
Lecture 12
Resolution for predicate logic
Unification, resolution

Print version of the lecture in Logic and Proof

presented on 23 May 2019

by Dr Christoph Haase

A serious drawback of the ground resolution procedure is that it requires look-
ing ahead to predict which ground instances of clauses will be needed in a proof. In
this lecture we introduce the predicate-logic version of resolution, which allows us
to perform substitution “by need”. This relies on the notion of unification, which
we introduce next.

1 Unification

A substitution is a function θ from the set of σ-terms back to itself such that
(writing function application on the right) cθ = c for each constant symbol c and
f(t1, . . . , tk)θ = f(t1θ, . . . , tkθ) for each k-ary function symbol f . It is clear that the
composition of two such substitutions (as functions) is also a substitution. We
have previously considered substitutions of the form [t/x] for a σ-term t and vari-
able x.

We write composition of substitutions diagrammatically, that is, θ · θ′ denotes
the substitution obtained by applying θ first and then θ′. (This convention matches
the fact that for substitutions we write function application on the right.) In par-
ticular [t1/x1] · · · [tk/xx] denotes the substitution obtained by sequentially applying
the substitutions [t1/x1], . . . , [tk/xk] left-to-right.

Given a set of literals D = {L1, . . . , Lk} and a substitution θ, define Dθ :=
{L1θ, . . . , Lkθ}. We say that θ unifies D if Dθ = {L} for some literal L. For ex-
ample, the substitution θ = [f(a)/x][a/y] unifies {P (x), P (f(y))}, as does the substi-
tution θ′ = [f(y)/x]. In this example we regard θ′ as a more general unifier because
θ = θ′ · [a/y], that is, θ factors through θ′.

We say that θ is a most general unifier of a set of literals D if θ is a unifier
of D and any other unifier θ′ factors through θ, i.e., we have θ′ = θ · θ′′ for some
substitution θ′′. Note that both the substitutions [x/y] and [y/x] are both most
general unifiers of {P (x), P (y)} (in fact most-general unifiers are only unique up to
renaming variables).

We will show that a set of literals either has no unifier or it has a most general
unifier. Examples of sets of literals that cannot be unified are {P (f(x)), P (g(x))}
and {P (f(x)), P (x))}. The problem in the second case is that we cannot unify a
variable x and term t if x occurs in t.

Theorem 1 (Unification Theorem). A unifiable set of literals D has a most general
unifier.

1

Proof. We claim that the following algorithm determines whether a set of literals
has a unifier and, if so, outputs a most general unifier.

Unification Algorithm
Input: Set of literals D
Output: Either a most general unifier of D or “fail”
θ := identity substitution
while θ is not a unifier of D do
begin

pick two distinct literals in Dθ and find the left-most positions at which they differ
if one of the corresponding sub-terms is a variable x and the other a term t not containing x
then θ := θ · [t/x] else output “fail” and halt

end

We argue termination as follows. In any iteration of the while loop that does
not cause the program to halt, a variable x is replaced everywhere in Dθ by a term
t that does not contain x. Thus the number of different variables occurring in Dθ
decreases by one in each iteration, and the loop must terminate.

The loop invariant is that for any unifier θ′ of D we have θ′ = θ · θ′. Clearly the
invariant is established by the initial assignment of the identity substitution to θ.
To see that the invariant is maintained by an iteration of the loop, suppose we find
an occurrence of variable x in a literal in Dθ such that a different term t occurs in
the same position in another literal in Dθ. From the invariant we know that θ′ is a
unifier of Dθ, and thus tθ′ = xθ′. It immediately follows that θ′ = [t/x] · θ′. Thus the
loop invariant is maintained by the assignment θ := θ · [t/x].

The termination condition of the while loop is that θ is a unifier of D. In con-
junction with the loop invariant this implies that the final value of θ is a most
general unifier of D. Finally, the invariant implies that if θ′ is a unifier of D then it
is also a unifier of Dθ. But the algorithm only outputs “fail” if Dθ has no unifier, in
which case D has no unifier.

Example 2. Consider an execution of the unification algorithm on input D =
{P (x, y), P (f(z), x)}. Scanning left-to-right, the leftmost discrepancy is underlined
in {P (x, y), P (f(z), x)}. Applying the substitution [f(z)/x] to D yields the set D′ =
{P (f(z), y), P (f(z), f(z))}, where the underlined positions again indicate the left-
most discrepancy. Applying the substitution [f(z)/y] to D′ yields the singleton set
{P (f(z), f(z))}. Thus [f(z)/x][f(z)/y] is a most general unifier of the set D.

2 Resolution

First-order resolution operates on sets of clauses, that is, sets of sets of literals.
Given a formula ∀x1 . . . ∀xnF in Skolem form we perform resolution on the clauses
in the matrix F with the goal of deriving the empty clause. Although quantifiers
do not explicitly appear in resolution proofs, we can see the variables in such a
proof as being implicitly universally quantified. This is made more formal when we
formulate the Resolution Lemma in the next section.

For any set of literals D, let D denote the set of complementary literals. For
example, if D = {¬P (x), R(x, y)} then D = {P (x),¬R(x, y)}.

Definition 3 (Resolution). Let C1 and C2 be clauses with no variable in common.
We say that a clause R is a resolvent of C1 and C2 if there are sets of literals D1 ⊆ C1

and D2 ⊆ C2 such that D1 ∪D2 has a most general unifier θ, and

R = (C1θ \ {L}) ∪ (C2θ \ {L}) , (1)

where {L} = D1θ and {L} = D2θ. More generally, if C1 and C2 are arbitrary clauses,
we say that R is a resolvent of C1 and C2 if there are variable renamings θ1 and θ2

2

{¬P (f(e), x, f(g(e)))}

[u/x]

{¬P (f(e), u, f(g(e)))}
[e/x][u/y][g(e)/z]

{¬P (x, y, z), P (f(x), y, f(z))}

{¬P (e, u, g(e))}

Figure 1: First-order resolution example

such that C1θ1 and C2θ2 have no variable in common, and R is a resolvent of C1θ1
and C2θ2 according to the definition above.

Example 4. Consider a signature with constant symbol e, unary function sym-
bols f and g, and a ternary predicate symbol P . We compute a resolvent of the
clauses C1 = {¬P (f(e), x, f(g(e)))} and C2 = {¬P (x, y, z), P (f(x), y, f(z))} as follows
(see Figure 1). First apply the substitution [u/x] to C1, obtaining a clause C ′1 that
has no variable in common in C2. Now unify complementary literals under the
substitution [e/x][u/y][g(e)/z], obtaining the clause {¬P (e, u, g(e))}.

A predicate-logic resolution derivation of a clause C from a set of clauses F is a
sequence of clauses C1, . . . , Cm, with Cm = C such that each Ci is either a clause
of F (possibly with the variables renamed) or follows by a resolution step from two
preceding clauses Cj , Ck, with j, k < i. We write Res∗(F) for the set of clauses C
such that there is a derivation of C from F .

Example 5. Consider the following sentences over a signature with ternary predi-
cate symbol A, constant symbol e, and unary function symbol s. The idea is that
A represents the ternary addition relation, e the zero element, and s the successor
function.

F1 : ∀xA(e, x, x)
F2 : ∀x∀y∀z (¬A(x, y, z) ∨A(s(x), y, s(z)))
F3 : ∀x∃y A(s(s(e)), x, y)

We use first-order resolution to show that F1 ∧ F2 |= F3, that is, we show that
F1 ∧ F2 ∧ ¬F3 is unsatisfiable. We proceed in two steps.

Step (i): separately Skolemise each formula. Formula ¬F3 is equivalent to ∃y∀z ¬A(s(s(e)), y, z).
Skolemising, we obtain the formula G3 := ∀z ¬A(s(s(e)), c, z), where c is a new con-
stant symbol. Now F1∧F2∧G3 is equisatisfiable with F1∧F2∧¬F3 and so it suffices
to give a resolution refutation of F1 ∧ F2 ∧ G3.1 Important: When Skolemising
more than one formula separately, different formulas may not introduce the same
constant symbols, always make sure to choose fresh constant symbols for every
formula you are Skolemising.

Step (ii). derive the empty clause using resolution. The proof is as follows. Note
that in order to always ensure that we resolve clauses with disjoint variables, we
arrange it so that the variables in line k of the proof are subscripted with k. In

1Formally the notion of a resolution proof assumes a single Skolem-form formula. So strictly
speaking the proof below is a resolution refutation of the formula ∀x∀y∀z(A(e, x, x) ∧ ((¬A(x, y, z) ∨
A(s(x), y, s(z))) ∧A(s(s(e)), x, y)), which is logically equivalent to F1 ∧ F2 ∧G3.

3

particular, we add a variable renaming at the end of each unifying substitution so
that the variables in the output formula have the right subscript for the next line
of the proof.

1. {¬A(s(s(e)), c, z1)} clause of G3

2. {¬A(x2, y2, z2), A(s(x2), y2, s(z2))} clause of F2

3. {¬A(s(e), c, z3)} 1,2 Res. Sub [s(e)/x2][c/y2][s(z2)/z1][z3/z2]

4. {¬A(e, c, z4)} 2,3 Res. Sub [e/x2][c/y2][s(z2)/z3][z4/z3]

5. {A(e, y5, y5)} clause of F1

6. � 4,5 Res. Sub [c/y5][c/z4]

Given a formula H with free variables x1, x2, . . . , xn, its universal closure ∀∗H
is the sentence ∀x1∀x2 . . . ∀xnH. The following lemma is key to the soundness of
resolution.

Lemma 6 (Resolution Lemma). Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem
form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then F ≡
∀∗(G ∪ {R}).

Proof. Clearly ∀∗(G ∪ {R}) |= F . The non-trivial direction is to show that F |=
∀∗R. For this, since F is closed, it suffices to show that F |= R. (Check that you
understand why this is so!)

To this end, suppose that R is a resolvent of clauses C1, C2 ∈ G, with R =
(C1θ \ {L}) ∪ (C2θ

′ \ {L}) for some substitutions θ, θ′ and complementary literals
L ∈ C1θ and L ∈ C2θ

′.
Let A be an assignment that satisfies F = ∀∗G. Since C1, C2 ∈ G, by the Transla-

tion Lemma A |= C1θ and A |= C2θ
′. Moreover, since A′ satisfies at most one of the

complementary literals L and L, it follows that A satisfies at least one of C1θ \ {L}
and C2θ

′ \ {L}. We conclude that A satisfies R, as required.

Corollary 7 (Soundness). Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem form.
Let clause C be obtained from G by a resolution derivation. Then F ≡ ∀∗(G ∪ C).

Proof. Induction on the length of the resolution derivation, using the Resolution
Lemma for the induction step.

A Refutation Completeness

In this appendix we prove the refutation completeness of predicate-logic resolution
proofs by showing that ground resolution proofs lift to predicate-logic resolution
proofs. The proofs here are more technical and can be regarded as optional.

Lemma 8 (Lifting Lemma). Let C1 and C2 be clauses with respective ground in-
stances G1 and G2. Suppose that R is a propositional resolvent of G1 and G2. Then
C1 and C2 have a predicate-logic resolvent R′ such that R is a ground instance of R′.

Proof. The situation of the lemma is shown in Figure 2. We can write the ground
resolvent R in the form R = (G1 \{L})∪ (G2 \{L}), for complementary literals L ∈ G1

and L ∈ G2.
Let C ′1 and C ′2 be variable-disjoint renamings of C1 and C2, cf. Figure 2. Then

G1 and G2 are also ground instances of C ′1 and C ′2. Thus we can write G1 = C ′1θ
′

and G2 = C ′2θ
′ for some ground substitution θ′. Let D1 ⊆ C ′1 be the set of literals

mapped to the literal L by θ′ and let D2 ⊆ C ′2 be the set of literals mapped to the
literal L by θ′. Then θ′ is a unifier of D1 ∪D2. Writing θ for the most general unifier
of D1 ∪D2, we have that

R′ := (C ′1θ \D1θ) ∪ (C ′2θ \D2θ) (2)

4

C1 C2 C1 C2

G1 G2 C ′1 C ′2

R R′

Figure 2: Ground resolution step on the left, and its predicate-logic lifting on the
right.

is a predicate-logic resolvent of C1 and C2.
Now we know from the proof of the Unification Lemma that θ′ = θθ′. Thus we

have
G1 = C ′1θ

′ = C ′1θθ
′ and G2 = C ′2θ

′ = C ′2θθ
′ .

Now from (2) we have that

R′θ′ = (C ′1θθ
′ \D1θθ

′) ∪ (C ′2θθ
′ \D2θθ

′)

= (G1 \ {L}) ∪ (G2 \ {L}) .

(Note that the first equality uses the fact that D1θ is precisely the set of literals in
C ′1θ that map to L under θ′ and similarly D2θ is precisely the set of literals in C ′2θ
that map to L under θ′.) We conclude that R is a ground instance of R′ under the
substitution θ′.

Corollary 9 (Completeness). Let F be a closed formula in Skolem form with its
matrix F ′ in CNF. If F is unsatisfiable then there is a predicate-logic resolution proof
of � from F ′.

Proof. Suppose F is unsatisfiable. By the completeness of ground resolution there
is a proof C ′1, C

′
2, . . . , C

′
n, where C ′n = � and each C ′i is either a ground instance of a

clause in F ′ or is a resolvent of two clauses C ′j , C
′
k for j, k < i. We inductively define

a corresponding predicate-logic resolution proof C1, C2, . . . , Cn, such that C ′i is a
ground instance of Ci. For each i, if C ′i is a ground instance of a clause C ∈ F ′ then
define Ci = C. On the other hand, suppose that C ′i is a resolvent of two ground
clauses C ′j , C

′
k, with j, k < i. By induction we have constructed clauses Cj and Ck

such that C ′j is a ground instance of Cj and C ′k is a ground instance of Ck. By the
Lifting Lemma we can find a clause Ci which is a resolvent of Cj and Ck such that
C ′i is a ground instance of Ci.

5

	Unification
	Resolution
	Refutation Completeness

