
Lecture 15
Automatic Structures
automata-based decision procedures for logical-theories

Print version of the lecture in Logic and Proof

presented on 3 June 2019

by Prof James Worrell

In the last lecture, we saw that quantifier-elimination is a technique that en-
ables showing decidability of a logical theory. Today, we will see another such
technique that enables deciding many logical theories and is based on regular lan-
guages, which is the class of languages accepted by finite-state automata which
you may well-remember from your Models of Computation course.

The basic idea is easy to explain. We consider logical theories T of structures
whose universe is isomorphic to a regular language and whose relations are also
regular languages over a suitable alphabet. Given a formula F (x1, . . . , xn), we can
then construct a finite-state automaton whose language L encodes all satisfying
assignments of F . It follows that F is satisfiable if L 6= ∅, and if F is closed then F
is a sentence of T whenever L = {ε}.

In this lecture, we will exclusively consider relational structures. A σ-structure is
relational if σ consists of only relation symbols. Fortunately, this restriction comes
with no loss of generality. Suppose the signature σ of a σ-structure A contains
an k-ary function symbol f . We can then turn A into a relational structure by
introducing a fresh relation symbol R which is interpreted as the graph of f , i.e.,

RA =
{

(a1, . . . , ak, b) ∈ Uk+1
A : fA(a1, . . . , ak) = b

}
.

Constant symbols can be dealt with in the same way, recalling that a constant
symbol can be viewed as a 0-ary function symbol.

For a concrete example, consider the structure A = (N, 0, 1,+, <) underlying
Presburger arithmetic with constants 0, 1 and the binary addition function +. We
introduce fresh relation symbols R0, R1 and R+ such that

R0 = {0} R1 = {1} R+ = {(a, b, c) ∈ N3 : a+ b = c}.

Then (N, R0, R1, R+, <) is a relational structure.

1 Automatic structures

We will now define what it means for a relational structure to be automatic and
show how to decide the theory of an automatic structure. Let us fix some relational
structure A. The first requirement for A to be automatic is that its universe UA is
isomorphic to some regular language L ⊆ Σ∗.

For example, UA = N is isomorphic to the regular language

N := ({0, 1}∗1) ∪ {0} ⊆ {0, 1}∗.

1

To see this, think of a word w = b0b1 · · · bm ∈ N as encoding a natural number in
binary in least-significant bit numbering, i.e., define val : N → N by

val(w) :=

m∑
i=0

2i · bi

Then val gives a bijection between N and N .
As stated above, relations of an automatic structure are also regular languages.

Given that relations can have arity greater than one, this entails the question how
to represent a k-ary relation R ⊆ Uk

A, where UA ⊆ Σ∗ for some finite alphabet Σ. A
key observation is that we can encode a tuple (a1, . . . , ak) ∈ U∗A, where all ai have the
same length, as a word over the alphabet Σk. For example, (10, 10, 01) ∈ ({0, 1}∗)3

can be encoded as the word
[
1
1
0

] [
0
0
1

]
∈ (Σ3)∗. However, this encoding crucially relies

on the ai having the same length, which is rarely the case. For example, we cannot
encode the tuple (1, 1, 01) ∈ N3 in this way.

1.1 Word convolutions

A way out of this dilemma is to introduce an additional fresh padding symbol # 6∈ Σ
serving as a blank symbol that allows us to make the length of different words
equal in a unique way. We define Σ# := Σ ∪ {#}. Suppose we are given words
w1, . . . , wk ∈ Σ∗, each of the form wi = ai,1ai,2 · · · ai,`i , and let ` = max{`1, . . . , `k}. We
define the convolution operator ⊗ that, informally speaking, glues the words of
a tuple (w1, . . . , wk) ∈ (Σ∗)k together and represents it as a unique word over (Σk

#)`.
Define ai,j := # for all `i < j ≤ ` and 1 ≤ i ≤ n, the convolution of w1, . . . , wn is the
word

w1 ⊗ w2 ⊗ · · · ⊗ wk :=

[a1,1

...
an,1

][a1,2

...
an,2

]
· · ·

[a1,`

...
an,`

]
∈ (Σk

#)∗

The definition of convolution is probably best understood with the help of an ex-
ample.

Example 1. Let Σ = {a, b}, then

abba⊗ abaabba = [aa]
[
b
b

]
[ba] [aa]

[
#
b

] [
#
b

]
[#a] .

Recall that the universe of automatic structures is a regular language. The next
proposition enables us to obtain tuples of convoluted words of those universes as
regular languages.

Proposition 2. Let U ⊆ Σ∗ be a regular language and k > 0. Then

LU,k := {w1 ⊗ w2 ⊗ · · · ⊗ wk ∈ (Σk
#)∗ : w1, . . . , wk ∈ U}

is regular.

Proof. We leave the proof of this proposition as an exercise to the reader.

1.2 Automatic relations

With word convolutions at hand, we can now formally define what it means for a
relation to be automatic: A relation R ⊆ Uk

A is automatic if the language

LR := {w1 ⊗ w2 ⊗ · · · ⊗ wk : (w1, . . . , wk) ∈ R}

is regular. For example, R = {(u, v) ∈ (Σ∗)2 : u is a prefix of v} with Σ = {a, b} is
automatic, since LR is the language of the following non-deterministic finite state
automaton:

2

p q
[#a] ,

[
#
b

]

[aa] ,
[
b
b

]
[#a] ,

[
#
b

]
Likewise, the equals-relation “=” is clearly automatic.

With those definitions at hand, we can now give a formal definition of automatic
structures.

Definition 3. A relational structure A = (UA, R1, . . . , Rm) is automatic if there are
a finite alphabet Σ and regular languages L ⊆ Σ∗, L1, . . . , Lm such that

• L = UA
• Li = LRi for all 1 ≤ i ≤ m

A structure A has an automatic presentation if A is isomorphic to an automatic
structure.

1.3 Examples of automatic structures

We will now explore some examples of structures that have an automatic presenta-
tion. Recall the theory of unbounded dense linear orders TUDLO from the previous
lecture.

Proposition 4. Any structure A = (Q,<) that is a model of the unbounded dense
linear order axioms has an automatic presentation.

Proof. To show the statement, we (i) prove that any unbounded dense linear orders
are isomorphic to each other, and (ii) exhibit an automatic structure that is a model
of the unbounded dense linear order axioms. In fact, we defer part (i) to the next
lecture.

For part (ii), we define a structure A = (L,<) such that L := {0, 1}∗ · 1 and x < y
iff either

• y = xu for some u ∈ {0, 1}+, or
• x = z0u and y = z1v for some u, v, z ∈ {0, 1}∗.

Thinking of a word w ∈ {0, 1}∗ as encoding a node in a binary tree, we have x < y
if and only if the node identified by y is below or to the right of the node identified
by x. Clearly, L is regular, and it is not difficult to construct an NFA accepting L<.
Hence, A is an automatic structure.

It remains to show that A is a model of the axioms of unbounded dense linear
orders. But that is not difficult to see:

• There is no smallest element: for any u1 ∈ L, we have u01 ∈ L and u01 < u1.
• There is no largest element: for any u1 ∈ L, we have u11 ∈ L and u1 < u11.
• L is dense with respect to <. Given x, y ∈ L such that x < y, we distinguish

two cases.

1. If x = u1 and y = u1v1, then x < u10|v|+11 < y.

2. If x = u0v1 and y = u1w, then x < u01|v|+2 < y.

Another example of a structure with an automatic presentation is the (rela-
tional) structure underlying Presburger arithmetic.

Proposition 5. The structure P = (N, 0, 1,+, <) has an automatic presentation.

Proof. We established above that there is a bijection between N and N . It thus
remains to find regular languages L0, L1, L+ and L< “implementing” the relations
of P. Obviously, L0 := {0} and L1 := {1} are regular. For L+, consider the following
NFA A:

3

qstart r

[
1
1
0

]

[
0
0
1

]
,
[
#
0
1

]
,
[

0
#
1

]
,
[#
#
1

]

[
0
0
0

]
,
[
0
1
1

]
,
[
1
0
1

]
,
[
#
0
0

]
,
[

0
#
0

]
,
[
#
1
1

]
,
[

1
#
1

] [
1
0
0

]
,
[
0
1
0

]
,
[
1
1
1

]
,
[
#
1
0

]
,
[

1
#
0

]

This automaton implements the ternary addition relation via “written addition.”
The control state q is accepting, and the automaton moves to r if a carry occurs
which needs to be resolved before the automaton can move back to q. Identifying
the padding symbol # with zero, it follows that any word in the language L(A) ⊆
({0, 1,#}3)∗ of A has a unique corresponding tuple (u, v, w) ∈ N3 such that val(u) +
val(v) = val(w). All that remains to be done for obtaining L+ is to make sure
that once a padding symbol # occurs in some component of a word in L(A), it
remains there forever. It follows that L+ = L(A) ∩ LN,3, where LN,3 is defined as in
Proposition 2, is regular since regular languages are closed under intersection.

We leave proving regularity of L< as an exercise to the reader, which can be
shown analogously to the regularity of L+.

1.4 Decidability of the theories of automatic structures

What is striking about a structure A with an automatic presentation is that we
immediately obtain decidability of Th(A) thanks to the rich closure properties of
regular languages.

Theorem 6 (Khoussainov, Nerode). For every first-order structure A with an auto-
matic presentation, the first-order theory Th(A) is decidable.

To prove the statement, for a given formula F , we show how to decide F ∈
Th(A) by structural induction on F . Subformulas of F have free variables, and we
proceed by showing how to inductively construct regular languages that encode all
satisfying assignments of the subformulas of F .

Proposition 7. Let A = (U,R1, . . . , Rm) be an automatic σ-structure such that U ⊆
Σ∗, and let F be a σ-formula with at most free variables x1, . . . , xn. There is an
effectively constructible regular language LF ⊆ (Σn

#)∗ such that

LF =
{
w1 ⊗ · · · ⊗ wn ∈ (Σn

#)∗ : w1, . . . , wn ∈ U, A[x1 7→w1]···[xn 7→wn] |= F
}
.

Proof. The proof is by induction on the structure of F . In the base case, F is some
relation Ri(xi1 , . . . , xik). Since A is an automatic structure, LRi ⊆ (Σk

#)∗ is regular
by assumption. However, in general k 6= n, so we need to “lift” the alphabet of
LRi

to (Σn
#)∗. To this end, define a homomorphism h : (Σn

#)∗ → (Σk
#)∗ such that for

a1, . . . , an ∈ Σ#:

h(a1, . . . , an) =

{
ε if ai1 = · · · = aik = #

(ai1 , . . . , aik) otherwise

Since LRi
⊆ (Σk

#)∗ is regular, using the fact that regular languages are closed under
inverse homomorphisms, we obtain

LF = h−1(LRi
) ∩ LU,n.

For the induction step, the cases F = G ∧ H, F = G ∨ H and F = ¬G are
easily dealt with, since the induction hypothesis gives regular languages LG, LH ⊆
(Σn

#)∗ and regular languages are closed under intersection, union and complement.
Thus, for instance, for F = ¬G we have

LF = LU,n \ LG.

4

The case ∃xn+1G with x1, . . . , xn, xn+1 being free in G is also easily dealt with. By
the induction hypothesis, there is a regular language LG ⊆ (Σn+1

)∗ whose language
encodes all satisfying assignments of G. To define LF , all we have to do is to
project onto the first n components of LG. To this end, define the homomorphism
h : (Σn+1

)∗ → (Σn
#)∗ such that for a1, . . . , an ∈ Σ#

h(a1, . . . , an, an+1) =

{
ε if a1 = · · · = an = #

(a1, . . . , an) otherwise

We then obviously have LF = h(LG), which is regular due to regular languages
being closed under homomorphism.

Finally, for the case F = ∀xn+1G, we have F ≡ ¬∃xn+1 ¬G, which gives the
desired regular language LF .

Thus, in order to decide for a given sentence F whether F ∈ Th(A), the proof
of Proposition 7 gives an algorithm for constructing a representation of a regular
language LF (e.g. as an NFA) such that F ∈ Th(A) if and only if L 6= ∅. Since
emptiness is decidable for NFA, decidability of Th(A) follows.

Naturally, the question arises how efficient the obtained decision procedure is.
When processing universal quantifiers, we need to construct the complement of
a regular language twice. Each complementation step can cause an exponential
blow-up, and unfortunately this blow-up cannot be avoided.

Proposition 8. There exists an automatic structure A with non-elementary com-
plexity, i.e., no algorithm decides F ∈ Th(A) in time 22

···2n

.

Proof. This can be shown for the structure A = ({0, 1}∗, S0, S1,≤), where

Si := {(w,wi) : w ∈ {0, 1}∗}, i ∈ {0, 1} ≤ := {(w,wu) : w, u ∈ {0, 1}∗}.

The idea is to take a Turing machine M whose runtime for a given input w is
bounded by a tower of exponentials whose height grows with |w|, and then to
construct a sentence F such that F ∈ Th(A) if and only if M halts on w. Giving full
details of this construction would go beyond the scope of these lecture notes.

On the positive side, for many important first-order structures one can show
that the intermediate automata obtained in the algorithmic approach presented in
the proof of Proposition 7 only grow elementary and, for instance, are “only” of size

22
2O(n)

when deciding formulas of Presburger arithmetic.

1.5 Proving non-automaticity

Obviously, not every structure is automatic, since not every theory of a given struc-
ture is decidable. But there are also structures with a decidable theory which do
not have an automatic presentation. An example is the first-order theory of the
reals with addition Th(R, 0, 1,+). Since there are only countably many words in
a regular language, we cannot find a regular language U that is isomorphic to R.
Thus, to check whether a given structure has an automatic presentation, a first
step is to examine whether its universe is countable.

Automatic structures also impose strong restrictions on the functions they can
include (as relations, of course).

Lemma 9 (Constant Growth Lemma). If f : Un → U is a function whose graph is an
automatic relation, then there is a constant c > 0 such that for all a1, . . . , an ∈ U ,

|f(a1, . . . , an)| ≤ max{|a1|, . . . , |an|}+ c

5

Proof. We consider a “reversed” version of the Pumping Lemma for regular lan-
guages that states that for any regular language L, there exists a constant p > 0
such that for any w ∈ L such that |w| > p, we have w = xyz such that |yz| ≤ p,
|y| > 0, and xyiz ∈ L for all i ≥ 0.

Let R ⊆ Un+1 be the graph of f , by assumption LR is regular. We choose c to be
the constant for LR obtained from the above Pumping Lemma. For a contradiction,
assume that there exist a1, . . . , an ∈ U such that |f(a1, . . . , an)| −max{|a1|, . . . , |an|} >
c. Then the Pumping Lemma implies that there two possible cases:

1. We have a1 ⊗ · · · ⊗ an ⊗ b ∈ LR for infinitely many b 6= f(a1, . . . , an).
2. LR contains a word that is not a convolution of a tuple of words from U .

The first case contradicts R being the graph of f , and the second case contradicts
R being automatic.

Observe that the ternary R+ relation we have seen in the context of Presburger
arithmetic obeys the Constant Growth Lemma, since for tuples (u, v, w) ∈ R+, we
have |w| ≤ max{|u|, |v|} + 1. On the other hand, thanks to the Constant Growth
Lemma, we can immediately see that any structure including a relation {(u, v) :
val(v) = 2val(u)} cannot be automatic.

Further structures with decidable first-order theories which have no automatic
presentation include (N, ·), (N, |) and (Q,+).

2 Beyond regular languages

We close this lecture by remarking that one can make alternative definitions of
automaticity. The automatic structures we have seen in this lecture rely on regular
languages, but the approach we have taken here works for any class of languages
that has the required closure properties.

Instead of using regular languages, we can switch to ω-regular languages which
are an analogue to regular languages for infinite words. In this setting, so-called
Büchi automata correspond to finite-state automata and share their nice closure
properties. For example, it is then possible to show that the structure (R, 0, 1,+,≤)
is ω-automatic.

Likewise, one can define analogues of automatic structures using so-called tree
automata, which generalise finite-state automata and operate on trees instead of
words (a word can be viewed as a tree that has only a single branch). It is then
possible to show that (N, ·) is tree-automatic.

Deciding logical theories using some generalisation of automatic structures has
given spectacular results in recent years. Call a number n ∈ N a binary palindrome
if the binary representation of n equals its reverse. For instance, 27 = val(11011)
is a binary palindrome. The following number-theoretic statement, an analogue
of the classical Lagrange’s theorem, has recently been fully automatically proved
using (extensions of) the techniques we have seen in this lecture.

Theorem 10 (Rajasekaran, Shallit, Smith). Every natural number can be written
as the sum of four binary palindromes.

6

	Automatic structures
	Word convolutions
	Automatic relations
	Examples of automatic structures
	Decidability of the theories of automatic structures
	Proving non-automaticity

	Beyond regular languages

