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In this lecture we introduce Herbrand structures and state Herbrand’s theorem.
We then prove the Ground Resolution Theorem, which justifies the use of the
ground resolution deduction technique in first-order logic. The Ground Resolution
Theorem is one of the central results of the course. Its proof combines Herbrand’s
Theorem with the Resolution Theorem and Compactness Theorem for propositional
logic. Throughout this lecture we work in first-order logic without equality. There
are versions of resolution that handle equality but we do not consider them in this
course.

1 Herbrand’s Theorem

Definition 1. Let σ be a signature with at least one constant symbol. A σ-structure
H is called a Herbrand structure if the following hold:

1. The universe UH is the set of ground terms over σ.
2. For every constant symbol c in σ we have cH = c.
3. For every k-ary function symbol f in σ and for all ground terms t1, t2 . . . , tn ∈

UH we have fH(t1, . . . , tk) = f(t1, . . . , tk).

Thus a Herbrand structure is built from syntax, with terms and function sym-
bols being interpreted “as themselves”.
Example 2. Consider a signature with a constant symbol a, unary function sym-
bol f , and unary predicate symbol P . Then a Herbrand structure H has UH =
{a, f(a), f(f(a)), . . .}, aH = a and fH(f

n(a)) = fn+1(a). Note that PH can be an arbi-
trary subset of UH.

The following proposition expresses a key property of Herbrand structures: the
interpretation of a ground term in a Herbrand structure is the term itself.

Proposition 3. Let H be a Herbrand structure and t a ground term. Then H(t) = t.

Proof. The proof is by structural induction over terms. The base case is that t
is constant symbol c. Then H(c) = c by definition of a Herbrand structure. The
induction step is that t has the form f(t1, . . . , tk) for f a k-ary function symbol and
ground terms t1, . . . , tk. Then

H(f(t1, . . . , tk)) = fH(H(t1), . . . ,H(tk))

= fH(t1, . . . , tk) induction hyp.

= f(t1, . . . , tk) defn. of fH.
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Building on Proposition 3 we show that the Translation Lemma has a particu-
larly simple form for Herbrand structures.

Lemma 4 (Translation Lemma for Herbrand structures). Let H be a Herbrand
structure, F a formula, and t a ground term. Then H |= F [t/x] if and only if H[x 7→t] |=
F .

Proof. By the version of the Translation Lemma proved previously we have H |= F
if and only if H[x 7→H(t)] |= F . But by Proposition 3 we have H(t) = t and the result
follows.

We now come to what can be regarded as the central result of the course. The
value of this result is that it cuts down the “search space” of potential models for
a given formula.

Theorem 5 (Herbrand’s Theorem). Let F = ∀x1 . . . ∀xn F ∗ be a closed formula in
Skolem form. Then F is satisfiable if and only if it has a Herbrand model.

Proof. If F has a Herbrand model then it is clearly satisfiable.
Conversely, suppose that F is satisfied by some structure A. Then we show that

F has a Herbrand model H. To define H it suffices to define the interpretation of
the predicate symbols since the interpretation of the constants, function symbols
and the universe are already determined. The idea is to define H to mimic A. To
this end, given a k-ary predicate symbol P we define (t1, . . . , tk) ∈ PH if and only if
A |= P (t1, . . . , tk).

We claim that for all closed formulas G = ∀y1 . . . ∀ykG∗ in Skolem form, if A |= G
then H |= G. It follows from this that H |= F . The proof of the claim is by induction
on the number of quantifiers k.

The base case is that n = 0. Since G is closed it is a Boolean combination of
atomic formulas P (t1, . . . , tk), where t1, . . . , tk are ground terms. But, by construc-
tion, A and H assign the same truth value to each such atom. Thus A |= G implies
H |= G.

The induction step is as follows. Suppose A |= ∀y G. We cannot directly apply
the induction hypothesis to G since y might appear free in G, in which case it
is not closed. However by the Translation Lemma we have that A |= G[t/y] iff
A[y 7→A(t)] |= G, and thus A |= G[t/y] for all ground terms t. Since G[t/y] is closed we
can we can apply the induction hypothesis to it and conclude that H |= G[t/y] for
all ground terms t. But now by the Translation Lemma for Herbrand structures
we have H[y 7→t] |= G for all t ∈ UH, i.e., H |= ∀y G.

Example 6. Is the following first-order formula satisfiable?

F = ∃x1 ∃x2 ∃x3 (¬(¬P (x1) → P (x2)) ∧ ¬(¬P (x1) → ¬P (x3))) .

One way to simplify the problem is to Skolemise, that is, eliminate the existential
quantifiers by introducing new constants a, b, and c. Doing this we obtain an
equisatisfiable formula

G = ¬(¬P (a) → P (b)) ∧ ¬(¬P (a) → ¬P (c)) .

Now by Herbrand’s Theorem, G is satisfiable if and only if it has a Herbrand model.
A Herbrand model H of G has universe the set of ground terms UH = {a, b, c}.

The constants are interpreted “as themselves”, i.e., we have aH = a, bH = b and
cH = c. Thus to specify H it remains to say how to interpret the predicate symbol
P . We can represent the possibilities in the following truth table, each line of which
represents a Herbrand structure.
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P (a) P (b) P (c) G
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

We conclude that G is satisfiable and therefore F is satisfiable.

Generalising the above example we get a method to decide satisfiability of any
formula F = ∃x1 . . . ∃xn F ∗ for which the matrix F ∗ does not contain a function
symbol. The key property of such a formula is that if it satisfiable then it has a
finite model.

The technique in the above example breaks down on a slightly more complex
formula. Consider the formula F = ∀x1 ∃x2 F ∗. The Skolem form is ∀x1 F ∗[f(x1)/x2],
where f is fresh unary function symbol. The presence of f ensures that each Her-
brand structure is also infinite. More generally, it can be the case that a formula F
is only satisfied by infinite structures (can you give an example of such a formula,
without using equality?).

2 Ground Resolution

In general, a satisfiable formula may not have a finite model. Intuitively it might
not be possible to provide a finite witness that a formula is satisfiable. By contrast
we will show that if a formula F is unsatisfiable then there is always a ground
resolution proof of � from F . Such a proof could be considered a finite witness of
unsatisfiability.

Fix a signature σ. Let F = ∀x1 . . . ∀xn F ∗ be a closed formula in Skolem form
with matrix F ∗. Then the Herbrand expansion E(F ) is defined as

E(F ) := {F ∗[t1/x1] . . . [tn/xn] | t1, . . . , tn ground σ-terms} .

That is, the formulas in E(F ) are obtained by substituting ground terms for the
variables in F ∗ in all possible ways.

Each formula in E(F ) is a Boolean combination of atomic formulas P (t1, . . . , tk),
for P a k-ary predicate symbol and t1, . . . , tk ground terms. In particular, E(F ) has a
Herbrand model if and only if it is “propositionally satisfiable”, that is, there is some
truth assignment to the set of closed atomic formulas that makes all formulas in
E(F ) evaluate to true (cf. Example 6).

Theorem 7. A closed formula F in Skolem form is satisfiable if and only if E(F ) is
satisfiable when considered as a set of propositional formulas.

Proof. By Herbrand’s Theorem, a formula in Skolem form is satisfiable if and only
if it has a Herbrand model. Thus it suffices to show that F has a Herbrand model
if and only if E(F ) is satisfiable considered as a set of propositional formulas. Let
F have the form ∀x1 . . . ∀xn F ∗. Given a Herbrand structure H we have

H |= F iff H[x1 7→t1]...[xn 7→tn] |= F ∗ for all (ground terms) t1, . . . , tn ∈ UH
iff H |= F ∗[t1/x1] . . . [tn/xn] Translation Lemma for Herbrand structures

iff H |= E(F ) .

Observe that H |= E(F ) for some Herbrand structure H iff E(F ) is satisfiable as a
set of propositional formulas.
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As a corollary of Theorem 7 we can prove the Ground Resolution Theorem.

Theorem 8 (Ground Resolution). A closed formula F in Skolem form is unsatisfiable
if and only if there is a propositional resolution proof of � from E(F ).

Proof. By the compactness theorem of propositional logic E(F ) is unsatisfiable if
and only if some finite subset of E(F ) is unsatisfiable. By the soundness and
completeness of propositional resolution this holds if and only if we can derive �
from E(F ) using resolution.

In summary we have the following situation. Given a first-order formula F in
Skolem form, if F is unsatisfiable then by systematically generating all resolvents
of ground instances of clauses in F we are guaranteed to eventually generate �.
However if F is satisfiable then this process of generating resolvents can proceed
forever.
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