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In this lecture, we are going to prove a statement analogue to the one we al-
ready saw for propositional logic and show that first-order logic has the compact-
ness property. In fact, the proof relies on compactness for propositional logic
and incorporates many of the concepts we have encountered in this course so far.
The compactness theorem for first-order logic in particular allows us to construct
models with specific properties. A particular example that we will focus on is the
construction of non-standard models of classical arithmetic.

1 The compactness theorem

In this section, we prove the compactness theorem for first-order logic:

Theorem 1. Let S be a countably infinite set of first-order formulas. Then S is
satisfiable if and only if every finite subset of S is satisfiable.

We first give the proof on a high level and then justify the individual steps. One
direction is of course trivial: If S is satisfiable then any model A of S will also be
a model of any finite subset of S. Hence, we only need to focus on the reverse
direction. Let T be obtained from skolemising every formula in S, and let E be the
Herbrand expansion of T . Then

all finite subsets of S are satisfiable (1)

⇒ all finite subsets of T are satisfiable (2)

⇒ all finite subsets of E are satisfiable (viewed as propositional formulas) (3)

⇒ E is satisfiable (viewed as propositional formulas) (4)

⇒ T is satisfiable (5)

⇒ S is satisfiable. (6)

Even though the high-level proof seems convincing, there are some subtleties
that need to be taken care of. For instance, even the first step of the proof is not
immediate. When skolemising an infinite set of formulas, we may not have any
fresh functions symbols available since all function symbols could have already
been used in S. Since there are countably many function symbols, we can assume
them to be of the from f1, f2, f3, . . . In order to make sure we have infinitely many
fresh function symbols available, we replace in S every function symbol fi by f2i.
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This ensures that all infinitely many function symbols f2i+1, i ≥ 0 can be used for
skolemising S.

Next, we look at the implication (1) ⇒ (2). We have shown in Lecture 11 in
Theorem 1 that a conjunction of first-order formulas F1 ∧ · · · ∧ Fn is satisfiable if
and only if G1 ∧ · · · ∧Gn is satisfiable, where Gi is the Skolem form of Fi and fresh
function symbols are used for every Gi. Now take a finite set T ′ = {G1, . . . , Gn} ⊆ T
emerging from formulas S ′ = {F1, . . . , Fn} ⊆ S. By assumption, there is some A
such that A |= S ′, and hence A |=

∧
1≤i≤n Fi. But then Theorem 1 from Lecture 11

yields B such that B |=
∧

1≤i≤nGi, i.e., B |= T ′.
Now for the implication (2) ⇒ (3), let E ′ ⊆ E be a finite. Then E ′ is contained

in the Herbrand expansion E(T ′) for some finite T ′ ⊆ T (it is in general not the
case that E ′ = E(T ′)). But since by assumption T ′ is satisfiable, it follows from
Theorem 7 in Lecture 10 that E(T ′) has a (propositional) model B, which is also a
model for E ′.

The implication (3) ⇒ (4) follows from the compactness theorem for proposi-
tional logic. In order to show (4) ⇒ (5), we can straight-forwardly adapt the proof
of Theorem 7 in Lecture 10 in order to obtain a Herbrand model of T . Finally,
for the implication (5) ⇒ (6), we have shown in Proposition 8 in Lecture 9 that
skolemising a single formula preserves satisfiability. In fact, it is not difficult to
see that the construction used in the proof of Proposition 8 carries over to the set-
ting of infinite sets of formulas, i.e., given B such that B |= T , we can construct an
A from B such that A |= S.

2 Non-standard models of arithmetic

We will now take a look at some applications of the compactness theorem. A
particularly useful application scenario is that the compactness theorem allows us
to enforce models with an infinite domain, as illustrated in the following example.

Proposition 2. Let F be a σ-sentence over some signature σ such that F has a
model An with |UAn | = n for every n > 1. Then F has a model with an infinite
universe.

Proof. Let γ be an extension of σ by a fresh binary predicate symbol R. For every
n > 1, we define the following γ-sentence:

Gn = ∀x¬R(x, x) ∧ ∃x1 . . . ∃xn
∧

1≤i<j≤n

R(xi, xj).

Now for any γ-structure B, we have that

B |= Gn implies |UB| ≥ n (7)

(this was shown in the problem sheets). Moreover, Fn := F ∧ Gn is satisfiable for
every n > 1, since by assumption F has a σ-model An such that |UAn | = n, and An

can be extended to a γ-model Bn of Fn by setting

RBn
:= (UAn

× UAn
) \ {(u, u) : u ∈ UAn

}.

Now define
S :=

⋃
n>1

{Fn}.

We claim that every finite subset of S is satisfiable: Suppose T = {Fi1 , . . . , Fik} ⊆ S,
and let n = max{i1, . . . , ik}. Then Bn as defined above is a model for all Fij ∈ T .

Consequently, by an application of the compactness theorem for first-order
logic, S has a model B. We claim that UB is infinite. To the contrary, assume
that |UB| = n for some finite n ∈ N. Then B 6|= Fn+1 due to (7), which contradicts
B |= S.
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Figure 1: Giuseppe Peano (1858 - 1932)

What is even more interesting is that compactness enables us to construct
non-standard models of elementary arithmetic. Doing so requires us to show that
first-order logic with equality is compact.

Theorem 3. First-order logic with equality is compact.

Though not difficult to show, we will omit the proof of this theorem. In order
to construct non-standard models of arithmetic, we first need to clarify what a
standard model of arithmetic should look like. Perhaps the easiest is to agree on
the signature of arithmetic, which we take as σ = 〈0, s,+, ·,=〉. Then the standard
model of arithmetic is the σ-structure whose domain is the natural numbers N,
and which interprets the constants, functions and relation symbols as we would
expect. A natural question that now arises is whether we can find a potentially
infinite set of first-order formulas over σ whose only model is the standard model
of arithmetic up to isomorphism. In other words, can we axiomatise classical
arithmetic in first-order logic? The precise notion of axiomatisation will be made
clear in the next lecture.

Which axioms allow for deriving all mathematical theorems proved in human
history was a hot debate in the second half of the 19th century. Building up on the
work of Richard Dedekind, Guiseppe Peano published in 1889 the following set of
axioms which are nowadays known as Peano axioms:

∀x¬(s(x) = 0) ∀x∀ yx+ s(y) = s(x+ y)

∀x∀ y(s(x) = s(y)→ x = y) ∀xx · 0 = 0

∀xx+ 0 = x ∀x∀y (x · s(y) = (x · y) + x)

Though those axioms certainly seem necessary, an important ingredient for ob-
taining classical arithmetic is missing: induction. Suppose for now that we could
quantify over sets Y , then we could express induction as follows:

∀Y (0 ∈ Y ∧ ∀x(x ∈ Y → s(x) ∈ Y ))→ ∀xx ∈ Y.

In order to “emulate” quantification over sets, instead we express induction for all
possible predicates and introduce the following induction scheme for all formulas
φ(x, y1, . . . , yK):

∀y1 . . . ∀yk (φ(0) ∧ ∀x(φ(x)→ φ(s(x))))→ ∀xφ(x).

Let SPA be the union of all formulas above, then “classical arithmetic” is a model
of SPA.
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Are the Peano axioms a good set of axioms? So far, it is fair to say that the
answer is “yes”. It is possible yet tedious to prove numerous non-trivial mathe-
matical statements using only those axioms. Some serious mathematicians even
claim that Andrew Wiles’ famous proof of Fermat’s Last Theorem1 can be carried
out in Peano arithmetic though nobody has been willing to sacrifice their life for
doing so. It should, however, be noted that it is not difficult to construct mathemat-
ical statements which cannot be proven using Peano axioms, and such statements
naturally appear in Ramsey theory.

After this diversion, let us get back to our original goal of constructing non-
standard models of arithmetic. To this end, we proceed similar to the example
above. Let c be a fresh constant symbol, and set

C = {¬(c = si(0)) : i ∈ N}.

Now very finite subset of SPA ∪ C is satisfiable, hence by compactness SPA ∪ C has
model A. But cA 6= siA(0A) for all i ∈ N. Hence A fulfills all Peano axioms but A
is not isomorphic to the standard “classical” model of arithmetic since its universe
contains an element which is not a natural number. Thus A is a non-standard
model of arithmetic.

Of course, one could now argue that maybe the Peano axioms are insufficient,
and there is a better set of axioms that allows for aximomatising classical arith-
metic in first-order logic. However, the following theorem, which we only state
here, entails that no such axiomatisation can exist.

Theorem 4 (Upward Löwenheim-Skolem theorem). If S has an infinite model A
then for any cardinal κ it has a model B with a universe of cardinality κ that extends
A.

Corollary 5. Classical arithmetic is not first-order axiomatisable.

1Fermat’s Last Theorem states that the Diophantine equation xn + yn = zn has no integral solutions
for n > 2. Fermat claimed to have an elegant proof that unfortunately did not fit on the margin of his
notebook. It took over 200 years and many failed attempts until Andrew Wiles published a proof in
1995 which now fits into a book of more than 500 pages.
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