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1 Logical Theories

In this lecture we work exclusively with first-order logic with equality.
Fix a signature σ. A theory T is a set of sentences (closed formulas) that is

closed under semantic entailment, i.e., if T |= F then F ∈ T . Given a σ-structure A
it is clear that the set of sentences that hold in A is a theory. We denote this theory
by Th(A) and call it the theory of A. We say that a theory is complete if for any
sentence F , either F ∈ Th(A) or ¬F ∈ Th(A). Clearly the theory of any particular
structure is complete. The set of valid σ-formulas is an example of a theory that is
not complete.

An example of a structure-based theory is Th(Q, 1, <,+, {c · }c∈Q), linear arith-
metic over the rationals. Here, + is the binary addition function and c · denotes
the unary function “multiply by c” for each c ∈ Q. The theory is defined over a sig-
nature σ that has symbols for each component of the structure (Q, 1, <,+, {c · }c∈Q).
Specifically, σ has a constant symbol 1, binary function symbol +, binary relation
symbol < , and an infinite family of unary function symbols c · , indexed by c ∈ Q.

Note that having a family of unary multiplication functions {c · }c∈Q is com-
pletely different from having a single binary multiplication function. Under the
above definition σ-terms are essentially linear combinations of the the first-order
variables, e.g., 1

2x+
1
3y+ z+

5
9 is a σ-term. On the other hand, incorporating binary

multiplication in σ would lead to polynomial terms, such as x2y + z4.
Atomic formulas have the form t1 = t2 or t1 < t2 for σ-terms. Here are some

assertions that can be formalized in linear arithmetic (where A denotes a matrix of
rationals, x a vector of variables, and b a vector of rationals):

• The system of linear inequalities Ax ≤ b has no solution.
• Every solution of Ax ≤ b is also a solution of Cx ≤ d.

The statements above have a natural geometric interpretation. For example, the
second statement asserts that the polygon {x ∈ Qn : Ax ≤ b} is a subset of the
polygon {x ∈ Qn : Cx ≤ d}.

Another important source of theories is from sets of axioms. Given a set of
sentences S, the set T = {F : S |= F} is a theory. We call S a set of axioms for the
theory T . For example, if S comprises the group axioms then T is the theory of
groups. Observe that the theory of groups is not complete: if m denotes the binary
multiplication operation then the theory of groups neither contains the sentence

1



∀x ∀y (m(x, y) = m(y, x)) nor its negation (some groups are abelian and other groups
are non-abelian).

Here, in more detail, is another axiomatic theory, which we will explore below.
Consider a signature with a single binary relation <. The theory TUDLO of un-
bounded dense linear orders is the set of sentences entailed by the following set of
axioms:

F1 ∀x∀y (x < y → ¬(x = y ∨ y < x))

F2 ∀x∀y ∀z (x < y ∧ y < z → x < z)

F3 ∀x∀y (x < y ∨ y < x ∨ x = y)

F4 ∀x∀y (x < y → ∃z (x < z ∧ z < y))

F5 ∀x∃y ∃z (y < x < z) .

A theory T is decidable if there is an algorithm that, given a sentence F , de-
termines whether or not F ∈ T . We will show that the theory of unbounded dense
linear orders and the theory of linear arithmetic over the rationals are both decid-
able.

An important technique to show that a theory is decidable is quantifier elim-
ination. We say that a theory T admits quantifier elimination if for any formula
∃xF , with F quantifier-free, there exists a quantifier-free formula G with the same
free variables as ∃xF such that T |= ∃xF ↔ G, that is, for any assignment A that is
a model of T , A |= ∃xF if and only if A |= G. (It is worth emphasizing that quantifier
elimination is defined on formulas that may have free variables.) We furthermore
say that T has a quantifier elimination procedure if there is an algorithm to
obtain G given F .

Example 1. Let T denote the theory of the structure (R,+, ·, 0, 1) and consider the
formula F := ∃x (ax2 + bx + c = 0) in free variables a, b, c. This formula asserts that
the quadratic equation ax2+bx+c = 0 has a real solution. By the quadratic formula
we have T |= F ↔ b2 ≥ 4ac. As another example, consider the formula

F := (x1a+ x2c = 1) ∧ (x1b+ x2d = 0) ∧ (x3a+ x4c = 0) ∧ (x3b+ x4d = 1) .

F can be written (
x1 x2
x3 x4

)(
a b
c d

)
=

(
1 0
0 1

)
in matrix notation. Thus ∃x1∃x2∃x3∃x4F asserts that the matrix(

a b
c d

)
has a multiplicative inverse. Thus T |= ∃x1∃x2∃x3∃x4F ↔ ad− bc = 0.

The definition of quantifier elimination refers only to the existential quantifier.
The universal quantifier can be handled using duality. Consider a formula ∀xF
with F quantifier-free. If a theory T has quantifier elimination then we can find a
quantifier-free formula G such that T |= ∃x¬F ↔ G. But then T |= ∀xF ↔ ¬G.

A theory T is decidable if it has a quantifier elimination-procedure and a pro-
cedure for determining whether or not F ∈ T for a variable-free atomic formula
F . Given an arbitrary formula F , to determine whether F ∈ T , first convert F
to an equivalent formula in prenex normal form, and eliminate quantifiers from
the inside out. In particular, if T |= ∃xF ∗ ↔ G then T |= Q1x1 . . . QnxnQxF

∗ ↔
Q1x1 . . . QnxnG, where Qi, Q ∈ {∃,∀}.

Eventually one obtains a sentence F ′ such that T |= F ↔ F ′. Thus F ∈ T if
and only if F ′ ∈ T . But by assumption we have a procedure to decide this last
membership query.
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2 Unbounded Dense Linear Orders

Theorem 2. The theory TUDLO of unbounded dense linear orders is decidable.

Proof. The main step of the proof is to show that TUDLO has a quantifier-elimination
procedure.

Consider a formula ∃xF , with F quantifier-free. We give a quantifier-free for-
mula G with the same free variables as ∃xF such that for any assignment A that is
a model of TUDLO , A |= ∃xF if and only if A |= G. The quantifier-elimination proce-
dure has two phases: first we simplify the formula F through logical manipulations
and then we show how to eliminate quantifiers within formulas in simplified form.

As a first step, we can convert F into a logically equivalent formula in DNF. We
can moreover eliminate negative literals by replacing the subformula ¬(xi < xj)
with xi = xj ∨xj < xi and replacing the subformula ¬(xi = xj) with xi < xj ∨xj < xi.

Henceforth we assume that F is in DNF and negation-free. Now using the
equivalence ∃x (F1 ∨ F2) ≡ ∃xF1 ∨ ∃xF2 it suffices that we be able to eliminate the
quantifier ∃x in case F is a conjunction of atomic formulas. Finally, using the
equivalence ∃x (F1 ∧ F2) ≡ ∃xF1 ∧ F2 in case x is not free in F2, it suffices that we
be able to eliminate the quantifier ∃x in case F is a conjunction of atomic formulas
all of which mention x. Such formulas have the form x = y, x < y or y < x for some
variable y.

For the final case above, we proceed as follows. If F contains a conjunct x < x
then we have TUDLO |= ∃xF ↔ false. Otherwise, if F contains a conjunct x = y for
some other variable y then we have that TUDLO |= ∃xF ↔ F [y/x].

If neither of the above applies then (after deleting conjuncts of the form x = x if
present) we can write F in the form

F =

m∧
i=1

li < x ∧
n∧

j=1

x < uj ,

where the li and uj are variables different from x. Now if m = 0, i.e., there are no
lower bounds on x, then TUDLO |= ∃xF ↔ true (since we’re considering the theory
of unbounded orders). Likewise if n = 0, i.e., there are no upper bounds on x, then
TUDLO |= ∃xF ↔ true. Otherwise, by density of the order relation, we have

TUDLO |= ∃xF ↔
m∧
i=1

n∧
j=1

li < uj .

Decidability of TUDLO follows straightforwardly from the existence of a quantifier-
elimination procedure. Starting from a sentence F , after eliminating all quantifiers
from F we are left with a variable-free formula G such that T |= F ↔ G. But G must
be a propositional combination of true or false, and therefore logically equivalent
to either true or false.

The proof of Theorem 2 shows inter alia that TUDLO is complete: given a sen-
tence F , either F holds on all unbounded dense linear orders, or its negation holds
on all unbounded dense linear orders. (After eliminating all quantifiers from a
closed formula F one obtains either TUDLO |= F ↔ true or TUDLO |= F ↔ false.)
In particular, (Q, <) and (R, <) satisfy the same first-order sentences. (This finally
answers Exercise 7 from the lecture introducing first-order logic.)

You may recall that (R, <) is Dedekind complete: any non-empty set of reals that
is bounded above has a least upper bound. This property fails for the rationals
since, e.g., {x ∈ Q : x2 < 2} has no least upper bound in the rationals. Evidently
Dedekind completeness cannot be expressed in first-order logic in the language of
linear orders.
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3 Linear Rational Arithmetic

In the previous section we showed decidability of an axiomatic theory by quantifier
elimination. In this section we use quantifier elimination to show decidability of
the theory of a certain structure.

Theorem 3. Th(Q, 1, <,+, {c · }c∈Q) is decidable.

Proof. We show that the above theory has a quantifier-elimination procedure. In
this context quantifier elimination is sometimes called Fourier-Motzkin elimination.

Following the proof of Theorem 2, it suffices to show how to eliminate the quan-
tifier ∃x in ∃xF , where F is a conjunction of atomic formulas all of which mention
x. Each such atomic formula has the form t1 < t2 for terms t1 and t2, where at
least one of t1 or t2 mentions x. Using the multiplication operations c · we can
equivalently render each atomic formula in the form x = t, x < t or t < x for some
term t that does not mention x. For example, 5x + y < 2x − y + z is equivalent to
x < − 2

3y +
1
3z.

Thus we can assume that F is written in the form

F =

m∧
i=1

ti < x ∧
n∧

j=1

x < sj

where the terms ti and sj do not mention x.
If m = 0 or n = 0 then the formula ∃xF is equivalent to true on the given

structure (since Q is unbounded). Otherwise ∃xF can equivalently be written

m∧
i=1

n∧
j=1

ti < sj .

This concludes the description of the quantifier elimination procedure.
Finally note that it is straightforward that any variable-free formula, which is a

Boolean combination of formulas t1 = t2 and t1, t2 for closed terms t1, t2, simplifies
to true or false on the structure in question.

4 Presburger arithmetic

Our final decidability result in this lecture concerns the theory of the structure
(N, 0, 1,+, <), which is commonly known as Presburger arithmetic.

Theorem 4. Th(N, 0, 1,+, <) is decidable.

We show decidability of Presburger arithmetic by providing a quantifier-elimination
procedure. In fact, Th(N, 0, 1,+, <) as such does not have quantifier elimination
since, e.g., the formula ∃y (x = y + y) is not equivalent to a quantifier-free formula
since it expresses that x is divisible by two, and we cannot express this property us-
ing only Boolean combinations of the atomic formulas of the structure (N, 0, 1,+, <).
This motivates the extension of this structure by unary divisibility predicates c | ·
for any c > 0 such that c | n is true if there exists a k ∈ N such that n = k · c. Conse-
quently, we will in the following show that the theory (N, 0, 1,+, <, {c | ·}c∈N) admits
quantifier elimination. In the following, we will write a · x in order to abbreviate the
a-fold application of +.

As discussed above, it suffices to provide a quantifier elimination procedure
for existential formulas whose matrix is a conjunction of atomic formulas. For
Presburger arithmetic, we henceforth consider formulas of the form

F = ∃x
∧
i∈G

qi(~y) < ai · x ∧
∧
j∈L

aj · x < pj(~y) ∧
∧
k∈D

ck | ak · x+ rk(~y) ∧ J, (1)
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where L,G,D are finite index sets, and qi, pj , rk are linear polynomials in ~y, e.g.,
2 · y1 − 4 · y2 + 3, and x does not occur in J . Strictly speaking, subtraction is
not present in our theory, but we may use it intermediately since any formula
involving subtraction of variables is equivalent to one which does not (since e.g.
2 · y1 − 4 · y2 + 3 < y3 is equivalent to 2 · y1 + 3 < y3 + 4 · y2). For simplicity, in
the following we will assume that J is equivalent to true, i.e., that x occurs in all
conjuncts of F .

Note that x occurs isolated in (1), but with different coefficients. Now set

b := lcm{ai | i ∈ G ∪ L ∪D},

where b := 1 if G ∪ L ∪D = ∅. We have that F in (1) is equivalent to

H = ∃x
∧
i∈G

b

ai
· qi(~y) < x ∧

∧
j∈L

x <
b

aj
· pj(~y) ∧

∧
k∈D

b

ak
· ck | x+

b

ak
· rk(~y) ∧ b | x. (2)

To see this, suppose x ∈ N is such that it satisfies (1). We claim that b · x satis-
fies (2). This is indeed easily seen for all atomic formulas except for the divisibility
constraints in (1). But note that c | a · x + r for some c, r ∈ N if and only if there
exists k ∈ N such that

k · c = a · x+ r

⇐⇒ b · k · c = b · a · x+ b · r

⇐⇒ b

a
· k · c = b · x+

b

a
· r

⇐⇒ b

a
· c | b · x+

b

a
· r.

By the same argument, if x satisfies (2) then x/b satisfies (1). Let

c := lcm

{
b,
b

ak
· ck : k ∈ D

}
1,

where c := 1 if D = ∅, we now claim that H in (2) is equi-satisfiable with the
following formula:

H =

{∨
0≤m<cH[m/x] if G = ∅∨
j∈G

∨
1≤m≤cH[((b/aj) · qj(~y) +m)/x] otherwise

(3)

Let us consider the case G = ∅ first. If the divisibility constraints in H have a
solution x then they have a solution amongst {0, . . . , c − 1} (Exercise: convince
yourself that this is the case). Since H is empty, such a solution is only constrained
from above by the less-than constraints indexed by L in H, and hence we can just
try out by brute-force all values for x between {0, . . . , c − 1} in order to obtain an
equi-satisfiable formula. Otherwise if G 6= ∅, then x can additionally be constrained
from below by some greater-than constraint indexed by G. But then some term
((b/aj) · qj(~y) +m) will be the largest amongst all others in a satisfying assignment,
and hence we can use a long disjunction in order to “simulate” guessing which
assignment is going to be the largest, and then additionally add some number in
{1, . . . , c} giving a smallest solution, if it exists.

We close this lecture with an example showing that we can prove some elemen-
tary number theoretic statements in Presburger arithmetic.

1Thanks to Long Pham (Keble) who spotted a glitch in an earlier version of these notes, and in
particular pointed out that lcm(m,n) 6= lcm(m · n, n) for arbitrary m,n ∈ N.
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Example 5. Let us consider the formula F = ∀x∃y (x = 2 · y∨x = 2 · y+1) expressing
that every natural number is odd or even. We rewrite F as

F ≡ ∀x ∃y ((x < 2 · y + 1 ∧ 2 · y < x+ 1) ∨ (x < 2 · y + 2 ∧ 2 · y < x))

We now eliminate y from the two disjuncts, call them F1 and F2, separately. We
first isolate y and obtain

F1 ≡ ∃y (x− 1 < 2 · y ∧ 2 · y < x+ 1).

Let b = lcm(2, 2) = 2, we now have F1 is equi-satisfiable with G1 defined as

G1 = ∃y (2
2
(x− 1) < y ∧ y < 2

2
(x+ 1) ∧ 2 | y)

≡ ∃y (x− 1 < y ∧ y < x+ 1 ∧ 2 | y)

We can now eliminate y from G1 and obtain an equi-satisfiable H1 as follows (note
that there were no divisibility constraints in F1 and hence c = 1):

H1 = ((x− 1 < x− 1 + 1) ∧ (x− 1 + 1 < x+ 1) ∧ 2 | x− 1 + 1)

≡ 2 | x

Likewise, from F2 we obtain H2 = 2 | x− 1. Consequently, F is equisatisfiable with
H = ∀x (2 | x ∨ 2 | x− 1). Now observe that ¬(m | n) ≡

∨
1≤i<mm | n+ i. Hence,

∀x(2 | x ∨ 2 | x− 1) ≡ ¬∃x (¬(2 | x) ∧ ¬(2 | x− 1)) ≡ ¬∃x ((2 | x+ 1) ∧ (2 | x)).

We now eliminate x from (2 | x + 1) ∧ (2 | x). This is immediate by replacing x by 0
according to the quantifier elimination procedure:

(2 | x+ 1) ∧ (2 | x) ≡ (2 | 0 + 1) ∧ (2 | 0) ≡ (2 | 1 ∧ 2 | 0) ≡ false.

Now ¬false ≡ true, which shows that F is valid.
Admittedly, this is a lengthy proof for the simple statement that every natural

number is odd or even. Still, the interesting part about it is that it goes through by
mechanically following the rules of the quantifier elimination procedure for Pres-
burger arithmetic.
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