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In this lecture we show how to use the Ground Resolution Theorem, which is a
consequence of Herbrand’s theorem and was proved in the last lecture, to do some
deduction in first-order logic. Moreover, we show that Herbrand’s theorem allows
us to conclude semi-decidability of validity of first-order logic. Finally, we show
that validity and satisfiability are undecidable.

1 Ground Resolution Theorem

Recall that the process of eliminating existential quantifiers by introducing extra
function and constant symbols is called Skolemisation. The extra symbols in-
troduced are called Skolem functions. We begin with a slight generalisation of a
theorem that was stated in the previous lecture. In this generalisation we consider
Skolemising a collection of formulas rather than a single formula.

Theorem 1. Let F1, . . . , Fn be closed rectified formulas in prenex form with respective
Skolem forms G1, . . . , Gn. Assume that each Gi is constructed using a different set of
Skolem functions. Then F1 ∧F2 ∧ . . .∧Fn is satisfiable if and only if G1 ∧G2 ∧ . . .∧Gn

is satisfiable.

Recall that a ground term is a term that does not contain any variables. Given a
quantifier-free formula F , a ground instance of F is a formula obtained by replacing
all the variables in F with ground terms.

The following is a slight generalisation of the version of the Ground Resolution
Theorem proved in the last lecture. Before we considered only a single formula
in Skolem form. Here we consider a conjunction of such formulas, which is more
convenient for the applications below.

Theorem 2 (Ground Resolution Theorem). Let F1, . . . , Fn be closed formulas in
Skolem form whose respective matrices F ∗1 ∧ . . .∧F ∗n are in CNF. Then F1 ∧ . . .∧Fn is
unsatisfiable if and only if there is a propositional resolution proof of � from the set
of ground instances of clauses from F ∗1 , . . . , F

∗
n .

2 Examples

In this section we give two examples of the use of the Ground Resolution Theorem.
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{¬R(a), L(a)} {¬O(a), L(a), R(a), D(a)}
{L(a),¬O(a), D(a)} {¬O(a),¬L(a)}

{¬O(a), D(a)} {¬D(a)}
{¬O(a)} {O(a)}

�

Figure 1: The nature of Oriel students

Example 3. We would like to formalise the following statements in first-order logic
and to use ground resolution to show that (a), (b) and (c) together entail (d).

(a) Everyone at Oriel is either lazy, a rower or a drunk.
(b) All rowers are lazy.
(c) Someone at Oriel is not drunk.
(d) Someone at Oriel is lazy.

We translate (a), (b), (c) and the negation of (d) into closed formulas of first-order
logic as follows.

F1 = ∀x (O(x)→ (L(x) ∨R(x) ∨D(x)))

F2 = ∀x (R(x)→ L(x))

F3 = ∃x (O(x) ∧ ¬D(x))

F4 = ¬∃x (O(x) ∧ L(x)) .

Next we translate F1, F2, F3 and F4 to Skolem form. To do this we bring all
quantifiers to the outside, eliminate existential quantifiers by introducing Skolem
functions and finally bring the matrix of each formula into CNF. This yields

G1 = ∀x (¬O(x) ∨ L(x) ∨R(x) ∨D(x))

G2 = ∀x (¬R(x) ∨ L(x))
G3 = O(a) ∧ ¬D(a)

G4 = ∀x (¬O(x) ∨ ¬L(x)) .

where a is a fresh constant symbol.
Now we deduce the empty clause � from ground instances of clauses in the re-

spective matrices of the Skolem-form formulas G1, . . . , G4. Note that these formulas
are defined over a signature with a single constant symbol a, which is therefore the
only ground term. The proof is shown in Figure 1.

Example 4. Using ground resolution we show that

F = ∀x∃y (P (x)→ Q(y))→ ∃y ∀x (P (x)→ Q(y))

is a valid sentence.
We can show this by showing that the negation is unsatisfiable. The negation

can be written:
∀x∃y (P (x)→ Q(y)) ∧ ¬∃y ∀x (P (x)→ Q(y)) .

We bring each conjunction to Skolem form, yielding

F1 = ∀x (¬P (x) ∨Q(f(x)))

F2 = ∀y (P (g(y)) ∧ ¬Q(y)) .

Note that F1 and F2 are defined over a signature with no constants and so
there are no ground terms. We remedy this problem by introducing a single new
constant symbol a. Now the set of ground terms is {a, f(a), g(a), f(f(a)), f(g(a), . . .}.
We can now derive � by the propositional resolution proof in Figure 2 which every
leaf is a ground instance of a clause from the respective matrices of F1 and F2.
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{P (g(a))} {¬P (g(a)), Q(f(g(a)))}
{Q(f(g(a)))} {¬Q(f(g(a)))}

�

Figure 2: Ground Resolution proof for Example 4

Remark 5. Alternatively, it is of course also possible to show that F in Example 4
is valid via an application of the semantic definitions given for first-order logic.
In particular, we have the following equivalence that transform F into a rectified
formula:

F = ∀x∃y (P (x)→ Q(y))→ ∃y ∀x (P (x)→ Q(y))

≡ ¬(∀x∃y (P (x)→ Q(y))) ∨ ∃y ∀x (¬P (x) ∨Q(y))

≡ ∃x∀y ¬(¬P (x) ∨Q(y)) ∨ ∃y ∀x (¬P (x) ∨Q(y))

≡ ∃x∀y (P (x) ∧ ¬Q(y)) ∨ ∃y ∀x (¬P (x) ∨Q(y))

≡ ∃x∀y (P (x) ∧ ¬Q(y)) ∨ ∃u∀v (¬P (v) ∨Q(u))

≡ ∃x∀y (P (x) ∧ ¬Q(y)) ∨ (∀v ¬P (v)) ∨ (∃uQ(u))

≡ ((∃xP (x)) ∧ (∀y ¬Q(y))) ∨ (∀v ¬P (v)) ∨ (∃uQ(u))

Suppose A is an arbitrary σ-structure, we claim that A |= F . To this end, we make
a case distinction:

• Case PA = ∅: Then A |= ∀v ¬P (v), and consequently A |= F
• Case QA 6= ∅: Then A |= ∃uQ(u), and consequently A |= F
• Case PA 6= ∅ and QA = ∅: Then ((∃xP (x)) ∧ (∀y ¬Q(y))), and consequently
A |= F .

At least one of those three cases will match for any σ-structure, and thus A |= F
for all σ-structures A, and thus F is indeed valid.

Example 6. Consider the following closed formulas, defined over a signature with
constant symbol 0, unary function symbol s and ternary relation Sum. Here sn(0)
stands for the term s(. . . s(0) . . .)︸ ︷︷ ︸

n

.

F1 = ∀xSum(0, x, x)

F2 = ∀x ∀y ∀z (Sum(x, y, z)→ Sum(s(x), y, s(z)))

F3 = ∃xSum(s2(0), s2(0), s4(0))

We use ground resolution to show that F1, F2 |= F3. To do this we show that
F1 ∧ F2 ∧ ¬F3 is unsatisfiable. The Skolem forms of F1, F2 and ¬F3 are as follows:

G1 = ∀xSum(0, x, x)

G2 = ∀x∀y ∀z (Sum(x, y, z)→ Sum(s(x), y, s(z)))

G3 = ∀x¬Sum(s2(0), s2(0), s4(0)) .

Note how we produce a linear resolution proof in this case, i.e., a proof in which
the result of each step is a resolvent in the next step.

3 Semi-Decidability of Validity

The approach taken in the previous examples can be generalised in order to yield
a semi-decision procedure for validity for first-order logic.
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Theorem 7. Validity of first-order formulas is semi-decidable.

Proof. Recall that a semi-decision procedure for validity should halt and return
“valid” when given a valid formula as input, but otherwise may compute forever.
Such a procedure is as follows. (Note that there is no loss of generality in restricting
to closed formulas since F is valid iff ∀xF is valid.)

Semi-Decision Procedure for Validity
Input: Closed formula F
Output: Either that F is valid or compute forever
Compute a Skolem-form formula G equisatisfiable with ¬F
Let G1, G2, . . . be an enumeration of the Herbrand expansion E(G)
for n = 1 to ∞ do
begin

if � ∈ Res∗(G1 ∪ . . . ∪Gn) then stop and output “F is valid”
end

The procedure relies on the fact that F is valid if and only if ¬F is unsatisfiable.
To show unsatisfiability of ¬F we transform it into an equisatisfiable formula G
in Skolem form. Then, by the refutation completeness of ground resolution, G is
unsatisfiable iff there is a ground resolution refutation of G. If such a refutation
exists it will eventually be discovered by the procedure. Note that for each n the
set of clauses Res∗(G1∪ . . .∪Gn) that can be derived by resolution from G1∪ . . .∪Gn

is computable in a finite amount of time. (Here we regard each Gi as a set of
clauses.)

In the above proof it was convenient to invoke the refutation completeness of
ground resolution. However ultimately the result relies on Herbrand’s Theorem
and the Compactness Theorem for propositional logic, which together guarantee
that that F is valid if and only if some finite subset of E(G) is unsatisfiable.

4 Undecidability of Validity and Satisfiability

We now show that both validity and satisfiability are undecidable. In particular,
satisfiability is not semi-decidable. Intuitively, there need not be finite witness
that a given formula is satisfiable, there are even satisfiable formulas that have
no finite models! This is in contrast to propositional logic, where satisfiability was
decidable. Nevertheless, a property that first-order logic shares with propositional
logic is compactness, which we briefly discuss towards the end of this lecture.

In this section we recall the definition of Post’s Correspondence Problem (PCP),
and show how to transform a given instance of this problem into a first-order
formula such that the instance has a solution if and only if the formula is valid. It
follows that the validity problem for first-order logic is undecidable.

An instance of Post’s correspondence problem consists of a finite set of tiles.
Each tile has a bit-string on the top and a bit-string on the bottom. For example,
we could have tiles {[

1
101

]
,

[
10
00

]
,

[
011
11

]}
A solution to the problem is a sequence of tiles, allowing the same tile multiple
times, such that the top string equals the bottom string. In the above example a
solution is [

1
101

] [
011
11

] [
10
00

] [
011
11

]
In general, an instance of Post’s correspondence problem is a finite set of pairs

of bit-strings P = {(x1, y1), . . . , (xk, yk)}, where xi, yi ∈ {0, 1}∗. A solution of P is a
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sequence i1, i2, . . . , in such that xi1xi2 . . . xin = yi1yi2 . . . yin . In the above example one
solution is the sequence 1, 3, 2, 3. Clearly for each particular PCP instance, the set
of potential solutions, i.e., sequences of tiles is infinite. Thus solving an instance of
PCP involves searching an infinite set.

We encode this problem in first-order logic using a signature with constant
symbol e, two unary function symbols f0, f1 and a binary relation symbol P . The
ground terms over this signature can be considered as bit-strings, e.g., the term
f1(f1(f0(e))) represents the bit-string 110. In general, for a bit-string b1 . . . bt ∈ {0, 1}∗
we denote the term fb1(. . . (fbt(x)) . . .) by fb1...bk(x).

Our goal is to transform a given instance P of Post’s correspondence problem
into a closed formula F such that P has a solution if and only if F is valid. We
first give the idea of the construction in the above example. Consider the following
three formulas:

F1 = P (f1(e), f101(e)) ∧ P (f10(e), f00(e)) ∧ P (f011(e), f11(e))
F2 = ∀u∀v (P (u, v)→ P (f1(u), f101(v)) ∧ P (f10(u), f00(v)) ∧ P (f011(u), f11(v)))
F3 = ∃uP (u, u) .

We claim that F1∧F2 → F3 is valid if and only if the PCP instance has a solution.
Given a general instance P = {(x1, y1), . . . , (xk, yk)} of PCP we have the formulas

F1 =

k∧
i=1

P (fxi
(e), fyi

(e))

F2 = ∀u∀v
k∧

i=1

(P (u, v)→ P (fxi(u), fyi(v)))

F3 = ∃uP (u, u) .

Proposition 8. P has a solution if and only if F1 ∧ F2 → F3 is valid.

Sketch. Suppose that F1 ∧ F2 → F3 is valid. Consider the Herbrand structure H for
which

PH = {(fu(e), fv(e)) : ∃i1 . . . ∃it . u = xi1 . . . xit and v = yi1 . . . yit} .
Clearly H satisfies F1 ∧ F2. Thus it must hold that H satisfies F3. But this means
that P has a solution.

Conversely suppose that P has a solution. We show that F1 ∧ F2 → F3 is valid.
To this end, consider a structure A that satisfies F1 ∧ F2. Then we can show by
induction on t that for any sequence of tiles i1 . . . it, A |= P (fu(e), fv(e)), where
u = xi1 . . . xit and v = yi1 . . . yit . But since P has a solution, A |= P (fu(e), fu(e)) for
some string u. Thus A |= F3.

Theorem 9 (Church’s Theorem (1936)). The satisfiability and validity problems for
first-order logic are undecidable.

Proof. Undecidability of validity follows from undecidability of Post’s Correspon-
dence Problem, which was shown in the Models of Computation course. Further-
more, since F is valid if and only if ¬F is unsatisfiable, undecidability of satisfia-
bility is immediate from undecidability of validity.

It follows from semi-decidability of validity and Theorem 9 that satisfiability is
not even semi-decidable. Indeed if satisfiability were semi-decidable then we could
decide validity as follows. Given a formula F , either F is valid or ¬F is satisfiable.
Thus we could decide validity of F by simultaneously running a semi-decision
procedure for validity on F and a semi-decision procedure for satisfiability on ¬F .

Corollary 10. Satisfiability of first-order formulas is not semi-decidable.
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