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In this lecture we show how to transform an arbitrary formula of first-order logic
to an equisatisfiable formula in Skolem form. This translation is in preparation for
our subsequent treatment of deduction using unification and resolution.

1 Equivalence and substitution

Two first-order formulas F and G over a signature σ are logically equivalent,
denoted F ≡ G, if for all σ-assignments A we have A |= F iff A |= G.

It is easy to check that all the propositional equivalences carry over to the first-
order setting, e.g., we still have De Morgan’s law ¬(F∧G) ≡ (¬F∨¬G), etc. Moreover
logical equivalence remains a congruence with respect to the Boolean connectives
∧, ∨ and ¬, that is, (F1 ∧G1) ≡ (F2 ∧G2) if F1 ≡ G1 and F2 ≡ G2, etc. In addition we
have that that if F ≡ G then ∀xF ≡ ∀xG and ∃xF ≡ ∃xG.

The following equivalences will play an important role in transforming formulas
into Skolem form.

Proposition 1. Let F and G be arbitrary formulas. Then

(A) ¬∀xF ≡ ∃x¬F and ∃xF ≡ ∀x¬F
(B) If x does not occur free in G then:

(∀xF ∧G) ≡ ∀x(F ∧G) (∀xF ∨G) ≡ ∀x(F ∨G)
(∃xF ∧G) ≡ ∃x(F ∧G) (∃xF ∨G) ≡ ∃x(F ∨G)

(C) (∀xF ∧ ∀xG) ≡ ∀x(F ∧G) and (∃xF ∨ ∃xG) ≡ ∃x(F ∨G)
(D) ∀x∀yF ≡ ∀y∀xF and ∃x∃yF ≡ ∃y∃xF

Proof. As an example, we prove the first equivalences in (A) and (B). For the former
we have

A |= ¬∀xF iff A 6|= ∀xF
iff A[x 7→a] 6|= F for some a ∈ UA

iff A[x 7→a] |= ¬F for some a ∈ UA

iff A |= ∃x¬F
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For the first equivalence in (B) we have

A |= (∀xF ∧G) iff A |= ∀xF and A |= G

iff for all a ∈ UA, A[x7→a] |= F and A |= G

iff for all a ∈ UA, A[x 7→a] |= F and A[x 7→a] |= G (by the Relevance Lemma)

iff for all a ∈ UA, A[x7→a] |= F ∧G
iff A |= ∀x(F ∧G) .

A particularly useful and readable normal form is the prenex normal form.

Definition 2. A formula is in prenex form if it can be written

Q1y1Q2y2 . . . Qnyn F,

where Qi ∈ {∃,∀}, n ≥ 0, and F contains no quantifiers. In this case F is called the
matrix of the formula.

Example 3. We use Proposition 1 to transform the formula

¬(∃xP (x, y) ∨ ∀z Q(z)) ∧ ∃wQ(w) (1)

to prenex form by the following chain of equivalences:

¬(∃xP (x, y) ∨ ∀z Q(z)) ∧ ∃wQ(w) ≡ (¬∃xP (x, y) ∧ ¬∀z Q(z)) ∧ ∃wQ(w)

≡ (∀x¬P (x, y) ∧ ∃z ¬Q(z)) ∧ ∃wQ(w)

≡ ∀x∃z (¬P (x, y) ∧ ¬Q(z)) ∧ ∃wQ(w)

≡ ∀x∃z ∃w ((¬P (x, y) ∧ ¬Q(z)) ∧Q(w)) .

Note that in the above equational reasoning we use the fact that logical equiva-
lence is a congruence with respect to the Boolean operators (i.e., the Substitution
Theorem).

Let F be a formula, x a variable, and t a term. Then F [t/x] (read “F with t for
x”) denotes the formula with t substituted for every free occurrence of x in F . This
is analogous to the substitution that we have already seen in propositional logic.
For example,

(∀xP (x, y) ∧Q(x))[t/x] = ∀xP (x, y) ∧Q(t) .

Note that x is not replaced in P (x, y) as it is bound by the ∀ quantifier.
Formally, we define F [t/x] by induction on terms and formulas as follows. On

terms we have:

c[t/x] = c for c a constant symbol

y[t/x] = y for y 6= x a variable

x[t/x] = t

f(t1, . . . , tk)[t/x] = f(t1[t/x], . . . , tk[t/x]) for f a k-ary function symbol

We then extend the definition of [t/x] to formulas as follows:

P (t1, . . . , tk)[t/x] = P (t1[t/x], . . . , tk[t/x])

(¬F )[t/x] = ¬(F [t/x])
(F ∧G)[t/x] = F [t/x] ∧G[t/x]
(F ∨G)[t/x] = F [t/x] ∨G[t/x]
(Qy F )[t/x] = Qy (F [t/x]) y 6= x a variable, Q ∈ {∀,∃}
(QxF )[t/x] = QxF Q ∈ {∀,∃} .
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Warning! The notation we use for the substitution is the reverse of that
used in Schöning’s book. The latter uses [x/t] to denote the substitution
of t for x. Our use is more standard.

A key fact about substitution is the following. The proof is in Appendix A.

Lemma 4 (Translation Lemma). If t is term and F is a formula such that no variable
in t occurs bound in F , then A |= F [t/x] iff A[x 7→A(t)] |= F .

To illustrate the necessity of the side-condition in the Translation Lemma, let
F be the formula ∀yP (x) and let A be the assignment with UA = {1, 2}, PA = {1},
xA = 1, and yA = 1. Then F [y/x] = ∀y P (y) and so A 6|= F [y/x]. But A(y) = 1 and so
A[x 7→A(y)] |= F . The reason we cannot apply the Translation Lemma in this case is
that the variable y in the term to be substituted becomes bound by the quantifier
∀y in F . This phenomenon is called variable capture.

In first-order logic we can rename bound variables in a formula while preserving
logical equivalence. For example, we have ∀xP (x) ≡ ∀y P (y). This is similar to the
fact that the definite integral

∫∞
0
f(s)ds denotes the same value as

∫∞
0
f(t)dt. We

make this idea formal as follows:

Proposition 5. Let F = QxG be a formula where Q ∈ {∀,∃}. Let y be a variable
that does not occur in G. Then F ≡ Qy (G[y/x]).

Proof. We prove the proposition in the case of ∀; the case for ∃ is similar. Let A be
an assignment. Then

A |= ∀y (G[y/x]) iff A[y 7→a] |= G[y/x] for all a ∈ UA

iff A[y 7→a][x 7→A[y 7→a](y)] |= G for all a ∈ UA (Translation Lemma)

iff A[y 7→a][x 7→a] |= G for all a ∈ UA

iff A[x 7→a][y 7→a] |= G for all a ∈ UA

iff A[x 7→a] |= G for all a ∈ UA (Relevance Lemma)

iff A |= ∀xG .

2 Skolem form

A formula is rectified if no variable occurs both bound and free, and if all quanti-
fiers in the formula refer to different variables. For example, the formula

∀x∃y P (x, f(y)) ∧ ∀y (Q(x, y) ∨R(x))

is not rectified since y is bound on two separate occasions and x occurs both free
and bound. By renaming the bound variables we obtain the following equivalent
rectified formula:

∀u∃v P (u, f(v)) ∧ ∀y (Q(x, y) ∨R(x)) .

In general we can always obtain an equivalent rectified formula by renaming
bound variables using Proposition 5.

Lemma 6. Every formula is equivalent to a rectified formula.

Given a rectified formula F we can use the equivalences in Proposition 1 to
convert F to an equivalent formula in rectified prenex form (RPF) by “pushing all
quantifiers to the front” in the manner of Example 3.

Theorem 7. Every formula is equivalent to a rectified formula in prenex form.
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We say that a formula in RPF is in Skolem form if it does not contain any
occurrences of the existential quantifier. We can transform a formula in RPF to
an equisatisfiable (though not necessarily logically equivalent) formula in Skolem
form by using extra function symbols. For example, the formulas ∀x∃yP (x, y) and
∀xP (x, f(x)) are equisatisfiable. An assignment that satisfies the left-hand formula
can be extended to an assignment satisfying the right-hand formula by interpreting
f as a “selection function” that maps each x to some y such that P (x, y) holds. More
generally we have the following proposition.

Proposition 8. Let F = ∀y1∀y2 . . . ∀yn∃z G be a rectified formula. Given a function
symbol f of arity n that does not occur in F ,1 write

F ′ = ∀y1∀y2 . . . ∀ynG[f(y1, . . . , yn)/z] .

Then F and F ′ are equisatisfiable.

Proof. We prove that if F is satisfiable then so is F ′. The reverse direction is left as
an exercise.

Suppose that A |= F for some assignment A. We define an assignment A′ that
extends A with an interpretation of the function symbol f such that A′ |= F ′.

Given a1, . . . , an ∈ UA, pick a ∈ UA such that A[y1 7→an]...[yn 7→an][z 7→a] |= G and define
fA′(a1, . . . , an) = a. Since the function symbol f does not occur in G we have

A′
[y1 7→an]...[yn 7→an][z 7→fA′ (a1,...,an)]

|= G ,

and so, by the Translation Lemma,

A′
[y1 7→an]...[yn 7→an]

|= G[f(y1, . . . , yn)/z] .

Since the above holds for all a1, . . . , an ∈ UA, we conclude that

A′ |= ∀y1∀y2 . . . ∀ynG[f(y1, . . . , yn)/z].

Example 9. We find an equisatifiable Skolem form of the formula

∀x∃y ∀z ∃w (¬P (a,w) ∨Q(f(x), y)) .

We apply Proposition 8, eliminating ∃y and introducing a new function symbol g,
yielding

∀x∀z ∃w (¬P (a,w) ∨Q(f(x), g(x))) .

Then we eliminate ∃w by introducing a new function symbol h, yielding

∀x∀z (¬P (a, h(x, z)) ∨Q(f(x), g(x))) .

Conversion to Skolem form: Summary

We convert an arbitrary first-order formula F to an equisatisfiable formula in
Skolem form as follows:

1. Rectify F by systematically renaming its bound variables, yielding a logically
equivalent formula F1.

2. Using the equivalences in Proposition 1 move all the quantifiers in F1 to the
outside, yielding an equivalent formula F2 in prenex form.

3. Repeatedly eliminate the outermost existential quantifier in F2 until an eq-
uisatisfiable formula F3 in Skolem form is obtained. (This process is called
Skolemisation.)

1In the case n = 0 we consider f as a constant symbol.
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A Proof of The Translation Lemma

In this section we give the proof of the Translation Lemma. The proof is quite
technical and can be regarded as optional.

Given an assignment A we first show by induction on terms s that A(s[t/x]) =
A[x 7→A(t)](s). The base cases are as follows:

A(c[t/x]) = A(c) = A[x 7→A(t)](c) c a constant symbol

A(y[t/x]) = A(y) = A[x 7→A(t)](y) y 6= x a variable

A(x[t/x]) = A(t) = A[x 7→A(t)](x)

For the induction step we have

A(f(t1, . . . , tk)[t/x]) = A(f(t1[t/x], . . . , tk[t/x]))
= fA(A(t1[t/x]), . . . ,A(tk[t/x]))
= fA(A[x 7→A(t)](t1), . . . ,A[x 7→A(t)](tk]) (by induction hypothesis)

= fA[x 7→A(t)]
(A[x 7→A(t)](t1), . . . ,A[x 7→A(t)](tk))

= A[x7→A(t)](f(t1, . . . , tk)) .

Next we use induction on formulas to show that for all formulas F , A |= F [t/x]
iff A[x 7→A(t)] |= F . The base case is that F is an atomic formula P (t1, . . . , tk) for a
k-ary predicate symbol P . Then

A |= P (t1, . . . , tk)[t/x] iff A |= P (t1[t/x], . . . , tk[t/x])

iff (A(t1[t/x]), . . . ,A(tk[t/x])) ∈ PA

iff (A[x 7→A(t)](t1), . . . ,A[x 7→A(t)](tk)) ∈ PA

iff (A[x 7→A(t)](t1), . . . ,A[x 7→A(t)](tk)) ∈ PA[x 7→A(t)]

iff A[x7→A(t)] |= P (t1, . . . , tk) .

The inductive cases for the propositional connectives are routine. The case for
the universal quantifier ∀y, where y 6= x, is given below.

A |= (∀yF )[t/x] iff A |= ∀y(F [t/x])
iff A[y 7→d] |= F [t/x] for all d ∈ UA

iff A[y 7→d][x 7→A[y 7→d](t)] |= F for all d ∈ UA (induction hypothesis)

iff A[y 7→d][x 7→A(t)] |= F for all d ∈ UA (y does not occur in t)

iff A[x7→A(t)][y 7→d] |= F for all d ∈ UA (y 6= x)

iff A[x7→A(t)] |= ∀yF .

The case for the existential quantifier is similar to the above. This concludes the
proof.
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