature containing all function
and predicate symbols that appear in F , plus one arbitrary constant
symbol.

5 / 10



Herbrand’s theorem
and ground
resolution

10.6

Herbrand structures

Proposition

For every Herbrand structure H and ground term t , H(t) = t .

Proof.

Straightforward structural induction on terms.

So: All Herbrand structures interpret ground terms in the same way!

Lemma (Translation Lemma for Herbrand structures)

For every formula F , ground term t, and Herbrand structure H:

H |= F [t/x ] if and only if H[x 7→t] |= F.

Proof.

The Translation Lemma proved previously gives

H |= F [t/x ] if and only if H[x 7→H(t)] |= F .

Use now that H(t) = t .
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10.7

Herbrand’s theorem

Theorem

Let F = ∀x1∀x2 . . . ∀xnF ∗ be a closed formula in Skolem form. Then F
is satisfiable if and only if F has a Herbrand model.
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Herbrand’s theorem

Theorem

Let F = ∀x1∀x2 . . . ∀xnF ∗ be a closed formula in Skolem form. Then F
is satisfiable if and only if F has a Herbrand model.

Proof.

It suffices to show: If F has a model, then it also has a Herbrand
model.
Assume A is a model of F . We use A to define a Herbrand structure
H, and show it is a model of F .
Since F is closed, the interpretation of variables is irrelevant. So for
every variable x pick an arbitrary ground term tx and set xH = tx .
It only remains to fix the interpretation PH of each predicate symbol
P. For all ground terms t1, . . . , tk we choose:

(t1, . . . , tk ) ∈ PH iff A |= P(t1, . . . , tk )

Observe that, with this choice, for all ground terms t1, . . . , tk and
predicate symbols P we have: A |= P(t1, . . . , tk ) iff H |= P(t1, . . . , tk ).
We claim that H is a model of F . (Continues)
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Herbrand’s theorem

Theorem

Let F = ∀x1∀x2 . . . ∀xnF ∗ be a closed formula in Skolem form. Then F
is satisfiable if and only if F has a Herbrand model.

Proof.

(Continued) We prove that H is a model of F by induction on n.

Base: n = 0. Then F = F ∗.
Since F = F ∗ and closed by hypothesis, F is a Boolean combination
of atomic formulas P(t1, . . . , tk ), where t1, . . . , tk are ground terms.
So, by the observation in the previous slide, A |= F iff H |= F .
Since A |= F by assumption, we get H |= F .

7 / 10



Herbrand’s theorem
and ground
resolution

10.7

Herbrand’s theorem

Theorem

Let F = ∀x1∀x2 . . . ∀xnF ∗ be a closed formula in Skolem form. Then F
is satisfiable if and only if F has a Herbrand model.

Proof.

(Continued) We prove that H is a model of F by induction on n.

Step: n > 0. Let G = ∀x2 . . . ∀xnF ∗. We have F = ∀x1 G.
Since UH is the set of ground terms, proving H |= F amounts to
proving H[x1 7→t] |= G for every ground term t .
Let t be an arbitrary ground term. We prove H[x1 7→t] |= G.
Since A |= ∀x1 G, we have A[x1 7→a] |= G for every a ∈ UA.
In particular A[x1 7→A(t)] |= G.
By the (ordinary) Translation Lemma, A |= G[t/x1].
Since G[t/x1] is closed (t is ground!) and in Skolem form, we can
apply the induction hypothesis to G[t/x1], yielding: H |= G[t/x1].
By Translation Lemma for Herbrand structures, H[x1 7→t] |= G.
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Ground resolution

Definition

The Herbrand expansion of a formula F = ∀x1∀x2 . . . ∀xnF ∗ is the
set:

E(F ) := {F ∗[t1/x1][t2/x2] . . . [tn/xn] : t1, . . . , tn ground terms}

Observe: E(F ) is a set of propositional formulas over the set of all
variables P(t1, . . . , tk ), where P appears in F ∗, and t1, . . . , tn are
ground terms.
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10.9

Ground resolution

Theorem

A closed formula F = ∀x1 . . . ∀xn F ∗ in Skolem form is satisfiable iff
E(F ) is satisfiable when considered as a set of propositional
formulas.

Proof.

By Herbrand’s theorem, F is satisfiable iff it has a Herbrand model.
For every Herbrand structure H we have:

H |= F iff H[x1 7→t1]···[xn 7→tn] |= F ∗ for all ground terms t1, . . . , tn
iff H |= F ∗[t1/x1] . . . [tn/xn] (Translation Lemma)
iff H |= E(F )

iff E(F ) satisfiable as set of prop. formulas
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10.10

Ground resolution

Theorem

A closed formula F in Skolem form is unsatisfiable if and only if there
is a propositional resolution proof of � from E(F ).

Proof.

By the compactness theorem, E(F ) is unsatisfiable if and only if
some finite subset of E(F ) is unsatisfiable if and only if � can be
derived from E(F ) using resolution.
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